• 検索結果がありません。

ON THE LIFTING OF HERMITIAN MODULAR FORMS (Automorphic forms and representations of algebraic groups over local fields)

N/A
N/A
Protected

Academic year: 2021

シェア "ON THE LIFTING OF HERMITIAN MODULAR FORMS (Automorphic forms and representations of algebraic groups over local fields)"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

ON

THE

LIFTING

OF

HERMITIAN MODULAR

FORMS

TAMOTSU IKEDA

Notation

Let

$K$

be

an

imaginary quadratic

field

with discriminant

$-\mathrm{D}=$

$-\mathrm{D}_{K}$

.

We

denote

by

$O=O_{K}$

the

ring

of

integers

of

$K$

.

The

non-trivial

automorphism

of

$K$

is

denoted

by

$x$ $\mapsto\overline{x}$

.

$\prime 1’\mathrm{h}\mathrm{e}$

primitive

Dirichlet

character corresponding

to

$K/\mathbb{Q}$

is

denoted

by

$\lambda^{\prime=}\chi_{\mathrm{D}}$

. We denote

by

$Q\#$ $=(\sqrt{-\mathrm{D}})^{-1}O$

the

inverse

different ideal of

$K/\mathbb{Q}$

.

The

special

unitary

group

$G=\mathrm{S}\mathrm{U}(\mathrm{m}, m)$

is

an

algebraic

group

de-fined

over

$\mathbb{Q}$

such

that

$G(R)$

$=$

{g

$\in \mathrm{S}\mathrm{L}_{2m}(R \otimes K)|g$ $(\begin{array}{ll}0_{m} -1_{m}1_{m} 0_{m}\end{array})\triangleright g$ $=(\begin{array}{ll}0_{m} -1_{m}1_{n\tau} 0_{m}\end{array})$$\}$

for any

$\mathbb{Q}-$

lgebra

$R$

.

We

put

$\Gamma_{K}^{(m)}=C_{\mathrm{T}}\langle \mathbb{Q})\cap \mathrm{G}\mathrm{L}_{2m}(O)$

.

The hermitian upper half space

$\mathcal{H}_{n}$

is

defined

by

$H_{m}= \{Z\in M_{m}(\mathbb{C})|\frac{1}{2\sqrt{-1}}(Z -{}^{t}\overline{Z})>0\}$

.

Then

$G(\mathrm{R})$

acts

on

$\mathcal{H}_{m}$

by

$g\{Z\rangle=$

$(AZ +B)(CZ+D)^{-1}$

,

$Z$ $\in \mathcal{H}_{m}$

,

$g=(\begin{array}{ll}A BC D\end{array})$

.

We

put

$\Lambda_{m}(O)=\{h=(f_{\mathrm{h}_{j}}..)\in \mathrm{M}_{m}(K)|h_{ii}\in \mathbb{Z}, h_{\dot{\mathrm{s}}j}=\overline{h}_{j:}\in \mathit{0}\#, i\neq j\}$

,

$\Lambda_{m}(O)^{+}=\{h\in\Lambda_{m}(O)|h>0\}$

.

We

set

$\mathrm{e}(T)=\exp(2\pi\sqrt{-1}\mathrm{t}\mathrm{r}(T))$

if

$T$

is asquare

matrix with

entries

in

C.

For

each

prime

$p$

,

the

unique

additive

character of

$\mathbb{Q}_{p}$

such

that

$\mathrm{e}_{p}(x)$

$=\exp(-2\pi\sqrt{-1}x)$

for

$x$ $\in \mathbb{Z}[p^{-1}]$

is

denoted

$\mathrm{e}_{p}$

. Note that

$\mathrm{e}_{p}$

is

of

order

0.

We

put

$\mathrm{e}(x)$ $= \mathrm{e}(\mathrm{T})\prod_{p<\infty}\mathrm{e}_{\mathrm{p}}(x_{p})$

for

an

adele

$x$ $=(x_{v})_{v}\in \mathrm{A}$

.

