• 検索結果がありません。

SOME APPLICATIONS OF THE MEAN VALUE THEOREM IN DIFFERENTIAL CALCULUS BY THE METHOD OF RANKED SPACES

N/A
N/A
Protected

Academic year: 2021

シェア "SOME APPLICATIONS OF THE MEAN VALUE THEOREM IN DIFFERENTIAL CALCULUS BY THE METHOD OF RANKED SPACES"

Copied!
17
0
0

読み込み中.... (全文を見る)

全文

(1)

SUT Joumal of Mathematic§....

(F()rmerly TRU Mathematics). Volume 27, Number 2(1991),151−167

SOME APPLICATIONS OF THE MEAN VALUE T正IEOREM

      IN DIFFERENTIAL CALCULUS BY

THE METHOD OF.RANKED SPACES

MASATO HIKIDA

(Received September 25,1991) Abstract. In differe皿ti…il calculus in lmear ra皿ked『 唐垂≠モ?刀@with亘o皿一sym皿etIlc P,e。。ighb・・h・・d・,・PPIyi・g・th・・m誕・al・・th…em・f N・g・k…[3】・w・gi・・ theorems o皿differe皿tiabdity of a limit map孤d o皿.paltial dexivatives・ 1991ルf¢t九ematics 5鯵D∫εcオClassification.46A99,58C20. κ・yw・rd・. Rank・d・p㏄・, N・n−・ymm・t・i・p・e・・ighb・止・・d・M・・n v寧・th・・一 工em, Stolz,S angular domain・     ’    Th, p岬・・e・f縮p・p・・i・t・9i・…m・apPli・ati…㎡th・m・an・al・・th…em 。f・Na9。[k…固i・・diffe・e嚇・al・Ul・・血五・・a・・ank・d・paces・i…,th・・e t・品・一 ,nti。bthty㎡・limit・m・麺d t・p・姻d・・ivati・…O・・st・ndp・i・t・f d・v・1・pi・g・ th。。,y i、 t・w・・k・・nstru・ti・・ly i・・i岨…㎡9・n・・ality,・・w・唖t・k・rP be− i。g i・th・・cat・g・・y㎡9ive・・p≡孤d t・ay・id・・mpli・ati…品m・・h・・p・・sibl・・ Th。 inv。・tig・ti・n md・i・[3]・・it・th・・tandpd・t・Th・・th・m・th・d tak・n i・thi・ P・Pe・i・diffe・ent丘・m th・・e㎡・th・・th・・亘es・f価・ential・al・ulus i・h・・a・spaces: Ap,en・ighb・・h・・d・・f・th・・亘gi・㎡・li…r・a・k・d・p㏄・iS・i・g・n…}P・ith…p・・ (i。th・t。P・1・gi・al・e眠)…sy㎜・t・i・,・・d heed・・t訪…回l pd・tr gf th・ ,p。,e坤e c・n…g・nce i・ah…r・ranked・p㏄・i・d・丘・・d by m・an・・f・血・d・m・pt.al ,eq。,nce・f p・en・ighb・・h・・d・, pl細y・p・aki・g,・・equ・nce・f p・i・t・i・・⑭・ed t・ 。。n…g・t・apd・t・al・・g・gi・・n・P・th;㎝d・・th・d・・ivati…f・m・p・t・p・i・t is n°t reqUi,ed,・t・hav・th・wh・le sp㏄・・s it・d・頑・・f d・丘niti・n・O咀e・顕whi・h yi・ld some known theorems whe/n the spaces.a正e nolmed, are apPlicable to nonrtopological sp㏄es・       . ‘ .Th,。ugh・ut・thi・p・Pe・,・‘fli・・a…ank・d・pac・”m・an・a・lin・aロ・n㎞d sぽ・f [3],and・・w・ c・nform…se1…t・th・. t・rmi・・1.99y・and・,・th・.・・t・ti・n・・f【2]a・d【3]・ Several of those are given in ApPendix・         、 tt、一.... ..・・  .、

151

(2)

152

AP肌ICATIONS OF MEAN V肌UE TH亘O臨M’く.

≡悩cii壷⊇㌫縞ξ扁。‘砺但斑譲逼誌亘16麺・益亘壷。蔽ニイ

qu・nce・in・Un・碇・江n滅Sp漣E・・㎡鋤e・S恨苫留‘}ぷ1;6f>汽(E)・・e丘・qu・ntly W士itt・n酬,…⑭r辱卵1≡輌.gn㌧.…,....・、:∵』.1二・..〇三     E・・(E)={v∈T・(E)・th・”.・填輌OiS.琴.』int・・i・r P・i・t・f Ek(v)},         A  =  {{λ」}: λ」>Oandλ」→0}; and when v∈万(E), we put         9(∋={{hi}・{hj}i・㎝れ一quasi b・und・d seque血ce・in・E}.        「‘ .・・ ’. ’ミこ..’ r:.’ぺ .ttt「.・:…   ’・ ∫:二・‘::..,}.:.1. 1・二『 .『・「ヨ;: 1:..:....〈.一.:三ご:=

M°「e°ve「,1’f°「.託隅興ρ・{4・}〔d国:9f§蹴・1・f・西1』鋼・遮』㎝・ly

d・n・t・th・・eq・・nce・・{λ進8た}bY二伍}士.{カk}t『・e命ectiV・ly;一・a・d;lthさh緬・・ {Ak}〈{Bk}means that f()r any k there is k’such that Ak’⊂B夫.    Let us recall some fundamen城notio耶(9£121,、.[3])・・.L.et. ,E pnd.∬be耳皿e聖;anked spaces and assume that F is(π一T1)and satis五es the colldition(A.4)of[3]:

(A.・ド1.i}微}〉ξ』筋and:i頑6・磁誠}(砺∈藤晦』y

intersection, then there is{k(i)}(ゐ(り↑oo)such that{エ友(輌)十W『κ‘)}is a fundament瓠 sequence and thatエ」十Wj・⊂霊夫(t)十Wk(‘)whenever j≧k(i十1).

ご認£竃に慧蕊霊㌫蕊蕊1筆、1∫霊蕊?隠蒜:,.

the’・’e:iき:「U『層∈島‘の’・S’i ’/6h…t五・t..{ヂ(b、〈孤(、))hD)・一∫(・)}く・一・Of.・A9曲6 tha v∈.塩⑮枷dLぶ漁・ihtε・i・・p・i・t・fD・・Th・h∫.iぎ・did・t6・be R一か晒ε硫b’,・

・喚…;.e垣r竺・…i輌1・面m・.酬・)’4・’F・li・・h蹴h・鋼・・.

与6rd si・.’thごオε「i・ω.栖(LFT)・u・h t嵐号’1ア(λSh)一)』→−0(P二ψ)島・・e・e’・y:{㌧}.∈..2(の and「?磨E・y{λ」}d;紬・fe…・(九)=∫(・+九)L∫ω弓(ん)伍・(D−・・)酬り)・and・ 滅th6麺2泌Ch irniiiq・・ly dをゆ・・d:in世(・),’i・・allttd・the ’R−v−d・)ivatibe’ Df」 f”d・t’.白ahd’i§.den6ted’byア(d;’v)ot’ btiefly. by∫’てδ)∵And∫is、顧d.tO.be v・ eO’ ntinuou/5 (  J      ,       tlr6sD:二.R・必渉r撚05£ε)・亮5⊂D・fi蹴6。㎡・i…唾・P..Mi娩…叔・)at e硬士プp這htめfS∵More(壷er,:∫is’Said t6 bC coηオ栖冠砿31(resP∴R三宙膨柁施:舌返6オε).『at!αi毛ビ

籔鶉蕊鷲耀禮1二認;慧慧こ1:蒜㍑㌶三㌶蕊

 ’ ,       E      ,      ’ (t6sl ! ・i ’ ’ R: diff辿iel㎡tia泣e) oni』S二(:’1),,泣6]丘sbd’si㎡1arly’tO}the・一’Sb()Ve. /.tご∴.・∴.㌻㌧∵・,1’・’    In a hnear ranked space, a O−fundamental sequence{Wk}is said to be c∂n’v・ex’

(興:.⑳品溺e読繊一is‘と・碩剛魎緬耽tfi・);血d,翻hear・血k6d否pk・

i・謝:tも』・泌侮P:し㊨翻司’if:the㌔α血nd・血e’・tal・ Si・q・・n・e・i・the蹴e・ are・c・nvex(resp. symmetric)書    ..・1二^∵∫.・1;・1・.・...∵・.∵1・・…i・・.…’

