• 検索結果がありません。

Multiplicity-free case of Fomin-Fulton-Li-Poon conjecture

N/A
N/A
Protected

Academic year: 2022

シェア "Multiplicity-free case of Fomin-Fulton-Li-Poon conjecture"

Copied!
58
0
0

読み込み中.... (全文を見る)

全文

(1)

FFLP

Multiplicity-free case of Fomin-Fulton-Li-Poon conjecture

O. Azenhas, M. Rosas

CMUC, Universidade de Coimbra

Departamento de ´Algebra, Facultad de Matem´aticas, Universidad de Sevilla

SLC66, Ellwangen

(2)

FFLP

Fomin-Fulton-Li-Poon conjecture

[FFLP] Fomin, S.; Fulton, W.; Li, C.-K.; Poon, Y.-T.,Eigenvalues, singular values, and Littlewood-Richardson coefficients. Amer. J. Math.

127 (2005), no. 1, 101127. arXiv:math.AG/0301307.

Given a pair of partitions (µ, ν), the?-operation builds a new pair of partitions (λ, ρ) from the sizes of the parts ofµandν,

(µ, ν)−→(µ, ν)?= (λ, ρ), |µ|+|ν|=|λ|+|ρ|.

cµ,νθ ≤cλ,ρθ , sλsρ−sµsν is Schur positive.

The fixed points of the?-operation are the pairs of partitions ν1≥µ1≥ν2≥µ2≥ · · ·. The effect of the?-operation is such that the pair (λ, ρ) is closer to be interlaced than (µ, ν).

(3)

FFLP

Fomin-Fulton-Li-Poon conjecture

[FFLP] Fomin, S.; Fulton, W.; Li, C.-K.; Poon, Y.-T.,Eigenvalues, singular values, and Littlewood-Richardson coefficients. Amer. J. Math.

127 (2005), no. 1, 101127. arXiv:math.AG/0301307.

Given a pair of partitions (µ, ν), the?-operation builds a new pair of partitions (λ, ρ) from the sizes of the parts ofµandν,

(µ, ν)−→(µ, ν)?= (λ, ρ), |µ|+|ν|=|λ|+|ρ|.

In Conjecture 5.1, Fomin, Fulton, Li and Poon conjectured that for any partition θ,

cµ,νθ ≤cλ,ρθ , sλsρ−sµsν is Schur positive.

The fixed points of the?-operation are the pairs of partitions ν1≥µ1≥ν2≥µ2≥ · · ·. The effect of the?-operation is such that the pair (λ, ρ) is closer to be interlaced than (µ, ν).

(4)

Fomin-Fulton-Li-Poon conjecture

[FFLP] Fomin, S.; Fulton, W.; Li, C.-K.; Poon, Y.-T.,Eigenvalues, singular values, and Littlewood-Richardson coefficients. Amer. J. Math.

127 (2005), no. 1, 101127. arXiv:math.AG/0301307.

Given a pair of partitions (µ, ν), the?-operation builds a new pair of partitions (λ, ρ) from the sizes of the parts ofµandν,

(µ, ν)−→(µ, ν)?= (λ, ρ), |µ|+|ν|=|λ|+|ρ|.

In Conjecture 5.1, Fomin, Fulton, Li and Poon conjectured that for any partition θ,

cµ,νθ ≤cλ,ρθ , sλsρ−sµsν is Schur positive.

The fixed points of the?-operation are the pairs of partitions ν1≥µ1≥ν2≥µ2≥ · · ·. The effect of the?-operation is such that the pair (λ, ρ) is closer to be interlaced than (µ, ν).

(5)

FFLP

The ?-operation

The?-operation of Fomin, Fulton, Li and Poon

λk :=µk −k+ #{j : 1≤j ≤n, νj−j≥µk−k}, ρj :=νj−j+ 1 + #{k : 1≤k≤n, µk−k > νj−j}.

has an equivalent recursive definition obtained by Bergeron, Biagioli, Rosas [BBR](Inequalities between Littlewood-Richardson coefficients, J.

