• 検索結果がありません。

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K

N/A
N/A
Protected

Academic year: 2021

シェア "Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K"

Copied!
15
0
0

読み込み中.... (全文を見る)

全文

(1)

Akbulut-Karakurt

論文の内容紹介

山田 裕一

2014年5月13日 講演分

次の条件をみたす diagram L = K1∪ K2 in S3 をもつ Stein corks W = W (L) について考える. 典型的なW の例は the Mazur manifold:

 ・K1, K2 are unknotted ・lk(K1, K2) =±1  ・∃ Involution τ : K1 ↔ K2  ・admits a Stein diagram h0∪ h1∪ h2 (h2 is attached by tb− 1 framing

主定理 The involution τ on ∂W acts non-trivially on HF+(−∂W ). In fact,

c+(ξ) 6= τ∗(c+(ξ)) ∈ HF+(−∂W )

Moreover, c+(ξ)6= τ∗(c+(ξ)) in HFred+ (−∂W ) = Coker : HF∞(−∂W ) → HF+(−∂W ).

1

Heegaard Floer Homology

について

主に [OS3] から.

(Y, t)でSpinc構造を指定した3次元多様体とする. Y のHeegaard分解(Σ; α, β; z)をもとに,対称積 Σg/Sg内のLagrangian torus Tα, Tβ が構成され(詳細は省略),以下のchain complex が構成され,そ

のホモロジーHF◦(Y, t)◦ = ∞, +, −, dHF , HFred)が構成される. d CF = < x∈ Tα∩ Tβ > CF∞ = < [x, i]| x ∈ Tα∩ Tβ, i∈ Z > CF− = < [x, i]| x ∈ Tα∩ Tβ, i∈ Z, i < 0 > CF+ = CF∞/CF−

CF の元には 相対grading(状況に依ってはabsolute grading)が定まる. また,次のような作用素U

導入して,係数環はZ[U]などを用いる.

U の作用:U の作用は次の通り. gradingを2つ下げる.

U [x, i] = [x, i− 1], gr([x, i]) = gr(x) + 2i

(2)

U の幾何的な意味が分かりにくいのですが, 後述のF(X,s) の非自明degree d(X, s)やBlow up公式 (定理 3)などから推測しますと, “boundする4次元多様体の中で交叉形式などがどうなるかを境界で 測る目盛りの単位(Unit)”という感じがします. 計算例1(代数的):CF = < x >, ∂[x, i] = 0d のとき [x, 0]x[x, i] = U−ix)と表すことにすると HF∞ = Z[U, U−1] < x >,

HF− = U · Z[U] < x > = Z[Ux] ⊕ Z[U2x]⊕ Z[U3x]⊕ · · ·

HF+ = Z[U, U−1] < x >/U · Z[U] < x > = Z[U−1] < x > ∼= T(deg x)+ 計算例2(代数的):CF = < x, y >, ∂[x, i] = [y, id − 1], ∂[y, i] = 0のとき

HF∞ = {0}

HF− = Z < Uy >

HF+ = Z < x > ∼=Z

CFには次の自然なpairingが備わっている(Y のHeegaard分解(Σ; α, β; z)に対して−Y のHeegaard 分解として(−Σ; α, β; z)を用いる.) h , i : CF∞(Y )⊗ CF∞(−Y ) −→ Z by h [x, i] , [y, j] i =    1 if x = y and i + j + 1 = 0 0 otherwise この paringから 次が定まる. h , i : HF∞(Y )⊗ HF(−Y ) −→ Z h , i : HF+(Y )⊗ HF(−Y ) −→ Z h , i : HF+

red(Y )⊗ HFred (−Y ) −→ Z

幾何的な例1: S3の場合 HFn+(S3) =    Z n ≡ 0 (2) and n ≥ 0 0 otherwise = T + (0) HFn−(S3) =    Z n ≡ 0 (2) and n ≤ −2 0 otherwise 記号: HF0+(S3) の生成元をΘ+0, HF−2−(S3) の生成元をΘ−2 とする.