(3)

t 、「・

lごHIKIDA

^t

153

  ・Nagakura[3】pτoved:the伺1〈)wing:. .『冠,. ’.  .  .・. ,    MEAN VA七uE THEoREM([3, Theorem 3』). LeεFbe a.(π:Ti)’linear ” ranked 鋼・…輌9(A・麺4(A’・2°)・;W:[・,用.(⊂盆・)=・ F・a・d・di・[・,用てぽ)→ R・・.』ψ<β・.S卿・・9,’ tb4t’ b ・hd蜘・’…‘」一・.・・[・・用鋼藺e R一 繊・㎝‘f・ロ・b・[α,β)\J,iVh・たJ・ぬt m・6‡伽・t・bl・;頷d・・PP・・e・th・‘φ」・ m、,h。‘。。。。。h二dee−ing..F・・th・㎞・鵬・・PP・面h・t,’f・i…me c㎝陀W∈’T6(∬), 9([α,β])⊂登(th)and.9’([α;β)\」)⊂E.(w)11fθjs a cOnvex言ubseガof F Su(血that B∩E’(ω)≠O・and.」fg’(Z)∈φ゜θ8血距∈[α,β)\J, th… 9(β)−9(α)∈(φ(β)一φ(α))孕(P一ω)・    Itt the abo寸e,. Ri.denotes the li皿ear ’ranked’ space(R,{Vn}), whele R is the rea1 丘・ld;・Vo三{[0,・)・ε>1}U{丑}.and W・=「{[0,・)三(n’+1)三1ぐξ≦n−1}fo・・n≧1; g:θ=0’(‡)(1)and.φ(t)=φ’(オ)(1)∫and(A.2°)is the folleWing’ton’dit輌6n which is a modificationドof(A.2’).of[3]:’』.’ t..∫   一’    (A:2・)』「il xt/’4ti(P)in F血d if;劔.品垣eUr’漏倒,♂ξ醐拠dち・B(it) ’飴固1『th・’・uM・i・面y l飢9・」’・1麺・」・→・ll(P−・)・.. 一    ゼ      ‘..      l  i     .       − Th・C・n・・Xity− gf、ω…d・t・kin9,th・P一ひ・1・・U・・ρロ・・e e領・嚇.垣th≡an vぬ・ ・hg・・e皿(9f, .[5.,(1.32)〕坤・・p灸・e・ 9iy・n i・・h?P・。・f.㎡[与,(1,3・?)/・・e・eg・・d・d… li……k・d・p㏄・・,・・d th・・th・p・・㎡hdd・t・u・f・・th・・e hn9飢工・蝸興・・),    1・Limitr.・f.diffg・e輌b10 m鋼Th・Cμgh・・t.t恥secti・n,.1・t E and F b・ lineaロa皿ked spa£es and assume that F is(π一T1)and satis丘es(A.4).    Asequence{九}of maps,九:D(⊂E)→F(η=1,2,_),is said to be unifdrmly

・・励・rg・ぬ・α卿∫・D→F・n S.⊂D3・if th・r…Xi・t・・={Uk}∈冗(F)…h

that∼fbr any le,. there isη為、such thatη≧n斥,i耳1plies fn(x).7∫(x)∈阪一Uk fQr姐 ¢∈S.      :..  ,.t、・・...:・..、 ・.、、. 三・:,,in. the皿owing Theolemsユー3,−let」),1)e.ian’Rrv−gpen s耳bset of.、臥{br some v∈ 尤。。(E)arld.t、aP・um・.th・t.F.i・・c・皿ve・’..and・atiS丘・s.th・1・・嘩qn・(A・2r)孤d・th・ 飼lowing(Aユ9): 、...’i:・・、.・ }..、: .・.二・t./. ・:  ・.・・ ∵(A.1・)・F・t 5・y・ tii』e S。(F)th・・e.i;.・21∈X・・(F)ざ・・h th・t’Oli『k碗・

   THEoREM 1. Let F be cαnp輪L・t fn・1)→F(n=1,2,…)be』−

diffe,enti。bl・・n D,吐・肥v={Vk}. L・け・D→F・ana・・.⇔・S・PP・・e t五・t th・f・ll・唖g(・)一(・)h・)ld.:. //…・・:’、∵.・・.」‘.二.’x.s    (・){fn}is・・vnifo・跡c・・velgent・t・・f:・n.・・meα+Vi⊂. Q.n(蜘)+・)・

(4)

154

APPLICATIONS OF MEAN VALUE THEOREM

  (b)Th・・e e廊㌦∈T・(F)・・ch‘h・t, f・・each・n, th・τei5々・ch肪・は((・+ Vkn)∩D)⊂y(u、).・   (・)・皿・・e」・・’…血‘h・‘巧⊂(D一の∩ESr(∋and‘h・ちf・・㎝y 6X・rdん∈Vl, t力・ m・p(R・⊃)[0,1] DθH f.(・+θ九)∈∬」・c・皿‘輌n・…㎝[0,1]f・・ea・h・n.   (d) There丞u2∈チb(F)such tha‘{プ蓋(α)(Vk∩E★(V))}先くq2 r u21br eachη.   (・)Th・・e加・={σ・,・}.∈漏ぴ)…h鋤ち伊’v・n{ゐゴ}頑hん」→0(R,V), {yi}∈Q(のa・d.先, S・me・n。紐d j。 can・be・f・und・in…力a way that fA(・+んゴ)(y」) 一 fa(・+九」)(め)∈σ、,、」u3,、 whenever・m≧n≧n。 and j≧jo.・ Then f is R−v−d朋bren‘∫ab∫e a‘αand∫’(α)ω=P−u3−1imプニ(α)ω(y∈E★(v)).   PRooF・If z.∈E(v), then{z}∈2(v);a皿d so, by(e), the sequence{fS(α)(z)}is P− Oauc克y by u3([4, Definition 3]). As∬is complete,{f(α)(z)}is para弔3・・co皿vergent to a point of F by[4, Propositio皿5]. A point y∈・E★(のcan be written as ・y=Σ多=1 z1ゴー Σ1=1z2,k, where zl,」,22,k∈Eω・Since f(α)ω=Σ」∫f(α)(z1」一Σk fl(α)(z2,k), u3十u3〈u3 and F is(π一Tl), the sequence{f(α)ω}has a unique P−u3−limit:We put gω=P−u3−lim fA(α)ω. The linearity of g:Et(v)→」『is obvious. We shall prove the v−continuity of g. Let{防}∈9(切. Given k, clloose mo>ksuch that 2U3,m・⊂U3,k・.Th・n, by(・)th・re・a・e・N・nd」・u・h th・‘f;(・)(yi)一一 fA.(・)(yi)∈ U3,mo一こT3,m。 wheneverρ≧n≧」V and j≧」. F口dng n andゴand letting.ρ→∞in

the prece(ling, we have      ”’

9(yi.j−fA(・)(yj)∈U3,m。−U3,冊。(P−u、)⊂2(σ、sm。−U、,m。).

Thus

      fA(α)ω一9(yj・)∈u3,k−u3,k provided n≧.Nand j≧」. From this and』id)it follows that g is v−continuous at the origin, a皿d so it is v−continuous on Eピ(v).   By(・), th・・e・eXi・ts・、={〃1,、}∈島(F)・u・h th・t, f・・’・ny k, th・・e i・n、.su・h th・t n≧nk irriplies f・(¢)一∫(司∈σ4,為一U4,A伽誠1¢∈α十V,. Chooseω={Wk}∈痴(F) such that u1十錫2十u3十u4司くw. Let{九」}∈0(∋and{λ」}∈A. Given k, choose m so 1arge that 7n>max{k, i,1},4Wm⊂Wk and Wm⊂・ESr(ω). Then there are Nl and Jl such that λ」九ゴ∈Vin, 」㌦(x)一∫(¢)∈Wm−Wm (苫∈α十Vm), f;(・+θλ」んゴ)㈲一・ fA(・+θλ」んゴ)(九豆)∈Wm−Win,,

(5)

M.HIKIDA・” whe皿evelρ≧n≧、N1,」≧」1 a皿dθ∈p,1】. Fix n≧1VI a血d 5≧Jl fbr a、 wkile. For eachρ.≧・η, the Inap   ・    ,        9,・(R、⊃)[0,1⇔θ・→痴(・+θλ」九」)一み(・+θλ」九ゴ)∈F i・c・ntinu・…n[P,・],・・d i・R−diffb・enti・bl・・n[・,1)紐d          頭θ)=f;(・+θλ」九元Hλ」九ゴ)−fA(・+θλ」んゴ)(λ1九ゴ)        ∈λ」(wバ陶(⊂E★(ω))・ Since gp([0,1])⊂2(Wm−Vγm)⊂仔(ω), the mean value theorem can be appHed and we have−』

@      .