Comb. Th., 2006)

Lemma (BBR)

Letν be a partition. Then

ν=ρ(0, ν) = (ν1, ν2−1,· · ·, νk −(k−1)) ν=λ(0, ν) = (1,2,· · ·,k−1, νk+1,· · ·, νn) wherek is the side of the Durffee square ofν.

c0,νν = 1 =cν,νν . Lemma (BBR)

The conjecture holds for the pair (µ, ν) iff it holds for the pair (ν0, µ0).

(6)

FFLP

The ?-operation

The?-operation of Fomin, Fulton, Li and Poon

λk :=µk −k+ #{j : 1≤j ≤n, νj−j≥µk−k}, ρj :=νj−j+ 1 + #{k : 1≤k≤n, µk−k > νj−j}.

has an equivalent recursive definition obtained by Bergeron, Biagioli, Rosas [BBR](Inequalities between Littlewood-Richardson coefficients, J.

Comb. Th., 2006) Lemma (BBR)

Letν be a partition. Then

ν =ρ(0, ν) = (ν1, ν2−1,· · ·, νk−(k−1)) ν =λ(0, ν) = (1,2,· · ·,k−1, νk+1,· · ·, νn) wherek is the side of the Durffee square ofν.

c0,νν = 1 =cν,νν .

(7)

FFLP

The ?-operation

The?-operation of Fomin, Fulton, Li and Poon

λk :=µk −k+ #{j : 1≤j ≤n, νj−j≥µk−k}, ρj :=νj−j+ 1 + #{k : 1≤k≤n, µk−k > νj−j}.

has an equivalent recursive definition obtained by Bergeron, Biagioli, Rosas [BBR](Inequalities between Littlewood-Richardson coefficients, J.

Comb. Th., 2006) Lemma (BBR)

Letν be a partition. Then

ν =ρ(0, ν) = (ν1, ν2−1,· · ·, νk−(k−1)) ν =λ(0, ν) = (1,2,· · ·,k−1, νk+1,· · ·, νn) wherek is the side of the Durffee square ofν.

c0,νν = 1 =cν,νν . Lemma (BBR)

The conjecture holds for the pair (µ, ν) iff it holds for the pair (ν0, µ0).

(8)

Littlewood-Richardson rule

A semi-standard tableau T with contentµ= (µ1, . . . , µs)0 whose word is a shuffle of thes words 12· · ·µ1, 12· · ·µ2,. . . ,12· · ·µs is said to be aLittlewood–Richardson tableauof contentµ.

Littlewood-Richardson tableaux of shapeθ/ν= (6544221)/(6421) and contents respectively (3,3,2,2,1)0 and (6,4,1)0

x x x x x

x x x x x

x

3 2 3 1 2

1 2 2 1 1

1

6 4 5 3 4

1 2 3 1 2

1 .

(9)

FFLP

The ?-operation

ν=

X X X X X X X

10 9 8

8 7 6 5 4 7 6 5 4 3 2 6 5 4 3 2 1 5 4 3 2 1 4 3 2 1 3 2 1 2 1 1

−→

(10)

The ?-operation

ν=

X X X X X X X

10 9 8

8 7 6 5 4 7 6 5 4 3 2 6 5 4 3 2 1 5 4 3 2 1 4 3 2 1 3 2 1 2 1 1

−→

(11)

FFLP

?-operation

(0, ν)→ν = 10

9 8 8 7 7 6 6 6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2

1 1 1 1 1 1 , ν=

(12)

FFLP

The ?-operation

ν=

X X X X X X X

8 7 6 5 4 7 6 5 4 3 2 6 5 4 3 2 1 5 4 3 2 1 4 3 2 1 3 2 1 2 1 1

−→

(13)

FFLP

The ?-operation

ν=

X X X X X X X

10 9 8

8 7 6 5 4 7 6 5 4 3 2 6 5 4 3 2 1 5 4 3 2 1 4 3 2 1 3 2 1 2 1 1

−→

(14)

Canonical filling

There is only one LR tableau of shapeν/ν and contentν, the LR tableau of shapeν/ν with maximal filling with respect to the dominance order.