(3)

α1 β1 α1 β1 α2 β2 図1: S1× S2, ]2S1× S2 Heegaard 分解 記号: “生成元のU−1による軌道が並んでいる” T(s)+ = n=0 Z(s+2n) = n=0 Z[Θ+ s+2n], U nΘ+ s+2n= Θ + s 幾何的な例2 [OS3, p.341]: (]nS1× S2, t), c1(t) = 0の場合 d HF (]nS1× S2) = ∧∗H1(]nS1× S2) (rank = 2n) HF∞(]nS1× S2) = Z[U, U−1] Z∧∗H1(]nS1× S2) HF−(]nS1× S2) = (U· Z[U]) ⊗Z∧∗H1(]nS1× S2) HF+(]nS1× S2) = Z[U−1] Z∧∗H1(]nS1× S2) 例えば, H1(S1× S2) =Z[a], H1(]nS1× S2) =Z[a1,· · · an]として d HF (S1× S2) = ∧∗H1(S1× S2) = 0⊕ ∧1 =Z · 1 ⊕ Z[a] d HF (S1× S2]S1× S2) = ∧∗H1(S1× S2]S1× S2) = 0⊕ ∧1⊕ ∧2 = Z · 1 ⊕ Z[a1, a2] ⊕ Z[a1∧ a2]

(4)

α1 β1 A C B A C B α 2 α3 β2 β3 A C B A C B 図2: T3 のHeegaard 分解 幾何的な例3 [OS, p.50]: T3 = S1× S1× S1の場合, H1(T3)-moduleとして d HF (T3) = H2(T3)⊕ H1(T3) HF∞(T3) = (H2(T3)⊕ H1(T3))ZZ[U, U−1] HF+(T3) = (H2(T3)⊕ H1(T3))ZZ[U−1] gr(H2(T3)) = 1/2, gr(H1(T3)) =−1/2.T3のHeegaard図式を描いても,なぜ rank dHF = 6なのか よくわかりません:図 2. 以下は 論文 [AD, OS]で紹介されている具体例:    HF +(Σ(2, 3, 5)) ∼= T+ (2)  HF +(−Σ(2, 3, 5)) ∼= T+ (−2)HF+(Σ(2, 3, 7)) ∼= T+ (0)⊕ Z(−1)HF+(−Σ(2, 3, 7)) ∼= T(0)+ ⊕ Z(0) HF+((41; 1 n) ) = HF+(Σ(2, 3, 6n + 1)) ∼= T(0)+ ⊕ Zn(−1)HF+(Σ(2, 5, 7)) ∼= T(0)+ ⊕ Z2(−1)HF+(−Σ(2, 5, 7)) ∼= T(0)+ ⊕ Z2(0) HF+(ΣMazur) ∼= T(0)+ ⊕ Z(0)⊕ Z(0) これらは Casson不変量などとも合う(後述 §4).

(5)

p r q 図 3: M (p, q, r) = (Borromian link; p, q, r) 例:論文 [OS2](最後の2つは,論文 [OS])で計算されている具体例 M (p, q, r) = (Borromean ring; p, q, r)を表すとする. 特に M (−1, −1, r) = (T (2, 3)!; r) M (−1, −1, −1) = (T (2, 3)!; −1) = Σ(2, 3, 5), M (−1, −1, 1) = (T (2, 3)!; 1) = −Σ(2, 3, 7), M (−1, 1, 0) = (41; 0) M (1, 0, 0) = (Wh; 0, 0) HFk+( M (−1, −1, −1) ) = Z if k ≡ 0(2) and k ≥ 2 HFk+( M (−1, −1, 0) ) = Z if k ≡ 1/2(1) and k ≥ 1/2 HFk+( M (−1, −1, 1) ) =    Z ⊕ Z if k = 0 Z if k≡ 0(2) and k > 0 HFk+( M (−1, 1, 0) ) =    Z ⊕ Z if k = −1/2 Z if k≡ 1/2(1) and k ≥ 1/2 HFk∞( M (1, 0, 0) ) = Z ⊕ Z for each k d HF ( M (1, 0, 0) ) = Z2(−1)⊕ Z2(0)

(6)

For any (Y, t),

{0} −→ CF−(Y, t) −→ CFι ∞(Y, t) −→ CFπ +(Y, t) −→ {0} が誘導する −→ HF−(Y, t) ι −→ HF∞(Y, t) π −→ HF+(Y, t) −→ において 定理 1.