9『ρ(1)−9P(0)=」ら(α十λ」んゴ)−fn(α十λ」㌧)一(ん(α)一九(α))∈λ」 Wm−Wm(P一ω) whenever p≧n。 L6ttingρ→oo in tke abov6, we obtain      ∫(α十λ」ゐゴ)一九(α十λ」九」)一(∫(α)一九(α))∈λ」 W,n一照亘(P一ω),・  . ・inceλ」W冊.一照P一ω)1・P一ω一Fl・・ed・Th…f・r n≧N・㎝d j≧」・,     λ71[∫(α十λゴ九」)−fn(α十λ」九」)一(∫(α)−」㌦(α))1 ∈ Wm−Wth(P一ω)      .こ .       ”      (: 2(Wnt−Wm). For each n=1,2,..., put㌦(h)=プ』(α十九)一九(α)−fA(α)(ん)(九∈(D一α)∩E★(の)・ Thenλ;1rn(λ」九」)→0(P)asゴー→oo;and, ifゴis large, we have rn(λ」ん」)∈E★(ω)by (b)a皿d(d).Henceλ;1rπ(λ」ん」)→0(P一ω)as j→∞, by(A.2°);so there is jπsuch thatゴ≧」πimplies        λ717rπ(λ」九」)∈VVm−Wm・ On the other hand, there areハr2 and J2 such that, for・n≧1V2 and j≧ゐ,        f(α)(九」)−9(九ゴ)∈Wm−Wm. Now, putア(h)=・∫(α十ん)一∫(α)−g(九)(ん∈(D一α)∩E★(∋)and choo6e n≧ max{Nl,N2}・Then, if j≧max{」1,ゐ,」九},      λ71r(λ」九ゴ) =  λ;1[∫(α十λ」んゴ)−fn(α十λ」んゴ)一(∫(α)−fn(α))】       +λ;1・・(λ」九ゴ)十f(α)(九ゴ)−9㈲

       、∈“バ閣⊂晦7晩,

whi・h・h・w・λ;1ヂ(λ・h3−)→・(P一ω)・Thti・th・pi…fiS・。mp嵐  tt E『

155

(6)

・156

APP口CATIONS OF MEAN、V肌U.E THEOREM

   T臨oREM’・2. Let’.F. be cgmpk‘α∴・Le‘fnゴD→F・(n』=1,2,.∴.)be R・砂一 直醗τ㎝¢∫able㎝1), where・v=伍}. SUPP・⑤e伽ち劔s㎝e 6.・∈Dl¢力e・sequence 仏(b)}has・c p一五頑a頑孕at tht.rr i・、輌φ‘ha‘ロ.(ρ二;)∩P’(”) and th・ follow劫t9(f)一(h)hOla:       ”h    (f)Ther・」…∈乃(F)S・・th・・伽‘.み.(b+均⊂ぽω、fo・ρ紺yη・..・・:t.t−

、㌶、芸牢;‘+V”(;二(d)・ p伽eO興(’〔n(c)一(d)卿

   (h)TheT・」・u={Uk}∈,1 To(F)S・c励aち.9i.fen.{yi}.∈9(v)ahd k, S㎝・.鞠

≡dljl c竺be:φu亘輌su(th.a1陥y廻..、.、.、....、・.、.tt ,  ,

      fA(x)(防)−f(司(防)∈Uk−Uk         .《・』 whtinevef m≧.ゐ≧nO,ナ≧jo a亘d¢∈b・十1佐.一∵  .t t... ・∵1』・.t .1

踵…f・・e』∈b+Vi・‘hr・rq・ence{九(x)}孕as・甲」頑!如゜t・鋤∫(r∼;興d

{九}姪皿jfbrmly c㎝vergeh島o∫bh ’eaiih 6十’5,. Wherご5fポan R−Ziibouhded sSiblset of Vi・F血r姫e頂oξe,∫ ]’sl.R−U一直ぴbr印εオable・ at eveTy R−v−jn‡とri.Qr,Pdη‘・x of. b十5, and ∫’(露)(y)ニP−u三lim∫fA(¢)ω(y∈世(の)・        一  ゴ.三. 」 、』  、.『 ..,.  }一...;.i….ピ..’.・...tぞ..・.‘㌦’....ご∼    PRooF. We 6nly ’plove ’the fblmel partl the latter paft fbllowS丘oni the similar

w可⑯the・pro㎡OfThe㎝em 1・.、’ ..・・., .:・.1..・・.

   Since、{み(6)}has・aP}hmit, tllere isω1∈チb(F)by Which{九(6)}is P−Caucby・ Choo6eω≒{Wk}∈尤oo(F)such that u1十u十ω1一くω. Given k, let m be such fhat 4W玩⊂,wk.、 Theh’thafe isηo・such!that噛痴(b)一プ三(b)∈照元一wm Vihenbv61 鍵)!≧力層≧no、. Let函∈b斗↓そ. Since x一ゐ、ξ…閲罵⊂E★(の,>we『see元by{h), that ther6 is 覗・一れ・(x・m)Su・hth・鴫(カ)(x−b)一蜘)(x−「b)E’・Wm’−Wm・wh・ne…ρ≧n≧n・ and y∈b十Vi. Put n2=max{ηo,η1}. Then, fbl any丘xed p and nl wit・h p≧’n≧ni, consideri皿g the map(Rl⊃){0,.1]∋θ}→.痴(b十θ(¢二b))一九(b十θ(x−b))∈Fand

・PPIyi・9 th・・mr砿蜘帥…em・、w・h碑.、….、 ・ 。_ン、・,1.・’・

       九(x)一み(¢)一(fp(b)−fn(b))・∈・W加二Wm(P一ω); 二SO…い ∴..、..   ‘.・T 1・.:.・. .㌦・、』・.…:∫’『..…

      胴一鍋.珊こ五θ・+二ご(詞…・:・..昌二1

         三㌧∴∫.  ゴ 1 ’ .・. T  ⊂  3(Wth tt’Wmう ⊂・Wk−Wk二ご.㌧!:∴.       “・; .・.:, ば   ・ 二 ‘  .’・.吊 ・   i T㎞・{fn(x)}i・p−Ca廟byω,・nd S6 it hぶ迦甲e p一ω一limit, d…t・d・by・f(x)・lf Si,。。 R.v.b。und。d、。b,et。f鵬血。h.㍉。e。6。6f穎碗蓋㍍。f’S・i、・R.’v.q。a、i・b。。。d。d. 籔qm thi・we c㎝Sρghr㊤・.η1鱒hρ.ab。v典・品s桓dePρnde耳t・f,X、.,q.・b,+β,ふ輪

(7)

ML・HIKIDA

ni=’n、(m):=. n、(k);and then       ∫(x)−fn(x)∈3Wm−Wlm(P一ω)∈Wk−Wk provided n≧n2. This shows.that・{ノ㌦}・is unifbrmly convergent to∫on b十5.、’   THEOREM 3.1}e‘∫:1)→Pandα∈1)1』stipposb‘ha‘∫js R一ψ一(iitlTerbh’tia61b・a‘ ・V・・y・∈D\{・}・wh・re・V=伍};and S・PPOS・ th鋤・舳W9てi)一(k)・h・ld・

  (i)Ther・紅c麺d・・∈み(F)・・φ顕∫((・+ゆD)⊂砕・)・

  0)Ther・」S∼・u鋤h訓⊂(D−・)∩町(のa・d‘血・‘, f…opy.励九∈Vl,舌力・ map(R1⊃)[0,1】∋θ⇔∫(・+θ九)∈F:fs cOn‘Ou・u・㎝P,1].’