数理解析研究所講究録 1338 巻 2003 年 196-200

(2)

TAMOTSU

IKEDA

Let

$\underline{\chi}=\otimes_{v}\underline{\chi}_{v}$

be

the Hecke character

of

$\mathrm{A}^{\sqrt}.’/\mathbb{Q}^{\lambda}$

determined

by

$\chi$

.

Then

$\underline{\chi}_{v}$

is the

character

corresponding

to

$\mathbb{Q}_{v}(\sqrt{-\mathrm{D}})/\mathbb{Q}$

and

given by

$\underline{\chi}_{v}(t)$ $=( \frac{-\mathrm{D},t}{\mathbb{Q}_{v}})$

.

Let

$Q_{\mathrm{D}}$

be

the

set of all

primes

which

divides

D.

For

each

prime

$q\in Q_{\mathrm{D}}$

,

we

put

$\mathrm{D}_{q}=q^{\mathrm{o}\mathrm{r}\mathrm{d}_{q}\mathrm{D}}$

. We define

aprimitive

Dirichlet

character

$\chi_{q}$

by

$\chi_{q}(n)$ $=\{\begin{array}{l}\chi(n’)\mathrm{i}\mathrm{f}(n,q)=\mathrm{l}0\mathrm{i}\mathrm{f}q|n\end{array}$

where

$n’$

is

an

integer

such

that

$n’\equiv\{\begin{array}{l}n\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{D}_{q}\mathrm{l}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{D}_{q}^{-1}\mathrm{D}\end{array}$

Then

we

have

$\chi-\prod_{q|\mathrm{D}}\chi_{q}$

. Note that

$\chi_{q}(n)$ $=( \frac{\chi_{q}(-1)\mathrm{D}_{q},n}{\mathbb{Q}_{q}})=\prod_{p|\mathrm{n}}(\frac{\chi_{q}(-1)\mathrm{D}_{q},n}{\mathbb{Q}_{p}})$

for

$q\{n$

,

$n$

$>0$

.

One should

not confuse

$\chi_{q}$

with

$\underline{\chi}_{q},\cdot$

1.

Fourier coefficients

of

Eisenstein series

on

$H_{m}$

In

this

section,

we

consider Siegel

series associated

to

non-degenerate

hermitian

matrices.

Fix

aprime

$p$

.

Put

$\mathrm{t}pe=\chi(p)$

,

$\mathrm{i}.\mathrm{e},.$

,

$\xi_{p}=\{\begin{array}{l}-1\mathrm{l}\mathrm{i}\mathrm{f}-\mathrm{D}\in(\mathbb{Q}_{p}^{\mathrm{x}})^{2}\mathrm{i}\mathrm{f}\mathbb{Q}_{p}(\sqrt{-\mathrm{D}})/\mathbb{Q}_{p}\mathrm{i}\mathrm{s}\mathrm{u}\mathrm{n}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{i}fi \mathrm{e}\mathrm{d}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}0\mathrm{i}\mathrm{f}\mathbb{Q}_{p}(\sqrt{-\mathrm{D}})/\mathbb{Q}_{p}\mathrm{i}\mathrm{s}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{i}fi \mathrm{e}\mathrm{d}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\end{array}$

For

$H\in\Lambda_{m}(O)$

,

$\det H\neq 0$

,

we

put

$\gamma(H)=(-\mathrm{D})^{[m/2]}\det(H)$

$\zeta_{p}(H)=\underline{\chi}_{\mathrm{p}}(\gamma(H))^{m-1}$

The Siegel series for

H

is

defined

by

$b_{p}(H, s)= \sum_{R\in \mathrm{H}\mathrm{e}\mathrm{r}_{m}(K_{\mathrm{p}})/\mathrm{H}\mathrm{e}\mathrm{r}_{m}(\mathcal{O}_{\mathrm{P}})}\mathrm{e}_{p}(1\mathrm{r}(BR))p^{-\mathrm{o}\mathrm{r}\mathrm{d}_{\mathrm{p}}(\nu(R))\theta}.$

,

${\rm Re}(s)\gg 0$

.

Here,

$\mathrm{H}\mathrm{e}\mathrm{r}_{m}(K_{p})$

(resp.

Herm(Op))

is

the additive group of all hermitian

matrices with entries

in

$K_{p}$

(resp.

