• 検索結果がありません。

Some well-known examples: Hook length multi-set

N/A
N/A
Protected

Academic year: 2022

シェア "Some well-known examples: Hook length multi-set"

Copied!
87
0
0

読み込み中.... (全文を見る)

全文

(1)

A promenade in the garden of hook length formulas

Guo-Niu Han IRMA, Strasbourg

61st SLC

Curia, Portugal - September 22, 2008

1

(2)

Hook length formulas for partitions and plane trees

Summary:

• Some well-known examples

• How to discover new hook formulas ?

• The Main Theorem

• Specializations

• Latest news on the subject

2

(3)

Some well-known examples: Hook length multi-set

Partition

λ = (6, 3, 3, 2)

v

Hook length of v hv(λ) = 4

2 1 4 3 1 5 4 2

9 8 6 3 2 1 Hook lengths

H(λ)

The hook length multi-set of λ is

H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}

3

(4)

Some well-known examples: permutations

fλ : the number of standard Young tableaux of shape λ Frame, Robinson and Thrall, 1954

fλ = n!

Q

h∈H(λ) h

4

(5)

Some well-known examples: permutations

fλ : the number of standard Young tableaux of shape λ Frame, Robinson and Thrall, 1954

fλ = n!

Q

h∈H(λ) h

Robinson-Schensted correspondence: P

λ⊢n

fλ2 = n!

X

λ∈P

x|λ| Y

h∈H(λ)

1

h2 = ex

5

(6)

Some well-known examples: involutions

The number of standard Young tableaux of {1, 2, . . . , } is equal to the number of involutions of order n.

X

λ∈P

x|λ| Y

h∈H(λ)

1

h = ex+x2/2

6

(7)

Some well-known examples: partitions

Generating function for partitions:

X

λ∈P

x|λ| Y

h∈H(λ)

1 = Y

k≥1

1 1 − xk

7

(8)

Some well-known examples: binary trees

hook length for unlabeled binary trees

@@

@@

• 5• ◦

• •

T

@@

@@

◦3 5◦ 6◦ 1◦

1◦ ◦1

T

Hv(T) = 5 H(T) = {1, 1, 1, 3, 5, 6}

8

(9)

Some well-known examples: binary trees

fT : the number of increasing labeled binary trees

fT = n!

Q

h∈H(T) h

9

(10)

Some well-known examples: binary trees

Each labeled binary tree with n vertices is in bijection with a permutation of order n

X

T∈B(n)

n! Y

v∈T

1

hv = n!

10

(11)

Some well-known examples: binary trees

Each labeled binary tree with n vertices is in bijection with a permutation of order n

X

T∈B(n)

n! Y

v∈T

1

hv = n!

Generating function form:

X

T∈B

x|T| Y

h∈H(T)

1

h = 1 1 − x

11

(12)

Some well-known examples: binary trees, Catalan

The number of binary trees with n vertices is equal to the n-th Catalan number

X

T∈B(n)

1 = 1 n + 1

2n n

Generating function form:

X

T∈B

x|T| Y

h∈H(T)

1 = 1 − √

1 − 4x 2x

12

(13)

Some well-known examples: tangent numbers

X

T∈B

x|T| Y

h∈H(T),h≥2

1

2h = tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

13

(14)

Some well-known examples: tangent numbers

X

T∈B

x|T| Y

h∈H(T),h≥2

1

2h = tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

A : The tangent number counts the alternating permutations (Andr´e, 1881).

14

(15)

Some well-known examples: tangent numbers

X

T∈B

x|T| Y

h∈H(T),h≥2

1

2h = tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

A : The tangent number counts the alternating permutations (Andr´e, 1881).

B : The tangent number counts Andr´e permutations (Foata, Sch¨utzenberger, Strehl, 1973).

15

(16)

Some well-known examples: tangent numbers

X

T∈B

x|T| Y

h∈H(T),h≥2

1

2h = tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

A : The tangent number counts the alternating permutations (Andr´e, 1881).

B : The tangent number counts Andr´e permutations (Foata, Sch¨utzenberger, Strehl, 1973).

Answer : B !