This filling is said to be thecanonical filling ofν.

c0,νν = 1 =cν,νν .

(ν/0, ν)−→(ν/ν, ν) = 10

8 9

4 5 6 7 8 2 3 4 5 6 7

1 2 3 4 5 6 1 2 3 4 5 1 2 3 4

1 2 3 1 2

1

(15)

FFLP

Augmented canonical filling

Theaugmented canonical filling C(ν) is defined to be the (infinite) tableau obtained by drawing canonical filling ofν/ν, augmented in a way that each row starts as in the canonical filling and then increases by one from left to right. For each rowk > `(ν), we start with entry k.

C(ν) =

13 14. . . 12 13 14. . . 1011 12 13. . .

8 9 10 11 12. . . 4 5 6 7 8 9 10. . . 2 3 4 5 6 7 8 9 . . .

1 2 3 4 5 6 7 8 . . . 1 2 3 4 5 6 7 8 . . .

1 2 3 4 5 6 7 . . . 1 2 3 4 5 6 . . .

1 2 3 4 5 . . . 1 2 3 4 . . .

1 2 3 4 . . .

(16)

Enriched ?- operation

One computes the image of (µ, ν)? for an arbitrary partitionµ, building from the computation of the canonical filling ofν.

Lemma

The image of (µ, ν) under the enriched star operation is the pair of semistandard Young tableaux (λ, ρ) where,

1 To computeλ(µ, ν), we place in thekth row of ¯ν a sequence consisting ofj times letterk, where j is the number of columns of C(ν) that do not contain entryk and that are≤µk.

2 To computeρ(µ, ν), we place each entryk ofC(ν) to the right ofν and in its original position, as long ask belongs to a column of C(ν) that is≤µk.

(17)

FFLP

Multiplicity–free pairs of partitions

A pair of partitions (µ, ν ) is multiplicity–free if the

Littlewood–Richardson coefficients

cµ,νθ

are always either 0 or 1, for all partitions θ.

J. Stembridge, Ann. Comb. 2001, characterized all multiplicity–free pairs of partitions.

Theorem

The product

sµsν

is multiplicity-free if and only if

(a) µorν is a one-line rectangle (Pieri rules), or (b) µandν are both rectangles, or

(c) µis rectangle andν is a near rectangle or vice-versa, or (d) µis a two-line rectangle andν is a fat hook or vice-versa.

(18)

Multiplicity–free pairs of partitions

A pair of partitions (µ, ν ) is multiplicity–free if the

Littlewood–Richardson coefficients

cµ,νθ

are always either 0 or 1, for all partitions θ.

J. Stembridge, Ann. Comb. 2001, characterized all multiplicity–free pairs of partitions.

Theorem

The product

sµsν

is multiplicity-free if and only if

(a) µorν is a one-line rectangle (Pieri rules), or (b) µandν are both rectangles, or

(c) µis rectangle andν is a near rectangle or vice-versa, or (d) µis a two-line rectangle andν is a fat hook or vice-versa.

(19)

FFLP

Multiplicity–free pairs of partitions

A pair of partitions (µ, ν ) is multiplicity–free if the

Littlewood–Richardson coefficients

cµ,νθ

are always either 0 or 1, for all partitions θ.

J. Stembridge, Ann. Comb. 2001, characterized all multiplicity–free pairs of partitions.

Theorem

The product

sµsν

is multiplicity-free if and only if

(a) µorν is a one-line rectangle (Pieri rules), or (b) µandν are both rectangles, or

(c) µis rectangle andν is a near rectangle or vice-versa, or (d) µis a two-line rectangle andν is a fat hook or vice-versa.

(20)

FFLP

The validity of FFLP conjecture for Stembridge’s shapes

Shape-by-shapeproof.

We describe a family of moves on fillings of tableaux that allow us to explicitly construct a Littlewood-Richardson filling of type (ρ, λ, θ) from a Littlewood-Richardson filling of type (ν, µ, θ).

(21)

FFLP

The validity of FFLP conjecture for Stembridge’s shapes

Shape-by-shapeproof.