HFred (Y, t) := Ker ι ∼= Coker π =: HFred+ (Y, t)

定理 2. There exists an exact sequence

−→ HF+(S3)−→ HF+(S3

0(K))−→ HF+(S13(K))−→

whose degree shifts of the middle two maps are −1/2, and also

−→ HF+(S3 −1(K))−→ HF+(S30(K))−→ HF+(S3)−→ 例:K is the unknot, S03(K) = S1× S2 −→ HF+(S3) −→ HF+(S3 0(K)) −→ HF+(S13(K)) −→ .. . ... ... Z(4) Z(3.5) Z(4) {0} Z(2.5) {0} Z(2) Z(1.5) Z(2) {0} Z(0.5) {0} Z(0) Z(−0.5) Z(0) k k k T(0) T(−0.5)⊕ T(0.5) T(0)

(7)

0 0 −5 −4 −2 −2 −1 図4: my P (−3, 3, 3), Mazur manifold, Σ(2, 5, 7)

注:[OS, OS3]では Pretzel knot P (−3, 3, 3)(の記号)が私のものと鏡像です. 例([AD]で下記の?の計算を実践): K = Pr(−3, 3, 3),S3 1(K) = Σ(2, 5, 7) −→ HF+(S3) −→ HF+(S3 0(K)) −→ HF+(S13(K)) −→ .. . ... Z(4) Z(4) {0} {0} Z(2) ? Z(2) {0} {0} Z(0) Z(0) {0} Z(−1)⊕ Z(−1) T(0) T(−0.5)⊕ T(0.5) T(0)⊕ Z(−1)⊕ Z(−1) ⊕Z(−0.5)⊕ Z(−0.5) 例([AD] 同上): K = Pr(−3, 3, 3),S3−1(K) = ΣMazur. −→ HF+(S3 −1(K)) −→ HF+(S03(K)) −→ HF+(S3) −→ .. . ... Z(3.5) Z(4) Z(2.5) {0}Z(1.5) Z(2) Z(0.5) {0} Z(−0.5)⊕ Z(−0.5)⊕ Z(−0.5) Z(0) T(0)⊕ Z(0)⊕ Z(0) T(−0.5)⊕ T(0.5) T(0) ⊕Z(−0.5)⊕ Z(−0.5)

(8)

定理 3. ([OS3, Lemma 8.2], Blow up formula)

Let W = ([0, 1]× Y )]CP2. For each Spinc structure t on Y , the map FW,s : HF◦(Y, s)→ HF◦(Y, s)

is the action of U`(`+1)/2, where s is characterized by c1|Y×{0} = t and hc1(s), Ei = ±(2` + 1) with `≥ 0.

Note that the degree shift of U`(`+1)/2 is −`(` + 1) and

c1(s)2− (2χ(W ) + 3σ(W )) 4 = −(2` + 1)2− (2 · 1 + 3(−1)) 4 =−`(` + 1)

2

Basic class

以下は [OS3]から. Spinc cobordism (W4, s) : (Y1, t1) cob (Y2, t2)(∂W =−Y1∪ Y2, s|Yi = ti)に対して  FW,s : HF◦(Y1, t1)→ HF◦(Y2, t2) が up to signで定まる. この写像は,その degree shiftが

d(W, s) = c1(s) 2− (2χ(W ) + 3σ(W )) 4 のところ以外は zero map. 参考 W c1(s) c1(s)2 χ(W ) σ(W ) d(W, s) d(W2穴, s) CP2 −3H 9 3 +1 0 1 CP2 E −1 3 −1 −1 0 K3 0 0 24 −16 0 1 E(n) [T ] 0 12n −8n 0 1

論文 [OS2, p.19]の具体例:Let E be a plumbing negative E8 plumbing 4-manifold. By deleting a

disjoint open 4-ball from E, we regard it as −Σ(2, 3, 5)cob S3.

FE+

,s: HF

+

−2(−Σ(2, 3, 5)) −→ HF0+(S3)

is an isomorphism for a Spinc structure s. この例ではχ(E) = 8, σ(E穴) =−8, c1(s) = 0 d(s) = c1(s)

2− (2χ(E

) + 3σ(E穴))

4 = 2

#注:negative E8 plumbing 4-manifoldの境界はΣ(2, 3, 5)ですが, Cobordismの“底面”は法ベクトル

を逆向きにとって,多様体の境界としての向きとは逆向きに扱うようです. (Y × [0, 1]Y cob Y と見

(9)

補題 1. ([OS3, Theorem 3.4], Composition Low) Let W1 : Y1 cob

Y2 and W2 : Y2 cob

Y3 be a pair of

connected cobordisms and W = W1∪Y2W2: Y1

cob

Y3 be their composite. Fix Spinc structures si on Wi (i = 1, 2) such that s1|Y2 = s2|Y2. Then

FW2,s2 ◦ FW1,s1 = ∑

s

±FW,s◦

where the condition on s at the sumation is {s ∈ SpincW | s|W1 = s1, s|W2 = s2}.