16

(17)

Some well-known examples: tangent numbers

But what is A ?

17

(18)

Some well-known examples: tangent numbers

But what is A ?

X

T∈C

x|T| Y

h∈H(T)

1

h = tan(x) + sec(x)

C : complete binary trees

18

(19)

Discover new hook formulas

P artitions T rees

Discovering

Proving

19

(20)

Discover new hook formulas

P artitions T rees

Discovering Hard

Proving

20

(21)

Discover new hook formulas

P artitions T rees

Discovering Hard Hard

Proving

21

(22)

Discover new hook formulas

P artitions T rees

Discovering Hard Hard

Proving Hard

22

(23)

Discover new hook formulas

P artitions T rees

Discovering Hard Hard

Proving Hard Easy

23

(24)

Discover new hook formulas

We now introduce an efficient technique for discovering new hook length formulas:

24

(25)

Discover new hook formulas

We now introduce an efficient technique for discovering new hook length formulas:

hook length expansion

25

(26)

Discover new hook formulas: expansion

ρ(h): weight function

f(x): formal power series

They are connected by the relation:

X

λ∈P

x|λ| Y

h∈H(λ)

ρ(h) = f(x)

26

(27)

Discover new hook formulas: expansion

ρ(h): weight function

f(x): formal power series

They are connected by the relation:

X

λ∈P

x|λ| Y

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

27

(28)

Discover new hook formulas: expansion

ρ(h): weight function

f(x): formal power series

They are connected by the relation:

X

λ∈P

x|λ| Y

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

• hook length expansion : ρ ←− f

28

(29)

Discover new hook formulas: expansion

ρ(h): weight function

f(x): formal power series

They are connected by the relation:

X

λ∈P

x|λ| Y

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

• hook length expansion : ρ ←− f

• hook length formula : when both ρ and f have “nice” forms

29

(30)

Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

30

(31)

Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan- sion ? Yes.

31

(32)

Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan- sion ? Yes.

1 2 3 4

1 2 4 1

2 1 3 2

1

4 2 1 4 3 2 1

32

(33)

Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan- sion ? Yes.

1 2 3 4

1 2 4 1

2 1 3 2

1

4 2 1 4 3 2 1

ρ4ρ3ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ3ρ2ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ4ρ3ρ2ρ1 = f4

33

(34)

Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan- sion ? Yes.

1 2 3 4

1 2 4 1

2 1 3 2

1

4 2 1 4 3 2 1

ρ4ρ3ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ3ρ2ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ4ρ3ρ2ρ1 = f4

We can solve ρ4 when knowing ρ1, ρ2, ρ3, f4, because there is at most one “4” in each partition (linear equation with one variable)

34

(35)

Discover new hook formulas: maple package

Maple package for the hook length expansion

HookExp Two procedures

hookgen: ρ −→ f

hookexp: ρ ←− f

35

(36)

Discover new hook formulas: permutation

Example : permutations

> read("HookExp.mpl"):

> hookexp(exp(x), 8);

1, 1 4, 1

9, 1

16, 1

25, 1

36, 1

49, 1 64

X

λ∈P

x|λ| Y

h∈H(λ)

1

h2 = ex

36

(37)

Discover new hook formulas: involution

Example: involutions

> hookexp(exp(x+x^2/2), 8);

1, 1 2, 1

3, 1 4, 1

5, 1 6, 1

7, 1 8

X

λ∈P

x|λ| Y

h∈H(λ)

1

h = ex+x2/2

37

(38)

Discover new hook formulas: interpolation

permutations : X

λ∈P

x|λ| Y

h∈H(λ)

1

h2 = ex

involutions : X

λ∈P

x|λ| Y

h∈H(λ)

1

h = ex+x2/2

♥♥♥ What about the interpolation ex+zx2/2 ?

38

(39)

Discover new hook formulas: interpolation

Try

> hookexp(exp(x+z*x^2/2), 8);

h1, 1 + z

4 , 3z + 1

9 + 3z , z2 + 6z + 1

16 + 16z , 5z2 + 10z + 1 5z2 + 50z + 25, z3 + 15z2 + 15z + 1

120z + 36z2 + 36 , 7z3 + 35z2 + 21z + 1 7z3 + 147z2 + 245z + 49

i

Many binomial coefficients, so that ...