   (k)Ther・・.㎝』v−c㎝‘迦qUS五卿卿9・Etr(・)→雪㎝d・2ξ九(∬)鋤

‘haげ’(α十九」)(yi)−9ω→0(P−u2)f・r every{傷}Wit力㌧≠Oand九」→0(R−v) and every{防}∈Q(∋. Then∫is R−v−differen’tia’ ble atαand∫’(α)=・9.   .P耳9・p・Lgt・μ・.∈・5(“}’).b・su・h鋤{9伍∩Ede(の)}、K u・一・・…ch…ρ wr{VVk}、∈チbo(F)such thaちμ1+u2+μ3<tμ..Let{㌧}∈2(∋and{λ」}∈.∧, Where

h」.≠0・q酔叫Ch・・‥>m脳{k,i,1}・p la・g・that 3顧⊂.照.・n岬凧但★⑩・

Th・輌㈹, th・・e i・,元・su・h th・t・λ」九1.叫㎝d∫’(叶ρλ轟)(ん」)「9(九」)∈Wmrwil Wh・n・・eり≧」。.叩d.θ.∈.[0,1】・恥・a・・y、fiX・d j≧ゴ0,、the m・p?;.(丑・⊃)/0,1]∋.θH f,(叶θλ∫九」)∈Fi・9・nti皿…、・n【0,1],㎝d iS R峰・?亘ti・H・・n(0,ユ)and 《 φ’(θ)=∫’(d十θλ元九」)()Lj・hゴ)∈λ」(Win−’Wm)+9(㍉ん」)(⊂’Ek(り).’ AS¢)([0,1])⊂Et(ω), We’Obtain  . ・ .、.  ...、  一 ・、’\.,.. ・・ .q(1).「∼ρ(0)=. f(q十)与㌧)一∫(α)∈λゴWm−W■(P一ω)十9(λ」㌧),

thct、 ils.,・.∴・∵・一.、,....・.・ .−tt、・..。 ,.t,.._

       λ;1[∫(a’1+λ」㌧)二∫(の.−9(λ」ん」)1∈・Wm−Wth(P一ω)⊂W、;Wkン ・” 1・. 「 ・       二 ’・.’      ・ 1, ・ /.      」昌     ・ ・ .  .1…       Vi− . 』  .三 This ends the proo£       , . ..!i.   ・..   、 .,.’. :一.r qEMARK}1.(1}Ih The㏄el垣一3, ifふy㎜etτic,then(c)・is・superflu。us・・ttd the Conti加itY’(rf tlie map in(」)is require(1も血1y at’θi・0(c£[2]). In Theor6mS 1−2, it is easay seeh that’狽?ニconVetgences二fA(a)(ダ)L→・∫’(a)(y)(P」{£3)ahd fS(‘i’)(y)『→’∫’(¢)(シ) {P−u)’are tini{6r旨重㎡伍と士espect tσ310n・e反h R謝’bounded.s血bset of』E★(む)‘(a血d also :With teSpeCf tδthe孔ぴi誕e亘or l)oi血t x・・of b十5,桓. thi’lat’tとr C掴e).‘@…   ... .ニニ ?Q)・()亘f.這ssumihg a I桓eaξranked連pace:to sat溺シ.てA.4)is’血eedless鍾the 6pace i8 sy垣血etriごand u LF・,a Lく剥br諏y O三fuhdamehtal seque血ce u. in the spaLce:ih t’his 157.

(8)

158

APPLICATIONS,OF. MEAN VALUE THEOREM

case, R−u−a頃d P−u−convergences are coi皿cident. Thus if F is sym皿e垣c, tben the assumption that F satisfies(A.4)is皿eedless f《)r Theorems 1−3 a皿d for Theorems 4−5 give皿below.    ExAMPLE(Dil旋rentiation a10ng Stob》s angular domains)・Let C be the complex plame. When O<ε≦∞,0<δ<π/2 and O≦α.<2π, we put     B(ε)={z∈c:121〈ε}, V(ε,δ)={z∈0・z≠O, lzl<ε and 1arg・1<δ}∪{0}, γ(ε,δ;α)={e’az:z∈γ.(ε,δ)},

where arg z is taken to be』−iπ≦arg z ’qπ. For e’=窒?@n=0,1,2,_, let

B。={B(ε):[1!ε】=n’}, ぬ={V(ε,δ;α)・【1/ε]=n,0〈δ<π/2,0≦α<2π}, whereη。o=.0. Then(0,{β。 U}タ})and(0,{Bn})become linear ranked spaces; we denote the fblmeτby CI and the latter by C. Cleaエly C, which is the’con}Plex plane with the usual topology, is symmetric, convex,(π一T1)and complete and satis丘㏄ (A.1°,2°,4)as a Hneaτra血ked sp㏄e. Yet, Ci is neither metriiable rior’topological:the non.symmet亘c hnear ra血ked space Cl is convex,(π・T1)and com回ete and.satiSfies (A.1°,2°,4).Note that究oo(C1)≠To(C1);fbr example, there isω∈To(C1)such∫that E★(ω)={0}.Let∫:D(⊂. Cl)→C, and letα∈.Dbe an R−v−inter輌OΣpoint of D for some v(…Too(C1)(for such v, E★(の=Cl necessarily). Then∫is】iしv−differentiable at a if and only if there eXists a linear map e:C1→C such that ∫(α+九」)ゴ(α)一2ω        一一一> 0  ((】R−b),i.e., in the usual sense)          .h,・ f()rany seqllence{九」}inσ1 with九」≠Oand占」→0(1し∋, wheτe 6={β(1/先)}先∈ T。(C)(1/0=。。by definiti・n):One must remark that the linearity・f e means the real linearit}rl i.e., e(αzl+fiz2)=αe(zl)+βe(22)fbr any realsα,βand for a泊y 2、,z2∈C、. Of c・皿rse, e=∫’(α;v)in・the・ab・ve case.    Now, let the power seτiesρ(z)=Σ;’=o Cnzn(bn, z∈0)have the.‘1adius of conveτgence,, r,0<r〈.−oo, where the. c.envergence is in C(to be precise, R−b− convergence).・Assume that, fbr so㎜zo・with.レol=r, the seriesΣi−o(n十1)cn+1堵 converges(in C);then the series £9e.o cn’z;also converges(in C). Put S={z:.同.< r}and 1)=SU{ze}. We regard D as a.’, subset ofσ1, and define∫:D→/Cto be ∫ω=P(z)on S and∫(2b)=Σ)こ二〇CnZ8.正et v={.γ(1/kiδo;(Σo)}烏・∈.S・(C1:), wLere O<δ。<π/2㎝dα。=arg・zO+π:The.set.z・+(γ(1/克,δ・;α・)\{0})is・cust・m副y

(9)

M,HIKIDA、

159

ca皿ed a Sto lz ’s angular domain(ω誠verteq zo and angle 2δ0).. Th飢・】塾ω=C1 (so v∈」陪oo(C1))a皿d D is R−−v−open・lt is obvious thatグ姪巳u,〈五危re皿tiable at every z∈Sand∫’(2)(九)=(.Σ二〇(η十1)cq+1zn)ん(九∈C1).、 Furthermore, by AbePs th…em, we see th・t(j)一(k)『 Ef・Th・0・b・ri・3 h old wi・h E:Ci,∬−C,。一。。皿d 9(h)=(Σ二〇(n+1)c砧1z;)ん;and 61early(i).hdds. Therefbre, by Theolem 3,∫ is R.v−differentiαble at zo and f’(zo)=g. The’tesult also f6110ws from Theorem 1 ・・21・becau・e it・ah b・・h・w・th・品・・r亘esΣ二・r・zn・・dΣ二・(・+1)・・+.・z” ar・ unif・・鴫・・皿・C・g・nl on zo+γ(1/i,δ・;…), wh・・e i>1/(2・c・・δ・)・it i・d・ar thgt the setγ(1/i,δo;αo)is R−v−bounded and R−v−gpen.   Th・ab・v・a・g・m・4t i・ ・IS・apPli・d t・th・Di・i・H・し、se・i㏄Σ二・c・exp(一λ・勾 (0 ≦ λo < λ1 < …  < λn < …  → oo)having the “abscissa of convergence,,ノ1, −oo〈ノ1<oo:We omit details.    REMARK 2.(1)We temPorarily ca皿a’ linear space(over R)aguαsi linear ranked space if it satisfies(E.1),(E.3),(E.4’)and(E.5’)(c£ Appen(五x). Theorems 1−3 remain valid if we let E be a quasilinear ranked space. Thus, in the above Example, we may take the quasi lineaロanked space(0,{.V})f〈)I thとspace C1, Where W=

VoU{0}a皿dV =Vnfbr n≧1.