$O_{p}$

).

The

ideal

$\nu(R)\subset \mathbb{Z}_{p}$

is

defined

(3)

as

follows:

Choose

acoprime pair

$\{C, D\}$

,

$C$

,

$D\in \mathrm{M}_{2n}(O_{p})\mathrm{s}\mathrm{u}\mathrm{e}^{\backslash },\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{f}_{1}$

$C{}^{t}\overline{D}=D{}^{t}\overline{C^{\mathrm{Y}}}$

,

and

$D^{-1}C=R$

.

Then

$\nu(R)=\det(D)\mathcal{O}_{p}\cap \mathbb{Z}_{p}$

.

We define

apolynomial

$t_{\rho}(K/\mathbb{Q};X)\in \mathbb{Z}[X]$

by

$l_{p}(K/\mathbb{Q};X)$ $= \prod_{i=1}^{[(m+1)/2]}(1-p^{2i}X)\prod_{i=1}^{[m/2]}(1 -p^{2i-1}\xi_{p}.X)$

.

There exists

apolynomial

$F_{p}(H;X)\in \mathbb{Z}[X]$

such that

$F_{p}(H;p^{-s})=b_{p}(H, s)\mathrm{t}_{p}(K/\mathbb{Q};p^{-s})^{-1}$

.

This is

proved

in

[9].

Moreover,

$F_{p}(H;X)$

satisfies

the

following

functional

equation:

$F_{p}(H;p^{-2m}X^{-1})=\zeta_{p}(H)(p^{m}X)^{-\mathrm{o}\mathrm{r}\mathrm{d}_{\mathrm{p}}\gamma(H)}F_{p}(H;X)$

.

This functional

equation

is

aconsequence

of

[7], Proposition

3.1. We

will discuss

it

in

the next

section.

The

functional

equation

implies

that

$\deg F_{p}(H;X)=\mathrm{o}\mathrm{r}\mathrm{d}_{p}\gamma(H)$

.

In

particular, if

$p$

\dagger

$\gamma(H)$

,

then

$F_{p}(H\cdot X)|=1$

.

Put

$\overline{F}_{p}(H;X)$ $=X^{-\mathrm{o}\mathrm{r}\mathrm{d}_{\mathrm{p}}\gamma(H)}F_{p}(H;$

$p^{-m}X^{2})$

.

Then

following

lemma

is

aimmediate consequence

of the

functional

equation

of

$F(H;$

X).

Lemma 1.

We

have

$\tilde{F}_{p}(H;X^{-1})=\tilde{F}_{p}(H;X)$

,

if

m

is

odd.

$\tilde{F}_{p}(H;\xi_{p}X^{-1})=\overline{F}_{p}(H;X)$

,

if

m

is

even

and

$\xi_{p}\neq 0$

.

Let

$k$

be

asufficiently large

integer.

Put

$n$ $=[\eta\gamma/2]$

.

The Eisenstein

series

$E_{2k+2n}^{(m)}(Z)$

of

weight

$2k$

$+2n$

on

$H_{m}$

is

defined

by

$E_{2k+2n}^{(m)}(Z)= \sum_{\{C,D\}/\sim}\det(CZ+D)^{-2k-2n}$

,

where

$\{C, D\}/\sim \mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{s}$

over

coprime pairs

$\{C, D\}$

,

$C$

,

$D\in \mathrm{M}_{2n}(O)$

such

that

$C{}^{\mathrm{t}}\overline{D}=D^{\iota}\overline{C}$

modulo the

action

of

$GL_{m}(O)$

.

We

put

$\mathcal{E}_{2k+2n}^{(m)}(Z)=A_{m}^{-1}\prod_{i=1}^{m}L(1+i-2k -2n, \chi^{i-1})E_{2k+2n}^{(m)}(Z)$

.

