• 検索結果がありません。

(InteractiveGeneticAlgorithm:IGA) IGAIGAIGA IGA(GeneticAlgorithm:GA) 1. Keywords optimization,interactiveevolutionarymethod,interactivegeneticalgorithm,supportvectormachine (ReceivedJanuary19,2009) AsukaA ,MitsunoriM andTomoyukiH InteractiveGeneticAlgorit

N/A
N/A
Protected

Academic year: 2022

シェア "(InteractiveGeneticAlgorithm:IGA) IGAIGAIGA IGA(GeneticAlgorithm:GA) 1. Keywords optimization,interactiveevolutionarymethod,interactivegeneticalgorithm,supportvectormachine (ReceivedJanuary19,2009) AsukaA ,MitsunoriM andTomoyukiH InteractiveGeneticAlgorit"

Copied!
12
0
0

読み込み中.... (全文を見る)

全文

(1)

Interactive Genetic Algorithm using Initial Individuals Produced by Support Vector Machine

Asuka AMAMIYA*, Mitsunori MIKI** and Tomoyuki HIROYASU***

(Received January 19, 2009)

In this paper, we proposed IGA which learns users’ taste and generates initial individuals based on the users’

taste. The Support vector machine (SVM) which has the superior pattern recognition performance is used as how to learn the users’ taste. Based on the evaluation of a user, SVM separates design variable space into the user’s taste domain and the user’s non-liking domain. The initial individuals which suit the user’s taste are generated from the user’s taste domain. The system for coordinating clothes was constructed using the proposed method. We conducted experiments to verify the effectiveness of the proposed method, and found out that it was effective in relieving user’s psychological burden.

In addition, it is thought that collaboration of the user’s own and the other user sensitivity is realized and the user’s idea generation can be supported. We conducted experiments to verify effectiveness to generate initial individuals based on the other user’s taste, and found out that it was effective in supporting the user’s idea generation.

Key words optimization, interactive evolutionary method, interactive genetic algorithm, support vector machine

1.

1)

(Interactive Genetic Algorithm: IGA)2)

IGA (Genetic Algorithm:

GA)3)

IGA

IGA

IGA

(2)

IGA

IGA

(Support Vector

Machine: SVM) SVM

IGA

SVM

* Graduate Student, Department of Knowledge Engineering and Computer Sciences, Doshisha University, Kyoto

Telephone:+81-774-65-6921, Fax:+81-774-65-6716, E-mail:aamamiya@mikilab.doshisha.ac.jp

** Department of Knowledge Engineering and Computer Sciences, Doshisha University, Kyoto

Telephone:+81-774-65-6930, Fax:+81-774-65-6716, E-mail:mmiki@mail.doshisha.ac.jp

*** Faculty of Life and Medical Sciences, Doshisha University, Kyoto

Telephone:+81-774-65-6932, Fax:+81-774-65-6019, E-mail:tomo@is.doshisha.ac.jp

2.

2.1

IGA GA

GA IGA

4) IGA

5,6).IGA

Fig. 1 IGA

Fig. 2 2.2

IGA

IGA

IGA

IGA

IGA

SVM

(3)

User System Display

Evaluation EC

Fig. 1. IGA system.

Initialization

Evaluation

Selection Crossover Mutation

Start

Yes End No Display

Human operation

Terminal criterion

Fig. 2. Flowchart of IGA.

3.

SVM 1960 Vapnik Optimal

Separating Hyperplane(OSH) 7) 1990

SVM

8)

SVM

2 SVM

x

y=sign(wTx+b) 2 w

b T sign(u)

u≥ 0 1 u <0 -1

Fig. 3 SVM

Margin Margin Support Vectors Optimal Separating Hyperplane

w䊶x+b=0

Fig. 3. Support vector machine.

4.

4.1

SVM 2

xi

yi

yi=

1 i

−1 i

(4)

4.2 SVM

Step1 IGA

Step2

Step3 Step2

SVM

Step4 Step5

Step6

Step4

Step1 3 Step4

Step2

5.