39

(40)

Discover new hook formulas: interpolation

Interpolation between permutations and involutions:

First Conjecture (H., 2008) X

λ∈P

x|λ| Y

h∈H(λ)

ρ(z; h) = ex+zx2/2

where

ρ(z; n) =

⌊n/2⌋

X

k=0

n 2k

zk

n

⌊(n−1)/2⌋

X

k=0

n 2k + 1

zk

40

(41)

Discover new hook formulas: partition

Another example: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

X

λ∈P

x|λ| Y

h∈H(λ)

1 = Y

k≥1

1 1 − xk

41

(42)

Discover new hook formulas: partition

Another example: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

X

λ∈P

x|λ| Y

h∈H(λ)

1 = Y

k≥1

1 1 − xk

♥♥♥ What about Q

k(1 − xk) ?

42

(43)

Discover new hook formulas: partition

Another example: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

X

λ∈P

x|λ| Y

h∈H(λ)

1 = Y

k≥1

1 1 − xk

♥♥♥ What about Q

k(1 − xk) ?

♥♥♥ or more generally Q

k(1 − xk)z ?

43

(44)

Discover new hook formulas: partition

Try it by using HookExp

44

(45)

Discover new hook formulas: partition

Try it by using HookExp

> hookexp(product((1-x^k)^z, k=1..7), 7);

−z, 3 − z

4 , 8 − z

9 , 15 − z

16 , 24 − z

25 , 35 − z

36 , 48 − z 49

45

(46)

Discover new hook formulas: partition

Try it by using HookExp

> hookexp(product((1-x^k)^z, k=1..7), 7);

−z, 3 − z

4 , 8 − z

9 , 15 − z

16 , 24 − z

25 , 35 − z

36 , 48 − z 49

We see that the ρ has a very simple expression:

ρ(h) = h2 − 1 − z

h2 = 1 − z + 1 h2

46

(47)

Discover new hook formulas: Nekrasov-Okounkov

The previous hook length expansion suggests:

Theorem (Nekrasov-Okounkov, 2003; H., 2008)

X

λ∈P

Y

h∈H(λ)

1 − z + 1 h2

x = Y

k≥1

1 − xkz

47

(48)

Discover new hook formulas: proofs

How to prove ?

48

(49)

Discover new hook formulas: proofs

How to prove ?

The Russian-Physics Proof

Nekrasov, Okounkov (2003): arXiv: hep-th/0306238, 90 pages (The last formula is deeply hidden in N-O’s paper. See formula (6.12) on page 55)

49

(50)

Discover new hook formulas: proofs

How to prove ?

The Russian-Physics Proof

Nekrasov, Okounkov (2003): arXiv: hep-th/0306238, 90 pages (The last formula is deeply hidden in N-O’s paper. See formula (6.12) on page 55)

The Lotharingian-Combinatorics Proof H. (2008): arXiv:0805.1398 [math.CO], 28 pages

50

(51)

Discover new hook formulas: Combinatorial proof

Basic tools in the Lotharingian-Combinatorics Proof

• Macdonald’s identities (1972): Affine root systems and Dedekind’s η-function

• Garvan, Kim, Stanton’s bijection (1990): Cranks and t-cores

• Lagrange interpolation formula

51

(52)

Discover new hook formulas

“This is great !

But can we do more ?”

52

(53)

Main Theorem:

1 + xk

We have (when z = 1):

X

λ∈P

x|λ| Y

h∈H(λ)

1 − 2 h2

= Y

k≥1

(1 − xk).

53

(54)

Main Theorem:

1 + xk

We have (when z = 1):

X

λ∈P

x|λ| Y

h∈H(λ)

1 − 2 h2

= Y

k≥1

(1 − xk).

♥♥♥ What about

Y(1 + xk) ?

54

(55)

Main Theorem:

1 + xk

Try

> hookexp(product(1+x^k, k=1..14),14);

1, 1

2, 1, 7

8, 1, 17

18, 1, 31

32, 1, 49

50, 1, 71

72, 1, 97 98

We have

X

λ∈P

x|λ| Y

h∈H(λ),h even

1 − 2 h2

= Y

k≥1

(1 + xk).