We describe a family of moves on fillings of tableaux that allow us to explicitly construct a Littlewood-Richardson filling of type (ρ, λ, θ) from a Littlewood-Richardson filling of type (ν, µ, θ).

cν,µθ = 1≤cρ,λθ .

(22)

Row rectangle

(ν, µ = (9))

(23)

FFLP

Row rectangle

(ν/ν, ν)

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 4 5 6 7 8 8 9

10

(24)

Row rectangle

(ν, µ = (9))

−→

(ρ, λ).

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 4 5 6 7 8 8 9

10

9

1 1 1 1

(25)

FFLP

Row rectangle

(ν, µ = (9), θ),

cν,µθ

= 1

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 4 5 6 7 8 8 9

10

1 1

1 1

1 1 1 1

1

9

(26)

Row rectangle

(ρ, λ, θ)

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 4 5 6 7 8 8 9

10

1 1

1 1

1 1 1 1

1

9

(27)

FFLP

Row rectangle

(ρ, λ, θ)

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 4 5 6 7 8 8 9

1

10

1

1 1

1 1 1 1

1

9

(28)

Row rectangle

(ρ, λ, θ)

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7

1

5 6 7 8 4 9

8 10

1

1 1

1 1 1 1

1

9

(29)

FFLP

Row rectangle

(ρ, λ, θ)

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1

1

3 4 5 6 7

1

2 6 7 8 4 5

8 10 9

1 1

1 1 1 1

1

9

(30)

Row rectangle

(ρ, λ, θ)

1 1 2 1 2 3 1 2 3 4 1

1

3 4 5 1

1

2 4 5 6 1

1

2 3 5 6 7

1

2 3 4 6 4 5

8 10 9

7 8

1 1 1 1

1

9

(31)

FFLP

Row rectangle

(ρ, λ, θ)

1 1 2 1 2 3 1

1 1

2 1

1

3 4 5 1

1

2 4 5 6 1

1

2 3 5 6 7

1

2 3 4 6 4 5

8 10 9

7 8

3 4

1 1

1

9

(32)

Row rectangle

(ρ, λ, θ),

cρ,λθ

1.

1 1 2 1

1 1

1

1 1

2 1

1

3 4 5 1

1

2 4 5 6 1

1

2 3 5 6 7

1

2 3 4 6 4 5

8 10 9

7 8

3 4 2 3

1

9

(33)

FFLP

Rectangle, Rectangle

Case 1: µ = (4

3

)

ν = (6

6

)

(34)

Rectangle, Rectangle

Case 1: µ = (4

3

)

ν = (6

6

)

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(35)

FFLP

Rectangle, Rectangle

Case 1: µ = (4

3

)

ν, (ν, µ)

?

= (ρ, λ)

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

, 1

2

2

3 3 3

(36)

Rectangle, Rectangle

Case 1: µ = (4

3

)

ν,

cν,µθ

= 1

T1

T2 1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(37)

FFLP

Rectangle, Rectangle

Case 1: µ = (4

3

)

ν,

cν,µθ

= 1

≤cρ,λθ

.

T1

T2 1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(38)

Tall Rectangle, Rectangle

Case 2: `(µ) > `(ν), µ = (4

9

) ν = (6

6

)

(39)

FFLP

Tall Rectangle, Rectangle

Case 2: `(µ) > `(ν), µ = (4

9

), ν = (6

6

) (ν, µ)

?

= (ρ, λ)

7 8 9 9

8 9

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7

7 7 7

8 8

9

(40)

Tall Rectangle, Rectangle

Case 2:

cν,µθ

= 1

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

1 2 4 5

2 3 5 6

3 4 6 7

4 5 7 8

5 6 8 9

6 7 9

7 8

8 9

9

(41)

FFLP

Tall Rectangle, Rectangle

Case 2:

cν,µθ

= 1

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

1 2 4 5

2 3 5 6

3 4 6 7

4 5 7 8

5 6 8 9

6 7 9

7 8

8 9

9

(42)

Tall Rectangle, Rectangle

Case 2:

cν,µθ

= 1

≤cρ,λθ

.