IGA Fig. 4

3

9)

IGA

Jacket

Pants

Boots

Fig. 4. Example of coordinating clothes.

5.1

HSB 10) HSB

(Hue) (Saturation) (Bright- ness) 3

5

0

360 0.0 1.0

SVM 5.2

1.

4

SVM

126 Fig. 5

(5)

SVM

2

Fig. 5. Interface of learning data.

12

Fig. 6

Fig. 6. Interface of the system for coordinating clothes.

2.

1 1 1 5 5

5

12 1 3

3.

4.

GA

(BLX- )11) BLX-

di αdi

BLX- Fig. 7

Fig. 8

Fig. 7 2

di α

0.3

Parent Parent1

Child1 d

Child2

Fig. 7. Crossover of hue.

5.

(6)

0.0 1.0

Parent1 Parent2

d

Child1 Child2

Fig. 8. Crossover of saturation and brightness.

0.25 6.

6. SVM 6.1

SVM

5

20 20

Step1 Fig. 5

126

SVM

Step2 Step1

60

Step1 Step2

6.2 SVM

60

Fig. 9

㪈㪇 㪉㪇 㪊㪇 㪋㪇 㪌㪇 㪍㪇

㪐 㪈㪇 㪈㪈 㪈㪉 㪈㪊 㪈㪋 㪈㪌 㪈㪍 㪈㪎 㪈㪏 㪈㪐 㪉㪇 Users

Designs of high evaluation (%)

User's taste domain All domain

Fig. 9. Designs of high evaluation generated from each domain.

Fig. 9 20 20

Fig. 9

1% t t 4.07

38 1% t 2.712

SVM

(7)

7. IGA

7.1

SVM IGA

IGA

20 20

1

2

3

5 SVM

SVM

7.2 7.2.1

1 2 3 Fig. 10 Fig.

11 Fig. 12

5%

Table 1

30%

6 people 10%

2 people 15%

3 people

45%

9 peple

Suggestion system Suggestion system so-so Not whichever

Conventional system Conventional system so-so

Fig. 10. Result of Evaluation Item 1.

20%

4 people 15%

3 people 15%

3 people

50%

10 people

Conventional system so-so Suggestion system Suggestion system so-so Not whichever

Conventional system Conventional system so-so

Fig. 11. Result of Evaluation Item 2.

20%

4 people 25%

5 people 5%

1 people

50%

10 people

Suggestion system Suggestion system so-so Not whichever

Conventional system Conventional system so-so

Fig. 12. Result of Evaluation Item 3.

Fig. 10 1

75% 15

(8)

Table 1. Sign test of the suggestion system and the conventional system.

Evaluation item Significance probability

Item 1 0.00311

Item 2 0.00519

Item 3 0.00046

SVM

Fig. 11 2

70% 14

IGA SVM

1

Fig. 12 3

70% 14

1 2

7.2.2 20

20 2

Fig. 13 Fig. 14

85%

17 design 15%

3 design

Non-liking domain Taste domain

Fig. 13. The classification of designs made by the suggestion system.

Non-liking domain Taste domain

75%

15 design 25%

5 design

Fig. 14. The classification of designs made by the conventional system.

Fig. 13

20 17

Fig. 14

20 15

5%

(9)

SVM

8.

8.1

Step1 A SVM

i(i= 1,· · ·, n) 2

Step2 i A

i A

Step3 Step2

A

i A

8.2

IGA (Multiple Taste Oriented System : MTOS)

IGA Single Taste Oriented

System : STOS 20

20

1

2

3

4

MTOS MTOS

STOS STOS 5

8.3

MTOS STOS 1 2

3 4 Fig. 15 Fig. 16 Fig.

17 Fig. 18

MTOS

MTOS STOS

STOS

(10)

5% Table 2

10%

2 peple

7 people35%

40%

8 people 2 people10%

1 people5%

MTOS MTOS so-so Not whichever

STOS STOS so-so

Fig. 15. Result of Evaluation Item 1.