55

(56)

Main Theorem:

1 + xk

• How to prove ?

56

(57)

Main Theorem:

1 + xk

• How to prove ?

It seems very hard !

57

(58)

Main Theorem:

1 + xk

• How to prove ?

It seems very hard !

• Can it be generalized ?

58

(59)

Main Theorem:

1 + xk

• How to prove ?

It seems very hard !

• Can it be generalized ?

- No, with the right-hand side by hookexp(←−), because no

“nice” expansion for Y 1

1 + xk or Y

(1 + xk)z.

59

(60)

Main Theorem:

1 + xk

• How to prove ?

It seems very hard !

• Can it be generalized ?

- No, with the right-hand side by hookexp(←−), because no

“nice” expansion for Y 1

1 + xk or Y

(1 + xk)z.

- Yes, with the left-hand side by hookgen(−→).

60

(61)

Main Theorem:

1 + xk

variation

We have just seen:

ρ =

1, 1

2, 1, 7

8, 1, 17

18, 1, 31

32, 1, 49

50, 1, 71

72, 1, 97 98

−→ Y

k≥1

(1+xk).

Try the following variations of ρ with hookgen:

1, 1 − z

2, 1, 1 − z

8, 1, 1 − z

18, 1, 1 − z

32, 1, 1 − z

50, 1

[1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1]

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]

61

(62)

Main Theorem:

1 + xk

variation

> ...

1, 1− z

2, 1, 1− z

8, 1, 1− z

18, 1, 1− z

32, 1, 1− z

50, 1

> hookgen(%): etamake(%, x, 10): simplify(%);

Y

k≥1

(1 − x2k)z 1 − xk

When z = 1 Y

k≥1

(1 − x2k)z

1 − xk = Y

k≥1

1 − x2k

1 − xk = Y

k≥1

(1 + xk)

62

(63)

Main Theorem:

1 + xk

variation

> r:=n-> if n mod 3=0 then -1 else 1 fi:

> [seq(r(i), i=1..17)];

[1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1, −1, 1, 1]

> hookgen(%): etamake(%, x, 17): simplify(%);

Y

k≥1

(1 − x12k)3(1 − x3k)6 (1 − x6k)9(1 − xk)

63

(64)

Main Theorem:

1 + xk

variation

> f := k -> (1-x^(3*k))^3/(1-(z*x^3)^k)^3/(1-x^k):

> hookexp(product(f(k),k=1..15), 15);

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]

> ...

X

λ∈P

x|λ|zhmult(λ) = Y

k≥1

(1 − xtk)t

(1 − (zxt)k)t(1 − xk)

where hmult(λ) is the number of boxes v such that hv(λ) is a multiple of t.

64

(65)

Main Theorem

The previous and many other experimentations suggest:

Main Theorem (H. 2008)

X

λ∈P

x|λ| Y

h∈Ht(λ)

y − tyz h2

= Y

k≥1

(1 − xtk)t

(1 − (yxt)k)t−z(1 − xk)

Ht(λ) = {h | h ∈ H(λ), h ≡ 0(mod t)}.

65

(66)

Main Theorem: fields of interest

This work has some links with the following fields:

• General Mathematical Community: Euler, Jacobi, Gauss

• High Energy Physics Theory: Nekrasov, Okounkov

• Lie Algebra and Representation Theory: Macdonald, Dyson, Kostant, Milne, Adin, Schlosser

• Modular Forms and Number Theory: Ramanujan, Lehmer, Ono, Stanton

• q-Series, Combinatorics: (Here we are !)

• Algorithm, Computer Algebra: RSK, Krattenthaler (rate), Garvan (qseries), Sloane

• Plane Trees: Viennot, Foata, Sch¨utzenberger, Strehl, Gessel, Postnikov

66

(67)

Main Theorem: Specializations

The Main Theorem has so many specializations:

• the Jacobi triple product identity →

• the Gauss identity →

• the Nekrasov-Okounkov formula

• the generating function for partitions

• the Macdonald identity for A(a)

• the classical hook length formula

• the marked hook formula →

• the generating function for t-cores

• the t-core analogues of the hook formula

• the t-core analogues of the marked hook formula

• ...