HF∞ については 次が成り立つ

補題 2. ([OS3, Lemma 8.2]) For a Spinc cobordism (W4, s) : (Y1, t1) cob

(Y2, t2) with b+2(W ) > 0, FW,s : HF∞(Y1, t1)→ HF∞(Y2, t2)

is a zero map:FW,s = 0.

補題 2 を利用して,次のW のadmissible cutを経由することにより,後の写像FW,smixが得られる

定義 4. Spinc cobordism (W4, s) 内の 3-manifold NW を2つW1, W2 (b2(Wi) > 0)に分割し, δH1(N ;Z) = {0} ⊂ H2(W, ∂W ;Z)のとき, admissible cutという.

例:b+2(W ) > 0のとき, W 内で,向き付け可能曲面Σをとってその管状近傍の境界∂N (Σ)を使って N = Y1]∂N (Σ)(あるいは∂N (Σ)]Y2)とすれば, N はadmissible cut.

定義 5. ([OS3, Definition 8.3]) For a Spinc cobordism (W4, s) : (Y1, t1) cob

(Y2, t2) with b+2(W ) > 1,

we can define

FW,smix: HF−(Y1, t1)→ HF+(Y2, t2)

admissible cut N をとり, s|N = t.5とする. FW,smixは, 次の図式を追いかけることによる. 写像を逆向

きに進むところが2カ所あり, HF∞に関する補題2 が効いている. また,図式の中のδ−1は連結準同型 δ(同型;定理 1)の逆写像. ここで gradingを+1することになる. HF−(Y1, t1) ι −→ HF∞(Y 1, t1) ↓ 0 HF−(N, t.5) ι −→ HF∞(N, t.5) Ker ι ∼= HFred (N, t.5) k ↓ δ−1 Coker π ∼= HFred+ (N, t.5) HF+(N, t.5) π ←− HF∞(N, t.5) ↓ 0 HF+(Y2, t2) ←− HFπ ∞(Y2, t2) [Fmixを定義するための図式]

(10)

命題 1. ([OS3, Proposition 8.7]) There are only finitely many Spinc structures s of W , FW,smix is non-trivial.

定義 6. ([OS3, §9]) Let X be a closed 4-manifold with b+2(X) > 2 (and assume H1(X) ={0}). By

deleting a pair of disjoint open 4-balls from X, we regard it as S3 cob S3. We can define absolute

invariant of X to be the (Z-linear) map

ΦX,s : Z[U] −→ Z/{±1}

by

FX,smix( UnΘ−2) = ΦX,s(Un)Θ+0

where Θ−2 (or Θ+0 respectiely) is a generator of HF−(S3) whose degree is maximal (or HF+(S3) whose degree is minimal). The map ΦX,s vanishes on those homegeneous elements whose degree is

different from d(s) = c1(s) 2− (2χ(X) + 3σ(X)) 4 #注:このd(s)に関して,丹下氏と相談しました:Cobordismの場合, FX2穴 (◦ = +, −, ∞)のnontrivial degree shift は d = c1(s) 2− (2χ(X 2穴) + 3σ(X2穴)) 4 = d(s) + 1

でしたが, FX,smix のそれは,構成の途中でHFred (N, t.5)からHFred+ (N, t.5) へ同一視するための連結準同

型(同型)の逆写像δ−1のため, grading が+1ずれて

d + 1 = d(s) + 2

となるので

gr(Θ+0)− gr(UnΘ−2) = 0− (−2 − 2n) = 2n + 2

と比較して 2n = d(s)のところで意味のある情報が引き出せることになります.

定理 7. ([OS3, Theorem 10.1]) Let (Y, t) be a Spinc QHS with HFred(Y, t) = 0. Suppose that X

is a smooth closed oriented 4-manifold which admits a decomposition X1]YX2, with b+2(Xi) > 1 for i = 1, 2. For each Spinc structure s with s|Y = t, then we have ΦX,s = 0.