2 people10%

6 people30%

45%

9 people 10%

2 people

5%

1 people

MTOS MTOS so-so Not whichever

STOS STOS so-so

Fig. 16. Result of Evaluation Item 2.

5 people25%

20%

4 people 4 people20%

30%

6 people

1 people5%

MTOS MTOS so-so Not whichever

STOS STOS so-so

Fig. 17. Result of Evaluation Item 3.

Fig. 15 1

75%

15 MTOS MTOS

MTOS STOS

Fig. 16 2

4 people20%

8 people40%

25%

5 people 2 people10%

1 people5%

MTOS MTOS so-so Not whichever

STOS STOS so-so

Fig. 18. Result of Evaluation Item 4.

Table 2. Sign test of MTOS and STOS.

Evaluation item Significance probability

Item 1 0.00739

Item 2 0.00739

Item 3 0.06665

Item 4 0.22559

75% 15

MTOS MTOS

MTOS STOS

1 2

Fig. 17 3

25% 5

MTOS MTOS 55% 11

STOS STOS

MTOS STOS

MTOS STOS

3 MTOS

MTOS 5 5

2 MTOS

MTOS 5

MTOS

(11)

Fig. 18 4

30% 6 MTOS

MTOS 30% 6 STOS

STOS MTOS

STOS

MTOS STOS

STOS

MTOS

9.

IGA

SVM 2

1) , ”,

, Vol.10, No.4, pp. 647–661, (1998).

2) ,

”, , Vol.13, No.5, pp.

692–703, (1998).

3) J. H. Holland, Adaptation in Natural and Ar- tificial Systems”, University of Michigan Press, Ann Arbor,MI, (1975).

4) ,

”, 4 , (2000),

pp. 325–361.

5) H. Takagi, Interactive Evolutionary Compu- tation”, Fusion of the Capabilities of EC Opti- mization and Human Evaluation, Proc. of IEEE, Vol.89, No.9, pp. 1275–1296, (2001).

6) , GA 3 CG

”,

, Vol.J81-D-2, No.7, pp. 1601–1608, (1998).

7) V. Vapnik and A. Chervonenkis, A note one class of perceptrons”, Automation and Remote Control, Vol.25, (1964).

8) N. Cristianini, J. Shawe-Taylor( ), ( ),

, ( ,

2005), pp. 129–163.

9) ,

”, , Vol.20, No.4, pp.

289–296, (2005).

10) ,

, ( ,

2004).

11) L. J. Eshleman and J. D. Schaffer, Real-Coded Genetic Algorithms and Interval-Schemata 2”, Foundation of Genetic Algorithms, pp. 187–202, (1993).

(12)

Jacket

Pants

Boots Parent

Parent1

Child1

d

Child2

Fig. 7. Crossover of hue. Fig. 4. Example of coordinating clothes.

Fig. 6. Interface of the system for coordinating clothes.

Fig. 5. Interface of learning data.

参照

関連したドキュメント

The problem is modelled by the Stefan problem with a modified Gibbs-Thomson law, which includes the anisotropic mean curvature corresponding to a surface energy that depends on

For the multiparameter regular variation associated with the convergence of the Gaussian high risk scenarios we need the full symmetry group G , which includes the rotations around

Let X be a smooth projective variety defined over an algebraically closed field k of positive characteristic.. By our assumption the image of f contains

The strategy to prove Proposition 3.4 is to apply Lemma 3.5 to the subspace X := (A p,2 ·v 0 ) ⊥ which is the orthogonal for the invariant form h·, ·i p,g of the cyclic space

We show that a discrete fixed point theorem of Eilenberg is equivalent to the restriction of the contraction principle to the class of non-Archimedean bounded metric spaces.. We

In this paper, we have analyzed the semilocal convergence for a fifth-order iter- ative method in Banach spaces by using recurrence relations, giving the existence and

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,