• 検索結果がありません。

A Method to Measure the Drag Force of the Immersed Body

N/A
N/A
Protected

Academic year: 2021

シェア "A Method to Measure the Drag Force of the Immersed Body"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

A Method to Measure the Drag Force of the Immersed Body

Hideyuki NISHINOKUBI, Hideya TAMURA and Kei NAKASAI

In order to make an accurate measurement of the drag force of the immersed body against the stream, a simple device was devised by attaching the strain gauge on a steel plate.

It has become clear that direct measurement of the drag force of the immersed body by use of the device is feasible, and also the value obtained by indirect measurement which has been, employed in this laboratory must be revised by approximately 10%.

Introduction

One of the method to design a new fishing gear or to improve an old one is model experiment using water tank. The water tank experiment of the fishing gear has been carried out for the respective purpose in two ways. One is the most popular method which was first presented by Tauti using a model made according to the law of similarity between model and full-scale net. The other is to verify the theoretical analysis of the gear. This method is mainly employed in this laboratory.

The data obtained in the course of experiment are quite necessary for research.

For example, in the study of tow net, the distance between danlenos, the height of net mouth and total resistance of the net are three important factors that must be obtained. The distance between danlenos or the height of the net mouth is obtained without difficulty by direct measurement or by measuring with a rule the photograph taken in the course of experiment. However, the accurate measurement of total resistance of the net in water is not obtained easily.

Recently, the commercial strain gauge is employed popularly in the field of research work. It is, however, impossible to use it directly in water to measure the force acting on the net. In this laboratory, therefore, the force acting on the net in water is measured by use of an unbonded transducer equipped over the position of the net

in air and connected by a string to the immersed net through a pulley in order to change the direction of the string at right angles. Therefore, as the force obtained by the transducer is loaded with both the total force of the immersed net and the frictional force of the pulley, it is considered that the value obtained in the course of experiment requires some correction.

Here, in this report, a simple device to measure the drag force of the immersed body is described and the revised value against the conventional experiments is sought.

Method

In order to obtain the influence of the immersed pulley, the resistance of an

(2)

56 H. NrsmNoKuBi, et al : A Method to Measure the Drag Force

immersed body which is towed against the stream in the water tank was measured directly as well as indirectly through the pulley as shown in Fig. 1. The immersed

8 9 A         8

s

G F

R P F

R

Fig. 1. Schemaitc view of Experiment I(left) and Experiment II (right).

 Key一 A, dynamic strain amplifier; B, bridge box;

      F, flow speed measuring device;

      G, steel plate borided with strain  gauge;

      P, pulley; R, immersed body;

      T, unbonded transducer.

circular cone shape body made of polyethylene was loaded with lead so as to be stable in the stream.

  Hereinafter, the direct measurement refers to Experiment 1 and the indirect mea−

surement to Experiment II.

Experiment I

  The immersed body, R in Fig. 1, was connected directly to the steel plate (G>

(218×12xO.8mm) by a string. The hydrodynamic force acting on the immersed body deforms the steel plate by flow. Therefore, the strain gauge (Kyowa KP−10−Al−17)

was bonded upon the steel plate on both sides according to the active dummy method as shown in Fig. 2. The bonded gauge was covered with a coating material to be        made water−tight. The terminal of the        strain gauge was connected to the bridge        box (Kyowa DB−120K), B in Fig. 1, the        dynamic strain amplifier (Kyowa DPM−

      steet piute IN) and the linear corder (Model WTR        281).

   Fig. 2. Schematic view of force meaSuring          device.

o o

o

㎞inol

9閃i両600e

S雪

Experiment II

  The .immersed body was ・connected by a string to the unbonded transducer (Kyowa 120T−200C) shown by T in Fig. 1. The pulley (P) was employed to change the direction of the string at right angles. And the transducer was connected to the dynamic strain amplifier (A) and then to the linear corder.

Measurement of the flow speed

  In the course of experiment, the exact value of flow speed must be obtained,

because the force of the immersed body varies with a variety of flow speed. The electric current rneter (Dentan CM−IB) was employed to measure the flow speed in previous papersi,2,3)4,5), however, this was not so sensitive to follow the full variety of flow speed, especially in low flow speed where the propeller of the current meter could not.swing due to the friction of・its axis. Therefore, the strain obtained by the defotmation of the steel plate by flow was converted into the flow speed.

(3)

  The steel plate whieh was bonded with the strain. gauge on both sides was depressed and carved in part so as to deform easily even at slow flow speed as shown schematically in Fig. 3.

  The strain by flow was recorded simultaneously with the force measure−

ment by the linear corder.

o o

0 Torminul

翫rdn Goge

Sセe●1

Pl

Fig. 3. Schematic vieW  of flow speed measuring device.