定理 8. ([OS3, Theorem 1.5], Adjunction formula) Let Σ be a homologically non-trivial embedded surface with genus g ≥ 1 and with non-negative self intersection number. Then for each Spinc structure

s with ΦX,s6= 0, we have that

hc1(s), [Σ]i + [Σ] · [Σ] ≤ 2g − 2

定理 9. ([OS2, Theorem 1.1]) If (X, ω) is a closed symplectic 4-manifold with b+2(X) > 1, then for the canonical Spinc structure k, we have

(11)

命題 2. ([OS2, Proposition 1.1]) For the K3 surface, ΦK3,k =    1 if c1(s) = 0 0 otherwise

定理 10. ([OS2, Theorem 5.1]) Let π : X → S2 be a relatively minimal Lefschetz fibration over the sphere with b+2(X) > 1 whose generic fiber F has genus g > 1. Then for the canonical Spinc structure

k, we have

hc1(k), [F ]i = 2 − 2g, ΦX,k=±1

Moreover, for any other Spinc structure s6= k with ΦX,s 6= 0, we have

hc1(k), [F ]i = 2 − 2g < hc1(s), [F ]i.

3

Casson invariant

まず最初にCorrection term の定義,性質とその典型的な応用例を引用しておく.

定義 11. ([OS, p.21], Correction term) For a Spinc QHS (Y, t), d(Y, t) is the minimal grading of any

non-torsion element in the image of HF∞(Y, t) in HF+(Y, t).

補題 3. ([OS, Corollary 9.8], Correction term の性質)

d(Y1]Y2, t1]t2) = d(Y1, t1) + d(Y2, t2), d(Y, t) = d(Y, t), d(−Y, t) = −d(Y, t)

ここで, 3-, 4-manifold のSpinc構造を, それぞれnowhere vanishing vector 場, almost complex str.

J で表すことにすれば, conjugation t7→ tv7→ −v, J 7→ −Jに対応する.

補題 4. ([OS, Corollary 9.8]) For a ZHS Y with d(Y ) < 0, there is no negative-definite 4-manifold X

with ∂X = Y , in fact

QX(ξ, ξ) + rkH2(X;Z) ≤ 4d(Y )

for each characteristic vector ξ.

さて, Y を整係数ホモロジー球面とする(よってSpinc構造は一意的)とき,

λ(Y ) : Casson不変量

χ(HFred+ (Y ))HFred+ のオイラー標数

d(Y ) : Correction term

の間に次の関係式が成り立つ.

定理 12. ([OS, p.30])

(12)

ただし, Casson不変量はλ(Σ(2, 3, 5)) =−1となるよう正規化している(Σ(2, 3, 5)はnegative definite

E8 plumbingの境界で,−1-framed 左手trefoil).

Casson 不変量の公式を思い出しておく. λ ( (K;1 n) ) = n 2∆K 00(1),  例:31(t) = t− 1 + t−1∆0031(1) = 2. ∆41(t) =−t + 3 − t−1∆0041(1) =−2.

また, Seifert 3-manifold (b; (a1, b1), (a2, b2),· · · , (an, bn)) に対する値は

{( 2− n −i 1 a2i ) 1 12e+ e 12 sgn(e) 4 i S(bi, ai) }/ 2 ここで e = b +i bi ai . S(bi, ai)はDedekind和で,簡単なところでは S(1, p) = (p− 1)(p − 2) 12p , S(2, p) = (p− 1)(p − 5) 24p . 前述の例で 公式を確認してみる.

Y HF+(Y ) HFred+ (Y ) χ(HFred+ (Y )) d(Y ) λ(Y )