67

(68)

Specializations, Jacobi + Gauss

The Main Theorem unifies Jacobi and Gauss identities.

t = 1, y = 1, z = 4:

Jacobi

Y

m≥1

(1 − xm)3 = X

m≥0

(−1)m(2m + 1)xm(m+1)/2

t = 2, y = 1, z = 2:

Gauss

Y

m≥1

(1 − x2m)2

1 − xm = X

m≥0

xm(m+1)/2

68

(69)

Specializations,

t

-cores

Let {z = t or y = 0}, we get the well known formula:

X

λ: t-cores

x|λ| = Y

k≥1

(1 − xtk)t 1 − xk

69

(70)

Specializations,

t

-cores

Let {z = t or y = 0}, we get the well known formula:

X

λ: t-cores

x|λ| = Y

k≥1

(1 − xtk)t 1 − xk

♥♥♥ What about

Y

k≥1

(1 + xtk)t 1 − xk ?

70

(71)

Specializations,

t

-cores

Let {z = t or y = 0}, we get the well known formula:

X

λ: t-cores

x|λ| = Y

k≥1

(1 − xtk)t 1 − xk

♥♥♥ What about

Y

k≥1

(1 + xtk)t 1 − xk ?

♥♥♥ How to generalize it ?

71

(72)

Specializations,

t

-cores

First, try hookexp (←−):

X

λ∈P

x|λ|2#{h∈H(λ),h=t} = Y

k≥1

(1 + xtk)t 1 − xk .

72

(73)

Specializations,

t

-cores

First, try hookexp (←−):

X

λ∈P

x|λ|2#{h∈H(λ),h=t} = Y

k≥1

(1 + xtk)t 1 − xk .

Then, try hookgen (−→):

Theorem (H. 2008)

X

λ∈P

x|λ|y#{h∈H(λ),h=t} = Y

k≥1

(1 + (y − 1)xtk)t 1 − xk

73

(74)

Specializations, marked hook formula

• {z = −b/y, y → 0} in Main Theorem:

X

λ∈P

x|λ| Y

h∈Ht(λ)

tb

h2 = ebxt Y

k≥1

(1 − xtk)t 1 − xk

• Compare the coefficients of bnxtn: X

λ⊢tn,#Ht(λ)=n

Y

h∈Ht(λ)

1

h2 = 1 tnn!

• t = 1:

X

λ⊢n

fλ2 = n!

74

(75)

Specializations, marked hook formula

• Compare the coefficients of (−z)n−1xntyn

X

λ⊢nt,# Ht(λ)=n

Y

h∈Ht(λ)

1 h2

X

h∈Ht(λ)

h2 = 3n − 3 + 2t 2(n − 1)!

• t = 1:

Marked hook formula (H. 2008)

X

λ⊢n

fλ2 X

h∈H(λ)

h2 = n(3n − 1)

2 n!

75

(76)

Specializations, marked hook formula

• Direct combinatorial proof ? Not yet

• Generalizations ? Yes

76

(77)

Specializations, marked hook formula

• Direct combinatorial proof ? Not yet

• Generalizations ? Yes

77

(78)

Specializations, marked hook formula

X

λ⊢n

Y

h∈H(λ)

1 h2

X

h∈H(λ)

h2 = 3n − 1 2(n − 1)!

X

λ⊢n

Y

h∈H(λ)

1 h2

X

h∈H(λ)

h4 = 40n2 − 75n + 41 6(n − 1)!

X

λ⊢n

Y

h∈H(λ)

1 h2

X

h∈H(λ)

h6 = 1050n3 − 4060n2 + 5586n − 2552 24(n − 1)!

Second Conjecture (H. 2008)

Pk(n) = (n − 1)! X

λ⊢n

Y

v∈λ

1 h2v

X

u∈λ

h2ku is a polynomial in n of degree k.