   (2)The fbllowing condition(A.1)on a linear ranked space E was giv6n in国: (A.1)B)reach v={Vk}∈万(E)there is ko such tllat Vk。⊂E(の. It can be shown that 1 iA.1)is equivale皿t to saying that, fbl each v∈冗(E), if{場}∈Q(v), then thele is n such that the set{hj:」≧n}is R−v−bounded..The ”space−Cl in the above Example does not satis{y(A.1);so we see that there exist U∈1巧)(C1)and {んゴ}∈9(u)such that, fbr every n, the set{hj:ゴ≧n}is not R;u−b6unded, since 2(U)≠0・bvi・usly.   2.Partia1 derivatives. As bゆre, assume throughout this section that F is a (π一T1)1ineaエranked space satisfying(A.4).   Let E a皿d G be Unear ranked spaces. Letσ:5×世(ω)(⊂E×G)→F, where w∈T・・(G)and・E×Gden・tes the pr・du・t hneaロanked.space()f E and G. Let b∈5be an R−u−interior pOint of S for some u∈万(E). Then g is sa輌d to be R−u一 んyp・c・ntinu・tes at・b, if there existsω・∈T・(F)such −that’ 9(b+九ゴ,蛎)−9(b, yj)→ 0(P:ω1)fbr every{九」}with hi→0(RFu)and evely{防}∈9(ω)(cf.(e),(h)and (k)of Theorems 1−3).    Nom here to’ the end of this sectio叫1et E1 ×. E2 be the product・五nea’ranked space of linear ranked spaces Ei and El2 ’and ’assume that:   :㌃.ジ.

D⊂El×E2;

(10)

160

APPLICATIONS・ OF MEAN VALUE THEOREM

       二了:・D−→F;』’.〆  』    ’         「穀」:但浪.ざvΣ希}ξ端・(Ei’x Ei)i『     一  ..、’         v、≒{v,,A}』∈み(E、),.v、〒{v2,k}∈E.(E2); .’         豆一(卯・)、∈.D・鋤C陣巳ρ一inゆ・p・i・t・fD・ .  .D・={X・∈E・;・.〈・・…)∈ρ}, D・={9・∈E2・(….・・)∈D}・−

If・the血・p D・∋玲∫(x・,C・)鯉i・R−Of・繊・ehti・bl・鋤・〒α1坤r・w・

d・n…‘・h曲rd・舳・ive」b・∂・∫(α;の,Cr brie6y’by∂i∫(q);・nd’・訓1麺・“(挺

醐晒・IR一輌1・・興〃垣(碗九卿ect・t・’九ゆ5舌』晒・ble)・The魎l

R二ρ一dとW・励・∂、∫(d;’りi・d・血,・d・滅輌』If∫誌且・−d品・皿ti・b16 at・, th・n ∂、∫(・)=‘O、f(d;0)』(‘1,2)”exiS’t・hd:㌦− 、     一∫’(・)(露1J、X2)=∂・∫(・)(・・)+∂・∫(司(X・).』..、・.、 wh。,e(X、,鋤∈Pt(の=Ek(V、)・恥、).1C・nv・・』ely ’i・h酌ゼ..‘…』ゴ

・T…R醐4・be‘Db・R−VT・PC・・.飢d lrげb…一.孤d・・敏(A4°)紐d

(A2°). S・pP・・e‘h・餓∫(・)=O・f(x;∋(‘=1,2)・Xi・‘・t・卿・eρ皿dεh・励・ fbμo町ng(a)一(b)力ρ14:、,.t・.  ..        ・・      .       、.  tt.・ ’f・).Th・・鋼・た・opd u・∈f・(F)鋤伍・げ((・+防,・・×. V・,k・)∩D)⊂E★(μ1)・   (!).Thαe」・1;.r・・励・砺,・×巧,・⊂(D−・)∩E★@)㎝d伽‘・f・・a・y五x・d (h,,h2)∈V・,1、、xV2,・舌五・卿(丑・⊃)[0・1D‥∫(・・+θhi,・a2+九・)∈Fi・ con¢」ηqous on .[0,1]・、 1f∂・∫,刷h・皿・p∂・∫・D×.醗ω∋(・,y)戸∂・∫(・)ω∈F,」・畑吻P㏄・頭皿u・・S at¢=α,‘hen∫js R−v−differe皿tiable a‘α.       . .   .   PROgF・P・t・(y,・)=∫(0・+y…+・)一∫(・・,・2)一{∂・∫θω、†∂・∫(・)(・)], wh・・e (y,2)∈(D’一・)∩y(・);・hd w・it・・(s):・)’=「・、ω,・).+・、(・)減ρ・6       ・・(y,・)=∫(・i+y,・・+・).一∫(・・,a・+・)一∂・∫(・)(9),.f        ”.s2(z)』」∫(αゴ,α2+z)一∫(α・,α2)−aア(α)(z)・』 Let u2, u3∈フ㌔(∬)be su匂h that{∂1∫(α)(γ輌,夫∩E★(v1))}.Kμ2−u2 and∂1∫(α十hj)(防)一 ∂、∫(・)ω→0.(P叫㊤・e卿{九」}with九ゴ「・0々)・孤d・V・ry{yi}∈Qω;・and besides let u4∈戊㌃(∬)be such thatλ;1s2(λ」ろ)→0(P−u4)f‘)1・eVely.{ろ}∈9(ρ2) an4・eyery{λ」}∈A−, Chooseψ.∈戊るo(F)sllch:that ul十u2十μ3十u4.rく.・ω・Then, given{(yi,ろ)}∈9ωand・{λ」}∈∧,・ applying ,the. mean.,yぬe.th《ゆre叫・we see λ;1・・(λ」坊,λ」ろ)→0(P−w);・nd th・・ef・・eλ;1・(λ」坊,λゴ・」)→0(P一ω)・(We・mit details.)

(11)

M.HIKIDA・

  We sh品1 denote by.v輌×巧・the血1ndamental sequence{Vi,先×巧,先}斥∈Too(Ei×Ej), wh・・e‘,」=1,2(n・t・ny(・‘X.汚.)=・蜘輌)X世ω)・   Second−order parti品de㎡v延ives can be ldefined as follows. Let D be R一勿一〇pen and assume that∂1∫(エ)=Oi f(x;’v)’eXists at every¢∈1). Then∂2∂1∫(α;の, the 5ec・nd−order.ρ・伽’R−・−derivat劫e㎡∫吻, i・a〃・Xv・・c・孕tinu・田・bilinear map o茸Eキ@2)×E★(v1)into・F such that the{bllow輌ng holds:theτe is u∈フ㌔(F)Such thatλ;13(λゴ九」)(防)→0(P−u)fbr every{㌧}∈Q(v2), every、{防}∈,Q(v1)and ev− ・・y{λ元}.∈.A坤・・e3(九)ω=∂・∫(・・,・・+ん)ω一∂・∫(・・,a2)ω一∂・∂・∫(・;v・)(九,9) ((h,y)∈i((D2一α2)∩Ek{v2))xE★(㊨1ルThe other second一ρヂder partial R〔vr.derivatives a,ajf(α;∋(‘,」=1,2)are defined smilarly. The nOtion of R−v−differentiabihty of ∂1∫atα, oT’(∂1∫)’(α;・∋the R一妙一derivative/o∫∂1∫α2α, is㎡sg obtained by 1epla,c− ing, i皿・the definition. of∂2∂1∫(α;句, the・sylhbols“∂2∂1∫(α;v),,,‘‘v2,,,‘‘s(九)(y),;and ‘‘c2一α2,, with tlle symbols“(∂1∫)’(α;の,”‘‘v,,,.‘‘3°(九Xの”an(11D一α,, respectively, where 3*(h)(y)=∂1∫(α十九)(y)一∂1∫(α)(y)一(∂1∫)’(α;∋(九, g). The R−v−derivative (あ∫)’(α;v)is de五ned similarly」    THEoREM 5. Le‘Dbe R−v−qpen, and le‘Fbe cbh”vex and sa‘js」ヶ(A.1°)and (A・27)・.Ar・輌晦‘O・f(x)=a・f(・;の(i 1・2)・ガ・オ・』・胆四紐d(・)三(b) of Theorem 4 hold.    (1)S・PP・se‘力a励・・e」s∼、 s・(カ‘ha‘Vi,己1×V2,1、⊂(D一α)∩廿(㊨)紐ぷ鱈、血 a刀[y五xed(hl, h2)∈Vl,ll×レら,’1,‘力e mal)(盈1⊃)【0,1]∋θ⇔∫(α1十ん1,α2,十砺,)∈R 」sc・n‘」皿u・us・n[0,1】・1f∂・f and a2f are R−v−(k’fferentia’・ble・a‘α,伍㎝鯵∬・ト ∂‘aゴ∫(α;∋(i,」=1,2)eXist.   .   ・      ,

  ②S・卿幽3舌舌』・・e痴・P・岬dω・栖(F)(‘1,2)・uCh th・瞬・⊂E(・・)