Here

$A_{m}=\{\begin{array}{l}2^{-4\mathrm{n}^{2}-4n}\mathrm{D}^{2\mathrm{n}^{2}+n}(-1)^{n}2^{-4\mathrm{n}^{2}+4\mathrm{n}}\mathrm{D}^{2n^{\underline{\mathrm{q}}}-n}\end{array}$ $\mathrm{i}\mathrm{f}r\mathrm{i}\mathrm{f}mn=2n+1=9\sim n.$

(4)

TAMOTSU IKEDA

Then the

$H$

-th Fourier coefficient of

$\mathcal{E}_{2k+2n}^{(2\iota+1)}’(Z)$

is

equal to

$| \gamma(H)|^{2k-1}\prod_{p|\gamma(H)}F_{p}(H;p^{-2k-2n})=|\gamma(H)|^{k\prime-(1/2)}\prod_{p|\gamma\{H)}\tilde{F}_{p}(H;p^{-k+(1/2)})$

$=| \gamma(H)|^{k-(1/2)}\prod_{p|\gamma\{H)}\tilde{F}_{p}(H;p^{k-(1/2)})$

for any

H

$\in\Lambda_{2\mathrm{n}+1}(O)^{+}$

and any

sufficiently

large

integer

k.

The

$H$

-th

Fourier coefficient

of

$\mathcal{E}_{2k+2n}^{(2n\}}(Z)$

is

equal

to

$| \gamma(H)|^{2k}\prod_{p|\gamma(H)}F_{p}(H;p^{-2k-2n})=|\gamma(H)|^{k}\prod_{p|\gamma(H)}\dot{\tilde{F}}_{p}(H;p^{-k})$

for

any

H

$\in\Lambda_{2n}(O)^{1}$

and any sufficiently large

integer

k.

2.

Main

theorems

We

first consider the

case

when

$m=2n$

is

even.

Let

$f( \tau)=\sum_{N=1}^{\infty}a(N)q^{N}\in S_{2k+1}(\Gamma_{0}(\mathrm{D}), \chi)$

be

aprimitive

form,

whose

$L$

-function

is given by

$L(f, s)- \sum_{N=1}^{\infty}a(N)N^{-s}$

$= \prod_{p\mathrm{D}}(1-a(p)p^{-s}+\chi(p)p^{2k-^{l}Is})^{-1}\prod_{q|\mathrm{D}}(1-a(q)q^{-s})^{-1}$

For

each

prime

$p$

\dagger

$\mathrm{D}$

,

we

define the Satake

parameter

$\{\alpha_{p}, \beta_{p}\}=$

$\{\alpha_{p}, \chi(p)\alpha_{p}^{-1}\}$

by

$(1-a(p)X+\chi(p)p^{2k}X^{2})-(1-p^{k}\alpha_{p}X)(1-p^{k}\beta_{p}X)$

.

For

$q|\mathrm{D}$

,

we

put

$\alpha_{q}=q^{-k}a(q)$

.

Put

$A(H)=| \gamma(H)|^{k}\prod_{p|\gamma(H)}\tilde{F}_{p}(H, \alpha_{p})$

,

$H\in\Lambda_{2n}(O)^{+}$

$F(Z)= \sum_{+H\in\Lambda_{2n}(\mathcal{O})}\mathrm{A}(H)\mathrm{e}(HZ)$

,

$Z\in H_{2n}$

.

Then

our

first

main

theorem is

as

follows:

Theorem

1.

Assume

that

$m=2n$

is

even.

Let

$f(\tau)$

,

$A(H)$

and

$F(Z)$

be

as

above.

Then

$cve$

have

$F\in S_{2k+2n}(\Gamma_{K}^{(2n)})$

.

Moreover,

$F$

is

a

Hecke

eigenform.

$F=0$

if

and

only

if

$f(\tau)$

comes

from

a

Hecke

character

of

$K$

and

?1

is

odd

(5)

Now

we

consider the

case

when

$m=2n$

$+1$

is

odd.

Let

$f( \tau)=\sum_{N=1}^{\infty}a(N)q^{N}\in S_{2k}’(\mathrm{S}\mathrm{L}_{2}(\mathbb{Z}))$

be

anormalized

Hecke

eigenform,

whose

$L$

-function is given by

$L(f, \mathrm{s})$ $= \sum_{N=1}^{\infty}a(N)N^{-s}$

$= \prod(1-a(p)p^{-s}+p^{2k-1-2s})^{-1}$

$p$

For

each

prime

$p$

,

we

define

the

Satake

parameter

$\{\alpha_{p}, \alpha_{p}^{-1}\}$

by

$(1-a(p)X+p^{2k-1}X^{2})=(1-p^{k-\dot{(}1/2)}\alpha_{p}X)(1-p^{k-(1/2)}\alpha_{p}^{-1}X)$

.