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

7 8 9 5

8 9 4 6

9 2 5 7

1 3 6 8

2 4 7 9

3 5 8

4 6

5 7

6

(43)

FFLP

Leg Rectangle, Rectangle

Case 1: ν = (6

6

, 1

4

), µ

6

6−1

, µ = 4

5

,

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(44)

Leg Rectangle, Rectangle

Case 1: µ

ν, µ = 4

5

, ν = (6

6

, 1

4

)

6 7 8

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

1 2 2 3 3 3

4 4 4 4

5

5

5

5

(45)

FFLP

Leg Rectangle, Rectangle

Case 1:

cν,µθ

= 1

T1

T2 6

7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(46)

Leg Rectangle, Rectangle

Case 1:

cµ,νθ

= 1

≤cρ,λθ

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

6

7

8

(47)

FFLP

Leg Rectangle, Rectangle

Case 2: ν = (6

6

, 1

4

), µ = 4

6

,

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(48)

Leg Rectangle, Rectangle

Case 2: (ρ, λ)

6 7 8

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

1 2 2 3 3 3

4 4 4 4

5

5

5

5

6 6 6

(49)

FFLP

Leg Rectangle, Rectangle

Case 2:

cν,µθ

= 1.

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(50)

Leg Rectangle, Rectangle

Case 2: (ν, µ, θ).

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(51)

FFLP

Leg Rectangle, Rectangle

Case 2: (ρ, λ, θ).

6

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(52)

Leg Rectangle, Rectangle

Case 2: (ρ, λ, θ).

6

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(53)

FFLP

Leg Rectangle, Rectangle

Case 2: (ρ, λ, θ)

6

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

6

7

8

(54)

Leg Rectangle, Rectangle

Case 2:

cρ,λθ ≥cν,µθ

= 1

6

6 7 8

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

6

7

8

(55)

FFLP

Leg Rectangle, Rectangle

Case 3: µ = (4

15

)

10 9 8 7 6

1 2 1

3 2 1

4 3 2 1

5 4 3 2 1

1 1 1 1

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

10101010

11111111

12121212

13131313

14141414

15151515

(56)

Case 3: (ν, µ = (4

15

); θ)

1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 6 151515

141414 13131315 12121214 11111113 10101012 9 9 9 11 10 8 8 10 9 7 7 8 8 6 6 7 9 7 5 5 6 8 6 4 4 5 7

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

(57)

FFLP

Case 3: (ν, µ = (4

15

); θ)

1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 6 111213

5 6 10 4 5 7 14 15 4 6 9 1415 5 8 131415 7 12131415 10111213 9 101112 8 9 1011 8 7 8 9 10 7 6 7 8 9 6

4 5

3 4

2 3

1 2

1

(58)

Case 3: (ρ, λ; θ)

1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 6 7 8 14

5 6 13 4 5 7 12

4 6 11 5 10 6

9

8

7

4 5

3 4

2 3

1 2

1

参照

関連したドキュメント

This phenomenon can be fully described in terms of free probability involving the subordination function related to the free additive convolution of ν by a semicircular

The study of the eigenvalue problem when the nonlinear term is placed in the equation, that is when one considers a quasilinear problem of the form −∆ p u = λ|u| p−2 u with

We go on to study canonical reductive monoids associated with the canonical compact- ification of semisimple groups,

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

We shall refer to Y (respectively, D; D; D) as the compactification (respec- tively, divisor at infinity; divisor of cusps; divisor of marked points) of X. Proposition 1.1 below)

standard Young tableau (SYT) : Obtained by filling in the boxes of the Young diagram with distinct entries 1 to n such that the entries in each row and each column are increasing.. f

The proof uses a set up of Seiberg Witten theory that replaces generic metrics by the construction of a localised Euler class of an infinite dimensional bundle with a Fredholm

Once we defined quantum toboggans as ordinary differential Schr¨ odinger equations integrated over paths C(s) connecting several Riemann sheets of the wave functions ψ(x), it is