・・d・ f・r each i・a∫(司(V,1,・∩}i}k(・・))⊂E,r(ω油・・y x∈(・+V・,・巧,・埠D・.S叩} ‘h・‘∂、∂、∫(・)=∂」∂、∫(・;∋斑・‘・at・ev・・y・x∈D;a・d・叩P・姪ε砧a莇・・e返Z、 s・・h ‘ha‘γi,12×V2,82⊂(1)一α)∩E★(∋and‘ha‘,」br any五xed(ん1,九2)∈Vl,12×ルら,12,奮力e口3丙P (Rl⊃)【0,1DθH∂・∫(・・+九・,α2+θゐ2)(九・)∈Fisc・n‘」加…㎝[0,1].∬∂、∂、∫, as‘血e ma¢)∂2∂1∫:D×Ek(ti2×vl)∋‘(エ,z)ト〉∂2∂1(¢)(z)’∈F, js R一ひ垣pocOn‡」ηuous a‘虚=.α,・仕en∂、∂2∫(α)=∂、あ∫(α;∋exis‘S. .’ ・..   Moreove]ら」孕(1) alld(2)7 va∋have        ∂・仇f(α)(x1,x2)=あ∂、∫(α)(露2画)・・一 .・ ・ f‘)r(¢1,X2)∈Ek(Vi)×餅(v2). i ’ PR・・F・(1)・By・th・f・・t・t・t・d b・㊤・e The・r・叫⑭∫(・)・傾・r・by 鍋∫(αXy・,Y2)=(∂・∫)’(・)((Y・,0), y・),

161

(12)

162

APPLICATIONS OF、MEAN V肌UE THEOREM

      ∂2&f(α)(z、,z2)=(∂2∫)’(α)((0,z、),z2),・』’  :’       ∂、∂2∫(αX¢、,x2)=(∂2∫)’(α)((Xi,0),¢2),『       ∂、∂、∫(の(・、,・、)=(∂、ノ)’(・)((0,・、);・、), where・(∂輌∫)’(α)=(∂げ)’(α;の(i=1,2),(Y1,Y2)∈Et(vi)2,(zl,z2)・∈世(v2)2、 a皿d (¢ユゴ.x2)∈Es「(v1)xE★(v2). The proof of∂1あ∫(α){¢i,¢2)=∂2∂1∫(α)(x2,¢i)is a皿alo. 9・us‘t・that・f[2,・Lemma 2], and・iS・theref・re・mitted・   (2):Let.ω3∈チb(F)be such thatあ∂1∫(α十¢」)(ろ)一∂2∂1∫(α)(ろ)→O(P−・ ω3)for every{ち}with¢」→0(R−∋and every{zj}∈2(穀2×vl). Chooseω・= {Wk}∈∫bo(・P)such that ul十ω1十ω2十ω3舗くωゴwhere ul is as in(a)・ Let {ん」}∈2(v、),{yi}∈2(v、)皿d{λ」}’∈A. Giv・nk,・』・・ems・1・・g・th・tm≧ max{k,ko,1,12,ρ, q},3Wm⊂Wk and Wm’⊂Et(ω), where溌o a皿d l are as in(a)and in(b)respectively. Then there is 」”such that・ λ」九」∈Vi,m, λ」坊∈v2,…       .  、 . 砺∂1∫(α1+θλ」九」,α2+ξλ豆yゴ)(yゴ,九」)一∂2∂1∫(α1,α2)(坊,九ゴ)∈VVm−Wm, wheneverゴ≧ゴ’,θ∈【0,1]dndξ∈[0,1】. Fbご」≧ゴ’. Then, si皿ce yi∈E(vi), {Y,n}n∈2(v2), where Yin=防for all n. Choose{μπ}∈Asuch that O<μn≦λj for all n. ThLe皿 あ∫(α、+,λ」九力α2)(yゴ)一∂2∫(α・,α2)ω   =μ;’[∂、∫(α、+λ」九ゴ,・、)(μ。防)一あ∫(・・,・・)(μ。防)】’   一μ;1[∫(・・+λ如・+醐)イ(α、+λ」九」,α2)三∫(・・!・・+卿+∫(・・i・・)]    +μ;1(・、バ32,。) where・ ・・,。=∫(・・,α2+μ。Y」)一∫(・・,α・)raf(・・,・2)(醐), 32,。=∫(α、+λ」んゴ,α2+i・。Y」)一∫(α、+λ」ん」,q2)一&∫(α・+λ」九」,α2)(μ。y豆)・ Put sn=sl,n−s2.n. Since sn∈E★(ω)andμ;15n=II;lsl,n−iiFls2,n→0(P), μ;18n→0(P一ω)by(A.2°). Choose n such that  t.. λ;1μ;15。∈Wm−Wm, and fix it. Define 1ユ:[O,1】(−⊂Ri)→,F’by ∼ρ(θ)=∫(ai十θλ)ノ弓;α2十μ鴨シ」)一・f(ai十θλ」九元,α2).

(13)

M. 」・H】KIDA Then lρis co皿timlous on・[0,1】, and is R−d三ffe肥皿tiable on[0,1)and       9’(θ)=∂、∫(・i+θλjゐ刃・、+醐)(λ」九ゴ)一∂、∫(・、+θλ」九ゴ,・、)(λゴ九」). Fb【θ∈[0,1), a浪d defineψ:【0,1】(⊂丑1)→Fby       ψ(ξ)=∂1∫(α1+θλ」九」,α2→一ξμπ防)(λ」九ゴ). Thenψis continuous ol1[0,1], and is R−differentiable on[0,1)a皿d.        ψ’(ξ) = ∂2∂1∫(α1+θλノ,ゴ,α2+ξμπ坊)(Bnyi,λゴhj)        ∈μπλ」(VVm−Wlm)十μ九λゴ∂2∂1∫(α1,α2)(3ら・,九ゴ)ピ

Hence

     9’(θ)=ψ(1)一ψ(0)∈μπλゴVVm−Wm(P,ω)+μπλ」∂2∂1∫(α1,α2)(防・,九ゴ), sinceψ([0,.1】)⊂E★(ω)andψ’([0, i))⊂E★(W), Therefqre         q(1)−9(0)∈μπλjWm一ワVm(P一ω)十μπλ」偽∂1∫(α1,α2)(防・,hi), since y)([0,1])⊂E★(ω)and g’([0,1))⊂E★(ω). Conse(luently we haVe       λ;1[∂・∫(・・+λ」ゐ」,・・)(y」)−af(・・,・・)(防)]        =λ;1μ;1(q(1)−9(0))+λ;’μ。1 lsn..     ’        ∈ Wm−Wm(P一ω)十Q∼∂1∫(α1,α2)(yj,九」)十VVm−Wm        ⊂Wk−VVk+∂2∂・∫(α・,α2)(防・,九∫), that is, λ;1【∂・∫(α・+λ」九」,α2)(yi)一∂・∫(・・,・・)(坊)−02∂・∫(・・,・・)(防,:λ」んゴ)]∈VVk−Wk P頑d・dj≧プ・Thti・∂・Ojf(・)・Xi・t・a・d∂・&f(・)(九, y)=∂・∂・∫(・)(y,ん)((九,y)∈ E★@1)×E★(v2)).    REMARK 3.(1)The hypotheses of Theolem 5(1)imply the R−v−differentiabili−ty of∫atα. This fbllows from Theorem 4, since the R−v−dif』entiability of∂1∫atα impli題the R一ぬypoconti血皿ty of∂1∫atα(c£・ [2, Le輌1D.    (2)In the particular case where. .Ei=E2=RI in Theorem 5, all∂;aif{α)are ・ymm・t・i・and∂、あ∫(・)=02∂、∫(・).1・Th…em 5②, th・as・umpti・n・“V、,。⊂E(v。) for.someρ”is need}ess i・f v2十句く・v2.1皿Theorems 4−5, if・ v is symmetric, then (b)and the assumptions of continuities of the mapsθ←⇒・∫(α1十、九1,α2十θ九2). and

163

(14)