Result and Discussion

  As the recorded values on the chart of the linear cordet was shown in strain, it

,was first converted into the value Qf weight in gram. The relation between the strain and weight in gram for the force measuring device is shown in Fig. 4 and for the flow speed measuring device in  Fig. 5.

       The flow speed in cm/sec was calcula一

xlo g

2000

1500

 を

呈1000 m

500

o     50 {oo. 150      Wdoh曾(9)

The relation between the strain and weight for the force measuring

device.

ted by the equation

     R == {1}一Cdpl/2A,

where R is the drag force of the immersed plate, Cd the drag coefficient,

p the density of fluid, V the flow speed and A the area of steel plate in the stream. And the relation between the strain and flow speed and also towing force is shown in Fig. 6. ln the figure,1iO︐/

嚢iiil

Fig. 4.

o

Fig. 5.

tmt o sont iTt  … S6      6p

       Welght 〈g)

The relation between the strain and weight for the flow speed measuring device.

the CUrved line S shows the relation between the strain and flow speed, and the point marked with a circle is the drag force . of the immersed body which is obtained by subtracting the drag force of the steel plate that is calculated by the above mentioned equation from the recorded value in Experiment 1. Because, the value obtained in Experiment 1 contain both the drag force against the stream of the steel plate and that of the immersed body. The point marked with a double circle is the value obtained in the course of Experiment II. The straight lines 1 and II were drawn by the method of least squares.

  By the use of Fig. 6, the drag force of the immersed body which is towed against the stream of any water speed is obtained immediately. For example, as shown by a dotted line in Fig. 6, consider that Va is an arbitrarily chosen・water speed and then

(4)

58 H. NisHiNoKuBi, et al : A Method to Measure the Drag Force

60

50

0

︵ooω︑Eo︾ 4

0 3

﹁o巴ω﹂20︸

20

10

s

      l / /1       :

      :       i@

      :

       珊1____  皿.

       @,

      :       :

      g ot le lt

Qo Q

o Q

a Q

.g]

o

o a

soo

80

︵O︾ 8﹂o﹂ 2旧30ト

0 6

40

20

       tOO 200 300

       strqin (xlo−6)

Fig. 6, The relation between the strain and the towing force and also flow speed.

the dotted line which is drawn horizontally from the point Va intersects the curved line S at the point Sa. Then, the line which is drawn from Sa at right angles down−

ward crosses the lines 1 and II at the points la and Ila, and the force value of these points is seen at lf and Ilf, respectively. lt is considered that the difference between the values of lf and Ilf is caused by the frictional force of the immersed pulley.

  The difference rate against the values of Experiment II is shown in Fig. 7. As seen in the figure, the rate is large at low flow speed and becomes smaller following the increase of water speed. And it becomes nearly constant in the range of flow speed exceeding 20cm/sec. ln this range the rate appears to be 10−12% as shown by the dotted lines in the figure. Therefore, the accurate drag force acting on the

(5)

20

●言に

      10 20 50 40 50

       Water Speed (cm/sec)

Fig. 7. The difference rate agaiust the values gf Experiment II.

60

      t

immersed body must be the value deducted approximately by 10% from the value obtained by the method of Experiment II.

  After all, the best method to measure the drag force of the immersed body against the stream is a direct measurement, but the circumstance of water prevents us from doing so. However, in this experiment it has become feasible to a certain extent to use the strain gauge in water only if it is made perfectly water proof.

  And also it has become clear that the drag force of the immersed body obtained by the conventional method using a pulley must be correc.  ted by deducting approxi−

mately 10%.

References

1) NAKAsAi, K. and E. FLoREs : Theoretical studies on the mechanical characteristics of two−

   seam trawl net。 This Bull.,ろ2,113−128(1971)

2) FLoREs, E. and K. NAKAsAi : On the comparison between two−seam trawl net and four−

   seam trawl net. ibid., 52, 129−134 (1971)

3) AHMAD, M. and K. NAKAsAi : The mechanical characteristics of a six−seam trawl net. ibid.,

   56, 75−91 (1973)

4)AHMAD, M., H. NlslllNoKuBI and K. NAKAsAI二The mechanical comparison of a six−seam    and a four−seam traw1. ibid., 56, 93−101 (1973)

5) KAKui, A., H. NisHiNoKuBi and K NAKAsAi : The mechanical study on the west Japan    small type tow net. ibid., 56, 103−116 (1973)

参照

関連したドキュメント

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

As explained above, the main step is to reduce the problem of estimating the prob- ability of δ − layers to estimating the probability of wasted δ − excursions. It is easy to see

We have formulated and discussed our main results for scalar equations where the solutions remain of a single sign. This restriction has enabled us to achieve sharp results on

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

This paper develops a recursion formula for the conditional moments of the area under the absolute value of Brownian bridge given the local time at 0.. The method of power series

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A