S3 T(0)+ {0} 0 0 0 Σ(2, 3, 5) T(2)+ {0} 0? 2? −1 −Σ(2, 3, 5) T(+−2) {0} 0 −2 1 Σ(2, 3, 7) T(0)+ ⊕ Z(−1) Z(−1) −1 0 −1 −Σ(2, 3, 7) T(0)+ ⊕ Z(0) Z(0) 1 0 1 (41; 1/n) T(0)+ ⊕ Z(n−2) Zn(−2) n 0 n (41;−1/n) T(0)+ ⊕ Z(n−1) Zn(−1) −n 0 −n Σ(2, 5, 7) T(0)+ ⊕ Z2(−1) Z2(−1) −2 0 −2 −Σ(2, 5, 7) T(0)+ ⊕ Z2(0) Z2(0) 2 0 2 ΣMazur T(0)+ ⊕ Z2(0) Z2(0) 2 0 2 Seifert invariants: Σ(2, 3, 5) = (−1; (2, 1), (3, 1), (5, 1)), −Σ(2, 3, 5) = (−2; (2, 1), (3, 2), (5, 4)) Σ(2, 3, 7) = (−2; (2, 1), (3, 2), (7, 6)), −Σ(2, 3, 7) = (−1; (2, 1), (3, 1), (7, 1)) Σ(2, 5, 7) = (−2; (2, 1), (5, 4), (7, 5)), −Σ(2, 5, 7) = (−1; (2, 1), (5, 1), (7, 2)) (41; 1/n) =−Σ(2, 3, 6n + 1) = (−1, (2, 1), (3, 1), (6n + 1, n))

(13)

4

Akbulut-Karakurt

論文の内容紹介

主定理 The involution τ on ∂W acts non-trivially on HF+(−∂W ). In fact,

c+(ξ) 6= τ∗(c+(ξ)) ∈ HF+(−∂W )

Moreover, c+(ξ)6= τ∗(c+(ξ)) in HFred+ (−∂W ) = Coker : HF∞(−∂W ) → HF+(−∂W ). 例 ([AD]):HF+(ΣMazur) = T(0)+ ⊕ Z(0)⊕ Z(0) への τ∗の作用は2つのZ(0)の交換.

#注:論文には「T(0)+ と 一方のZ(0)(の生成元)を交換」と書かれていますが, τ はinvolution なので

(τ∗)2 = idのはずです. 丹下さんが本人に確認して下さいました.

主定理のKeyとなる定理.

定理13. [AO] Any Stein fillable contact manifold (Y, ξ) admits a concave symplectic filling V = V0∪V1,

where

V0 : Y cob

Y0 0-framed 2-handle attachment

along the connected binding of the open book of ξ

Y0 : surface bundle over S1 V1 : V1→ D2 LF over D2 extending Y0 with b+2(V )≥ 2. V0 V1 Y Y 0 W S3 V0 V1 Y S3 V W M X V ∂W ∂W 0 0 1 1 M W W τ = 図5: 参考図

[Step 1]まず, Contact 3-manifold (Y, ξ) をopen book表示(Σ, ϕ)する. このとき, 必要ならpositive Hopf plumbing して, binding を連結に(つまり knot に)しておく. このknotに沿う0-surgery を

(14)

(Y0, t0),このcobordismをV0 : Y cob

Y0 とする,ここでt0, sはcanonical Spinc 構造. Y0は, Σをclose したもの を Fiber とするS1上のFiber束(bΣ, ˆϕ)となる. これについて HF+(−Y0, t0) = Z[c] ∼= Z. が知られている. これと(V0, s)が定める写像F(V+0,s) : HF+(−Y0, t0)→ HF+(−Y, t)を利用してc+(ξ)∈ HF+(−Y, t)を定義する. (このとき,向き について−Y とせざるを得ない慣習らしい) 定義 14. [Contact invariant]c+(ξ) = F(V+ 0,s)(c) ∈ HF +(−Y, t)(up to±1)

[Step 2]S1上の曲面(bΣ)束をD2上の Lefschetz Fibration に拡張したものが定理13のV1である. V0 とV1をY1で貼合せたV = V0∪ V1(∂V = Y)に穴をあけて向きを逆にしてV: S3 cob −Y とみなす. この cobordism が定める写像F(V,s)+ : HF+(S3)→ HF+(−Y, t)について,次のことが知られている

補題 5. If c1(ξ)∈ H2(Y ) is torsion, then

F(V,s)+ (Θ−2) =±c+(ξ) ∈ HF+(−Y, t)

[Step 3]ここまで読むと (Y, ξ) = (∂W, ξ) に補題を適用しそうになるが, もう1ひねり必要. 主旨は 「2-handleのみの Stein cobordism M を挟み込んでも大丈夫」.

補題6. Let (Y, ξ) be a Stein fillable contact manifold with torsion c1(ξ). Let M be any Stein cobordism

built on (Y, ξ) which does not contain any 1-handles. Then M can be extended to a concave filling V of (Y, ξ) such that F(V,s)mix(Θ−2) =±c+(ξ).