164L

APPLICATIONS OF MEAN.V肌UE THEOREM

θH∂1∫(α十九1,d2十θ九2)(九i)a【e・supe㎡luous.(c£』【21). The thθorぬs・also remaih’

v棚

チ昂㎝d跳rΨ〔’hneaHC岬lipg£es,.(cf・.Rem〔k 2ω)・

   3.Note8. In t垣s sectio皿we show that some known theorems fo皿ow f【om our reSUlts.    L・txb・a・eal 1°c凪y C・pv・?[・p反・w㎏・e tCpglf..gy iF i・duced』−t・bl・ sepaエating famiy of semi一皿orms.1卜‖π(n=1,2,._)stitis{ying ll¢1』≦11xlln÷1(x∈x): we tempolar丑y call such q space X・a《lc碗η施b「y 3eη2i−nσrmed spαcε..:Let/V(X>・= {γ(・,・)・・=1・2,・∵・・>0}・輌・γ(・・r)一、{x∈.X・1国』〈r}・.N(X)i・a.bas・ f()rthe neighboエhoo(1’ systein 6f O 6f X. AS in[4;. Rk血泣k l], put.}㌔={γ(η,ε):ε> 1}U{X}a皿dVh={γ(れ,ε):[1/ε]=n}五)r・n…=1,2∴.∴.Then(X,{Vn})becomes a linear ranked space;we de皿()te it by Xr. Obviously X.輌s symmetric, convex,(g−T1) a皿dsatisfies(A.2°,4);and as E(の=X.{br any v∈fo(Xア), foo(Xr)=fo(.Xlr)and X.satisfies(A.1)(cf『Rema【k 2(2))..&血the士more,ち→¢in}X迂and only if¢」→x (R)i・Xr・and X is c・卿1・ピi!皿日.・nly if.苓ir・・頑・tρ1... 、..    Let・X・and Y be c・u批棚y Se血一h・・ined’・P・k b・j and∫・.D:(⊂X)→Y, Viti6i・Di・

・p・n・Tak・3Ψ∈石(X・)1・The・,ノ. is.興rε雌麺典・t・四(f・‘五・・ense

of[5])jf and o且iy if f:1戊(⊂X.)→};js R−v−(fifferentiable.aεα;and‘hen‘五e Fr(尭heオ and the R−v−der’is庖‡fves.(if’f.atα.arb.c(jiロcident. The.‘{(加1y if,, paxt、vas Show血in tlle proof of[4, Coldlaly 1]. Tb plove中e‘「坪,.paエt,putア(h)=∫(α十九)一∫(α)一∫’(α)(九), wh・・e∫’(・)is・h・R−v−d・ri・a・一∫…輌h is㎡・6c6n・iW面・・a・・…th・m・p

∫’(α):X→γ.Assume f iS皿dt・騰het品とenti沁le atα.・Then』e e垣st a

・equ・nce{λ」}6f・e品血血b・・s withλ」≠o㎝4λ元→0皿d a託qu・hce{㌧}・f p・int・ of some bounded subset of X suφthat厚1 r(λゾリ).hOip y:we.may assume Aj>0, since the me血bels ofノゾ(X)a皿d/V(γ)ale bala皿ced. Since we liee{ん」}∈9(∋, it foll・w・丘・m th・R−v−di{fe・e・ti・bility・・f・f at・th・tλ;1・(λ」1与)→0(R)in・Y, ’ iC£;

識興1(・2));1麺d・?λ;1・(剃?°叫・.cg加ψigtign∵・・../..・

   Fro血the above observ欲ion and Remark 1(1), Theorem 2 yields    COROLLぷy. i.缶e‘. X㌧aO∂γ:b6.・6睡鋤s・㎡こn・ith6∂』Spaftt・,・吐e踵Y垣 complete. Let プ』:1).(⊂ X) → γ (n = 1,2,...) be F)6che‘differとntiableと)n 1); where D.」sφ言㎝.…SUPP・se・鋤ち1 for・ ・some.α.e1),.伽β吋:ti・nεe仏(α)}・・nvetge・; and sφウδse:‘止a‘吋力ere.語γ∈.XV’ iX)・・suChi that.γ三⊂.D.一αa頃d..th6 fbllowing’一(*) h()ldS:(・)8輌ve皿σ∈4r(y)・・皿d a・b・・血(led. sqbOet Bl’.・f X3.£力ere fs句.S諏力・』ε fk−(X)(九)一ミプ1(¢)(九)∈・σ一. ttheneltier.7η..≧n.二≧.noj・¢’∈α・十.V..and h疋…βそThen,・fOr each毎.∈口十Vプ雄eseqロence・{fn(る)}・has/a’.五miち.de取0‘日d.byプ(¢);・{fn}{jS U皿輌fと}rmly 。・riVetgent・ to f・ ori『eぬb6ロロ{ied’subSbt,S(㎡・α:+V;・and f.isFt(khet−(紐】n掘able 話e岨γ輌血¢e加、画丑口・(ぜ.8,..鑓d∫{(X)㈲=.hm』」旨(司(九)(九eX)(,this eenfergence

(15)

、...

{HIKIDA

is.unifbrm m’‘h・ respect=to,h on each・bounded subse‘of X and to/t∈int(s))」    N6te.fhat(*).is eqUivalent to(h)◇f Theorem 2 ih.which E=Xr, F’三};, b」α a血dVi三γ. Using Cbrollaty 1,’ we. 盾b狽≠奄氏@.     .

   C・R・肌ARy 2(・£ロ・Th…em 3・6・2])・L・εX.紐dγ』e㎡・⑰rd興es・OPd

d㎝9‘輌£(X・りth・鋼・・f副・・輌・・画・・aT呼・・f.X」吻γ⑭PP・d醐

‘力esup n()rin ll・ll. Assumeγ」s c・mple‘e. Le舌Dbe an()pen c・nnected subSet()f X, 紐dle‘九:D→γ(n=1,2,_)be・Fr(iChet・differentiable・n D.5叩P・6e・that・there exお治α∈1):sロC五・‘力a‘{fn(α)}converges;.a血d sUppose‘力a‘, jbr eac且x∈D痴ψere js an()pen ball B(・)・f・㎝£er x c・ntain’・ed・in・1)..加d 8uch‘力a‘ぱω一fA(y川→0(as m,’n、→。。).・U皿’formlY wi’‘血・reSpeCt‘・y.∈B(X). Then, f・r・eaCh・¢∈・1)垣e SeqUenCe 仏(X)}has a limit, den・ted..by’f(¢);{fh}・C・nverges unif・rmly t・lf ・n each.B(¢); and.∫お・品hr‘晒頑・恥‘・ve・y −x∈D・、・pd f!(・)−1噸(x)」・・L(x・γ)・.    Givell countably semi−normed spaceS Xi and X2:, depote by・X1×X2.the product of,Xi.and x2 with the sC血二nom透、ll(字1,τ2)‖π三m①【{11xilli,警,.ll司12ヒπ}.((ql,吐)∈ x・,¥、xl.;ηr.1・2).∵・), whe・r ll・1・,・ a1・th・・e㎜・g・mP.・n xi(i「1,2.)・,

   1・thr拓ll・Vi・g C…沮逗i・・誕・1・t、 Xl, X・andγbe cpun醐y S睡…mrd

l;㌻、スぱ隠鑑蕊ll::㌫認、霊議漂1

パ・D,r・・pectiYgly(gf・一【司)・.、.・. ..t.、..._.,

!.’boRoLLARY 3(℃£.[1,Theorem 3.7.1]). Letα∈D、 iff’ is Fre’chet(五」feren tiable・ at α,then ai∫(α)(i=1,2)ex1◆s‡and∫’(α)(¢1,x2)=Oi f(α)(xl)十∂2∫(α)(x2)((xl )1 X2)∈ X1×X2). Conversely, assume t力at Oif(x)(i=1,2)eXist at every x∈D, and supPose ‘h・‘‘he瑚・m’rig(わ力bi・IS・..(f)加nσ己∈ノV(γ)㎝d訪・・nd・)・1.・tibS・t・B:・f X、, 舌h・陀」・γ∈ノV(X、xX2)・・ぷ力・‘∂、∫(・+九)ω.−a,f(d)(め..∈σぬ㎝・預牙∧∈γ

醐dy担麺∫興一雌rrn醐・at.q・..層.・、_.・.

   CoRoLLARY 4(cf.[1, Subsection 5.2D. ASSum. e・ that.㊧∫(勾(i.; ・・1,2)Cxis‡綱 『vely干ξρ辺c‘・4ξ1)・・ご…..., . .、:  . 、  . ... 、 ..’.