78

(79)

Specializations, Bessenrodt

• {y = 1; compare the coefficients of z} in Main Theorem X

λ∈P

x|λ| X

h∈Ht(λ)

1

h2 = 1 t

Y

m≥1

1 1 − xm

X

k≥1

xtk

k(1 − xtk).

• t = 1:

X

λ∈P

x|λ| X

h∈H(λ)

1

h2 = Y

m≥1

1 1 − xm

X

k≥1

xk

k(1 − xk).

79

(80)

Specializations, Bessenrodt

Direct proof.

By using an elegant result on multi-sets of hook lengths and multi-sets of partition parts.

It is amusing to see that this result is rediscovered periodically:

• Stanley (1972, partial)

• Kirdar, Skyrme (1982, partial)

• Elder (1984, partial)

• Hoare (1986, partial)

• Bessenrodt (1998)

• Bacher, Manivel (2002)

• H. (2008)

80

(81)

Hook length formulas for plane trees

New hook length formulas for plane trees

SLC 62 (2009)

81

(82)

Latest news on the subject

The First Conjecture has been proved by:

Kevin Carde, Joe Loubert, Aaron Potechin, Adrian Sanborn under the guidance of Dennis Stanton and Vic Reiner

(the Minnesota school)

82

(83)

Latest news on the subject

Ameya Velingker, Emily Clader, Yvonne Kemper, Matt Wage was working on these new hook length formulas and found interesting applications on Modular Forms and Number Theory

under the guidance of Ken Ono

(the Wisconsin school)

83

(84)

Latest news on the subject

The Second Conjecture has been proved by Richard Stanley Tewodros Amdeberhan slightly simplified Stanley’s proof

(the MIT school)

84

(85)

Latest news on the subject

Laura Yang, Bruce Sagan

have found generalizations and other proofs of certain hook length formulas for plane trees

85

(86)

Papers

• Discovering hook length formulas by expansion technique

• New hook length formulas for binary trees

• Yet another generalization of Postnikov’s hook length formula for binary trees

• Some conjectures and open problems on partition hook lengths

• The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications

• An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths

• (with Ken Ono) Hook lengths and 3-cores

• Hook lengths and shifted parts of partitions All papers are available on:

http://www-irma.u-strasbg.fr/˜guoniu/hook

86

(87)

References

• Laura Yang, Generalizations of Han’s hook length identities

• Bruce Sagan, Probabilistic proofs of hook length formulas involving trees

• Richard Stanley, Some combinatorial properties of hook lengths, contents, and parts of partitions

• Tewodros Amdeberhan, Differential operators, shifted parts, and hook lengths

• Gil Kalai, Powers of Euler products and Han’s marked hook formula (blog)

• Emily Clader, Yvonne Kemper, Matt Wage, Lacunarity of cer- tain partition theoretic generating functions arising from Han’s generalization of the Nekrasov-Okounkov formula

• Ameya Velingker, An exact formula for the coefficients of Han’s generating function

• Kevin Carde, Joe Loubert, Aaron Potechin, Adrian Sanborn, Proof of Han’s hook expansion conjecture

87

参照

関連したドキュメント

Baruah, Bora, and Saikia [2] also found new proofs for the relations which involve only the G¨ollnitz-Gordon functions by using Schr¨oter’s formulas and some theta-function

In the next theorem we show that for the intersection local time measure µ p of p independent Brownian motions in the plane the behaviour of the average densities is different from

Example Shapes (Young diagrams, left), shifted shapes (shifted Young diagrams, middle) and swivels (right) are

We define the set of colored Yamanouchi tableaux of content λ and total color d (CYT λ,d ) to be the set of mixed insertion tableaux of colored words w with exactly d barred letters

In general, we can obtain in a combinatorial way a Weyl type character formula for various irreducible highest weight representations of a Lie superalgebra, which together with

In their turn, the singularity classes for special 2-flags are encoded by certain words over the alphabet {1, 2, 3} of length equal to flag’s length.. Both partitions exist in their

In this section, we present the transient queue length distribution at time t and a rela- tionship between the stationary queue length distributions at an arbitrary time and

I.R.M.A. — We introduce a hook length expansion technique and explain how to discover old and new hook length formulas for partitions and plane trees. The new hook length formulas