[Step 4]Relative version Φ(W,s)(ξ) of Ozsv´ath-Szab´o invariant.

Stein 4-manifold W with (∂W, ξ)(言い換えて (∂W, t)) に対して, W穴 : −∂W cob S3 を考えて Φ(W,s)(ξ) (∈ Z/{±1}) を次で定める. 定義 15.F(W+ 穴,s)(c +(ξ)) = Φ (W,s)(ξ)Θ+0 ∈ HF+(S3) (up to sign)

主定理の証明: 定理13のrelatively minimal Lefschetz Fibration X = W∪ M ∪ V についてのHF

と LFのBasic class に関する定理 9 「Φ(X,k) =±1」をX2穴 = W∪ M ∪ V穴 に適用して Θ+0 = ± F(Xmix 2穴,s) −2) = ± F(W+ 穴,s)◦ F mix M∪V穴(Θ −2) = ± F(W+ 穴,s)(c +(ξ)) 特に, c+(ξ)がnontrivial であることがわかる.

一方, Mを ハンドルを使ってうまく構成する([AY])とWCork twist τ = W ∪τM∪ V

adjunction formula を壊す Surface を(W ∪τM 内に)もつようにできて, このとき定理 10 の後半に より 0 = ± F(Xmix τ, 2穴,s) −2) = ± F(W+ 穴,s)◦ τ ◦ Fmix M∪V穴(Θ −2) = ± F(W+ 穴,s)(τ c+(ξ))

(15)

このことから τ∗c+(ξ) 6= c+(ξ) ∈ HF (−∂W, t) が得られる. 後半は, τ∗ : HF+(−∂W ) → HF+(−∂W )U -同変で HF∞(−∂W )の像を保つことから. 謝辞. このメモの初期の版に注意深く目を通していただき,有意義なコメントをくださった丹下基生さん に 感謝いたします. また,安部哲哉さんを始め,ハンドルセミナーの皆様に感謝いたします.

参考文献

[AK] S Akbulut and C¸ Karakurt, Action of the cork twist on Floer homology , Proceedings of 18th G¨okova Geometry-Topology Conference, 42–52.

[AD] S Akbulut and S Durusoy, Action of the cork twist on Floer homology , Geometry and topology of manifolds, 1–9, Fields Inst. Commun., 47, AMS, Providence, RI, 2005.

[AO] S Akbulut and B Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001), 319–334. [AY] S Akbulut and K Yasui, Small exotic Stein manifold, Comment. Math. Helv. 85 no. 3 (2010), 705–721. [OS] P Ozsv´ath and Z Szab´o, Absolutely graded Floer homologies and intersection forms for 4-manifolds eith

boundary , preprint Arxiv: math.SG/0110170v2

[OS2] P Ozsv´ath and Z Szab´o, Holomorphic triangle invariants and the topology of symplectic four-manifolds , Duke math. J., 121 no.1 (2004), 1–34.

[OS3] P Ozsv´ath and Z Szab´o, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math.

参照

関連したドキュメント

10/8-inequality: Constraint on smooth spin 4-mfds from SW K -theory (originally given by Furuta for closed 4-manifolds) Our “10/8-inequality for knots” detects difference

By virtue of Theorems 4.10 and 5.1, we see under the conditions of Theorem 6.1 that the initial value problem (1.4) and the Volterra integral equation (1.2) are equivalent in the

Via the indicator A, Kanemaki characterizes the Sasakian and cosymplectic structures and gives necessary and sufficient conditions for a quasi-Sasakian manifold to be locally a

Integration along the characteristics allows association of some systems of functional (differential) equations; a one-to-one (injective) correspondence between the solutions of the

We provide an efficient formula for the colored Jones function of the simplest hyperbolic non-2-bridge knot, and using this formula, we provide numerical evidence for the

Hence, in the Dirichlet-type and Neumann-type cases respectively, the sets P k used here are analogous to the sets (0, ∞) × T k+1 and (0, ∞) × S k , and we see that using the sets P

We note that in the case m = 1, the class K 1,n (D) properly contains the classical Kato class K n (D) introduced in [1] as the natural class of singular functions which replaces the

Let K : one-dim function field/finite field, Ω: solvably closed Galois ext. of K which has no nontriv. abelian ext.) Then K can be reconstructed from Gal(Ω/K ).... § 1