(1)∬∂・∫紐醐正蹴・・諭・翻嘩㊤鋼∫④(i,」三1、,.2)輌

∫勾OUP【・h弓{、灸∂・∫(・)、⑭a・C嘩∈ρ墾柚∼・ム・瑚・頑9(り力幽・

(‡)9ive・『〃’∈ノV(γ)’紐d亘b・壷亘ゐd曲・‘80砥・X、;伍㏄『」・γ∈ノ》(xf.×』X、) such 6ha舌砺∂1∫(α十h)ω一a2∂1∫!¢)⑩「9…吋βnc膓助.f V c興響∈β・、、晒㎝

∂・af(・)・嚇.・.∴、。、.. it.、.∵.㍉.;、、『..1.・..・’

   M・)r・・ve・,∫五(1)ahd(2),耽h・ve∂、∂、∫(・)(・、,鋤=∂2∂、∫(・)(‘・i、;x、), wher・ (loi,・、)αi・×X2、一苛・…’.ミ.・.:・「・.∵・三1.’・一・・.一・∵.パ㍉:』.一・  ’:  1』   「 }’.: t’ : ’.一、     . 1 ・E.、1ぞ  ... .㌔:  ・  ..「 ・  、’べ :、、、・ ’・ .・‘.‘;   .・: . ,..・・ ノ⊆一

165

(16)

166

APPLICATIONS OE:MEAN VALUE THEOREM

  Coronaries 3−4・fbllow、 from the fact・ gi、ven befbre Theoτem 4,、 Thorems・4−5 and Re−・ maエk 3(2),.sinCe, for ea{}h v∈万((Xl X X2).), we see, as in the case of di丑≒rentiabihty, th・t th・n・t輌・n・・f 6・st−(・e・p・sec・nd−)・・d・・F・軸・㌦d R−v−P・・固d・・i頑・e・ ・・ec・i・・id・nt f・・th・m・p∫・n・t・1h・t(†)(・e・p・(‡)), whi・h mrrl・the c・ntinuity δf∂、∫・D→L(文、,γ)(t・・p.∂、∂、∫・D→L(X、×X、1γ))・t・α紬・n’X、,文、・ndy are norm6d, is eqUivaleht to saying that∂1∫(Iesp.∂2∂1∫)is R−u−hypocontinuotis at α.   Appendix. This appendix prov輌des basic notions on linear .ranked spaces. Most of the following are.quotatio皿s from NagakUra[3].        .  ;,.馳   ・Let E be a linear space・ve・:the re㎡6eld皿d assume that a sequence{W} (n=0,1,2,...)of ftirnilies『of subsets of E is given to satisfy       ‘・   (E.1) 0∈γfbr anyγ∈y=喋」o Vn;E∈}7t〕;a皿d fbr any n and anyγ∈}〉, there are m>ηan(1σ∈ym、such thatσ⊂V. Members of Vn are called preneighborhoods of th’θ‘origin O o∫‘rankη. A『sequence {の斥十Vk}(ゐ=0,1;2,...)Of subSets of万is ca116d aノ’undamentd’3ε4ぴence(a})breViated to f.8.) if the fb皿ow輌ng(i)一(垣)hold:(i)xk十Vk⊃xk+1十Vk+1 fbτk≧ 1;(ii) Vk∈VL(k)fbrゐ≧1’C n(先)↑◎o(i.e. n(1)≦n(2)≦… ≦n(k)≦二・・→6◎)and fbx ・ny i≧1, th・・e a肥克l m孤dσ−∈Vm・U・hth・tた〉:, n(k)〈m≦n(k+1)and xk十Vk⊃エ先十σ⊃¢夫+1十Vk+1;(iii)Vk⊃Vk+1{∼》r k≧1:An f.s.{xk十Vk}is caUed aO−fundamental seguence・(abbreviated to〔Lf.s’.)if xk=Ofbl all k. Given a O−£s. {Vk}, put       ゴ      .  ・    ・ E({Vk}) = {x∈E:.for each k there is.λら>OSuch that x∈λkVk}, ESr({Vk})・= Span E({Vk})・    If(E,{Vn})satisfies the fbnowihg(E.2)一(E.5’)ih additioh t6(E.1), then E= (E,{γh})is・ealled. a∼輌ηeαr mπゐθ48畑e:    (E・2)F…Py°−t’・・’・世}、・・d{qk},▲h・・e.eXi・t・r P−f…{η・ugh th・t!伽 each先, there isゐ’such that Vk,+Uk,⊂Wk.    (E・3)If.{Vk}i・ag−t’・・, th…㊤・a・yλ〉°、皿d a・y k, th・re i・i・u・h ・th・も、 Vi⊂λVk.    (E.4’) Fof anyγ.∈V,λγごγif O≦λ≦1、      ‘  ’    1    (E.5’) For any. x∈E, there is a O−f.s。{Vk}sUch that x.∈E★({Vk}).    A linear ranke《l space is said to be comρ’ε‘e(resp.(π一T1))冠, fb写any f.5,{y烏十σ先} ・in tke sp㏄e, the intersection∩(Yk十こ1為)is non−empty(resp. consists of at mo6t one

(17)

M.HIKIDA

167

point). Let E be a Hneaエranked space and{Vk}aO−£s. in E. A sequence{¢」} (ゴ=0,1,2,...)of points of」E iS said to be para−{Vk}_coηuぴgeη‘to x∈E, in symbols xj→x(P−{Vk}),if there exists an f.s.{yi十Vk(‘)}(k(り↑∞)in 1ヲsuch that x∈∩(yi+Vk(り)a・d th・t, f・・any・i, th・・e i・」’・u・h th・t・」∈yi+Y・(i) f・・瓠U≧ゾ・If, in the preceding definition, y輌=xfbr all i, then{x3}is said to l)e R−{Vk}−coπηεC9θπ9 to x, in symbolsエ」→x(R−一{Vk}). The symbd露」→x(P)(resp.(R))means¢」→x (P−{Vk})(lesp.(R−{Vk}))fbr some{Vk}. In case¢」→x(P−{Vk})(resp・(P)), x is ca皿ed a P−{Vk}一(resp. P−)limit〔ゾ{x元}a皿d is also written as¢=P−{Vk}−Iim露」 (resp. x t P−lim xj)工et S⊂E. A point¢∈S is called a皿R−{Vk}−interior pointげ Sif there is k Such that Vk⊂S−x;a皿d 5 is said to be R−{Vk}−open if every point of S is a皿R−{Vk}−interior point of 5. The set{x∈E:x=P−{Vk}−1im¢」,¢」∈S} is called the P−{Vk}−closure〈ゾS, and is denoted by 5(P−{Vk});and S is said to be P−{Vk}−closed if S=S(P−{Vk}). The set S is said to be Rご{Vk}−bounded.if there is asequence{μ友}of positive number『such that 5⊂PakVk f()r each k;and a sequence {苫」}of poi皿ts of」1ヲis said to be R−{Vk}−guasi bounded if Aj・¢」→0(R〔{Vk})f〈)r every sequence{λ」}of positive皿umbe士s withλ」→0・    Ac㎞owledgment. The author Wishes to thank Professor Y. N agakura and the

re丘ree航heir hell血l co㎜ents.

REFERENCES

[1]H.Cartan,“Calcul Di冊5rentie1,”Hermann,1967. [2]M.Hikida,0πゐ輌gゐet order de励atives仇diifi7erentia∼cα’cu’秘3‘y舌九εme伽d〔ゾ   ranked spaces, SUT J. Math.,27(1991),1−15. [3】Y.Nagakura,1)iifferentia’cα’c立伍s.仇α3ραceω誠b輌一co刷εア9επcε3, treated by仇e   me伽40f ranked space, TRU Math.,21(1985),105−116. [4]Y.Nagakura,0πNewton’s method, TRU Matk.,22(1986),93−104. [司S.Yamamuro, “D品τe皿tia1 Calculus in’T{)pologica1 Linear Spaces,” Lecture   Notes in Math.,374, Springer,1974. Depaltment of Applled Mathematics F剛lty of Scie皿ce Okayama University Qf Science 1−1Rid証ch60kayama 700, Japan

参照

関連したドキュメント

For example, a maximal embedded collection of tori in an irreducible manifold is complete as each of the component manifolds is indecomposable (any additional surface would have to

Now it makes sense to ask if the curve x(s) has a tangent at the limit point x 0 ; this is exactly the formulation of the gradient conjecture in the Riemannian case.. By the

Keywords: nonlinear operator equations, Banach spaces, Halley type method, Ostrowski- Kantorovich convergence theorem, Ostrowski-Kantorovich assumptions, optimal error bound, S-order

In this paper, we study the generalized Keldys- Fichera boundary value problem which is a kind of new boundary conditions for a class of higher-order equations with

In recent years, several methods have been developed to obtain traveling wave solutions for many NLEEs, such as the theta function method 1, the Jacobi elliptic function

It is also well-known that one can determine soliton solutions and algebro-geometric solutions for various other nonlinear evolution equations and corresponding hierarchies, e.g.,

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

Splitting homotopies : Another View of the Lyubeznik Resolution There are systematic ways to find smaller resolutions of a given resolution which are actually subresolutions.. This is