Put

$A(H)=| \gamma(H)|^{k-(1/2)}\prod_{p|\gamma(H)}\tilde{F}_{p}(H, \alpha_{p})$

,

H

$\in\Lambda_{2n+1}(O)^{+}$

$F(Z)= \sum_{H\in\Lambda_{2n+1}(\mathcal{O})^{+}}A(H)\mathrm{e}(HZ)$

,

Z

$\in H_{2n+1}$

.

Theorem

2.

Assume

that

$m$

$=2n+1$

is

odd.

Let

$f(\uparrow)$

,

$A(H)$

and

$F(Z)$

be

as

above. Then

we

have

$F\in \mathrm{b}_{2k+2n}^{\mathrm{Y}}(\Gamma_{K}^{(2n+1)})$

.

Moreover,

$Fi_{\mathrm{b}^{1}}$

,

a non-zero

Hecke eigenfom.

REFERENCES

[1]

J.

Arthur,

Uteipotetet automorphic

representations: conjectures,

Asterisque

171-172

(1989),

13-71.

[2]

S.

Bocherer,

\"Uber

die

Fourier-Jacobi-Entvricklung

Siegelsch

er

Eisensteinreihen.

I,

Math. Z. 183

(1983),

21-46.

[3]

S.

Breulmann and

M.

Kuss,

On a

conjecture

of

Duhe-Imamoglu,

Proc. Amer.

Math.

Soc

107

(2000),

[4]

M.

Eichler

and D.

Zagier,

The

theory

of

Jacobi

forms,

Progress

in

Mathematics

55

Birkh\"auser

Boston,

Inc.,

Boston,

Mass. 1985.

[5]

T.

Ikeda,

On

the

theory

of

Jacobi

forms

and the

Fourier-Jacobi

coefficients

of

$E^{1}$

isenstein

series,

J.

Math.

Kyoto

Univ. 34

(1994),

615-636.

[6]

–,

On

the

lifting

of

elliptic

cusp

forms

to Siegel cusp

for

ns

of

degree 2n,

Ann.

of

Math,

154

(2001),

641-681.

[7]

S. Kudla and

W.

J.

Sweet

Jr.

Degenerate principal

series

representations

for

$\mathrm{U}(n,$

n).

Israel J. Math. bf98

(1997),

$253-3\mathfrak{X}$

.

[8]

G.

Shimura

Introduction

to the

arithmetic

theory

of

automorphic

functions,

Publ.

Math.

Soc.

Japan

11 Iwanami Shoten and Princeton

University Press,

1971.

[9]

–,

Euler

products

and

Eisenstein

series,

CBMS

Regional

Conference

Se-ries in

Mathematics 93

the

American Mathematical

Society,

Providence,

RI,

1997

参照

関連したドキュメント

In this expository paper, we illustrate two explicit methods which lead to special L-values of certain modular forms admitting complex multiplication (CM), motivated in part

Consider the Eisenstein series on SO 4n ( A ), in the first case, and on SO 4n+1 ( A ), in the second case, induced from the Siegel-type parabolic subgroup, the representation τ and

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid

We study the classical invariant theory of the B´ ezoutiant R(A, B) of a pair of binary forms A, B.. We also describe a ‘generic reduc- tion formula’ which recovers B from R(A, B)

We also show in 0.7 that Theorem 0.2 implies a new bound on the Fourier coefficients of automorphic functions in the case of nonuniform

If we find any solution vector x ∗ , for which the optimal solution of the LP is strictly positive, we get a separating hyperplane, thus the lattice is not semi-eutactic and

Some natural operators transforming functions, vector fields, forms on some natural bundles F are used practically in all papers in which problem of prolon- gation of

Giuseppe Rosolini, Universit` a di Genova: rosolini@disi.unige.it Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk James Stasheff, University of North