ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ Grothendieck ʖेƴƭƍƯ
ɶ ҦଯᲢᣃᇌٻྸᲣ
ྚ߷ܤᬱဏᲢʮٻૠྸᄂᲣ ஓஉ ૼɟᲢʮٻૠྸᄂᲣ 1. Introduction
1.1. ˊૠٶಮ˳Ʒؕஜ፭ǁƷ ٳ Galois ˺ဇ
1.2. ˊૠٶಮ˳Ʒૠᛯႎؕஜ፭ 2. Grothendieck ʖे
3. ɶƷˁʙƷኰʼ 4. ྚ߷ƷˁʙƷኰʼ 5. ஓஉƷˁʙƷኰʼ
1
1. Introduction Grothendieck ʖे
KᲴஊྸૠ˳ Q ɥஊᨂဃƳ˳
ӑႎ
ˊૠዴ /K → Ტ࠹˴ႎᲣؕஜ፭+ ٳ Galois ˺ဇ
·||·
ૠᛯႎؕஜ፭ [࠹˴ႎݣᝋ] [ˊૠႎݣᝋ]
←−−−−−−−−
ܦμƴൿܭ ᲢࣄΨᲣ
2
1.1. ˊૠٶಮ˳Ʒؕஜ፭ǁƷ ٳ Galois ˺ဇ
ˊૠٶಮ˳ƷᲢˮႻႎᲣؕஜ፭ XᲴˊૠٶಮ˳ /C
Ტᙐእٶಮ˳ƱƠƯƷˮႻƴǑǓˮႻᆰ᧓Უ x ∈ XᲴؕໜ
ᲢˮႻႎᲣؕஜ፭ π1top(X, x) π1top(X) X Ʒᘮᙴμ˳ǛወСᲴ
(f : Y → X) → f−1(x)
(ᘮᙴ/X) →∼
π1top(X, x) - ˺ဇ
˄Ɩᨼӳ
∪ ∪
ஊᨂഏ ᘮᙴ /X
→∼
π1top(X, x) - ˺ဇ
˄Ɩஊᨂᨼӳ
3
profinite ܦͳ҄
π1(X) def= π1top(X) ƜƜưŴ፭ Γ ƴݣƠƯ
Γ def= lim
←−(Γ ƷƢǂƯƷஊᨂՠ) ᲢdzȳȑǯȈμɧᡲኽˮႻ፭Უ ᐯƳݧ Γ → ΓƷƸᆓ݅ưƋǓŴ
Γ - ˺ဇ
˄Ɩஊᨂᨼӳ
=
Γ- ᡲዓ˺ဇ
˄Ɩஊᨂᨼӳ
ཎƴ
ஊᨂഏ ᘮᙴ /X
→∼
π1(X) - ᡲዓ˺ဇ
˄Ɩஊᨂᨼӳ
4
Galois ˺ဇ
X ƕ K(⊂ C) ɥܭ፯ƞǕƯƍǔئӳ
Aut(C/K) X
ƩƕŴ X Ʒᙐእٶಮ˳ƱƠƯƷˮႻƴ᧙ƠƯ ᡲዓưƳƍƷư
Aut(C/K) π1top(X) ƸࡽƖឪƜƞǕƳƍ
Riemann Ʒ܍נܭྸ
X ƷஊᨂഏᘮᙴƸžˊૠႎſ i.e.
∀ f : Y → X ஊᨂഏᘮᙴ
∃1 Y ƷɥƷˊૠٶಮ˳Ʒನᡯ s.t. f Ƹˊૠٶಮ˳Ʒݧ
5
σ ∈ Aut(C/K) ƴݣƠ
σ(f : Y → X) = (fσ : Y σ → Xσ = X) Ʊܭ፯ƢǔƜƱƴǑǓ
Aut(C/K) (ஊᨂഏᘮᙴ /X)
π1(X) - ᡲዓ˺ဇ
˄Ɩஊᨂᨼӳ
Aut(C/K) π1(X)
ദᄩƴƸŴ π1(X, x)
∼σ
→π1(X, σ(x)) ɧܭࣱ
π1(X, x)
6
ƠƨƕƬƯ
Aut(C/K) → Out(π1(X))
Aut(π1(X))/ Inn(π1(X))
ƜǕƸ
Aut(C/K) Gal(K) def= Gal(K/K) Ǜኺဌ
ᲢRiemann Ʒ܍נܭྸưӲஊᨂഏᘮᙴƴ
λǔˊૠٶಮ˳ƷನᡯƸŴܱƸ K ɥܭ፯ ƞǕǔᲣ
7
1.2. ˊૠٶಮ˳Ʒૠᛯႎؕஜ፭ KᲴ˓ॖƷ˳
XᲴˊૠٶಮ˳ /K finite ´etale ᘮᙴ
X ƷžஊᨂഏᘮᙴſǛኝˊૠႎƴܭ፯
8
̊ X = A1K − {0} = Spec(K[T, T −1])
̊ 1 A1K − {0} → A1K − {0} = X K[S, S−1] ← K[T, T −1]
K = K
SN ← T
̊ 2 A1K − {0} → A1K − {0} = X K[S, S−1] ← K[T, T −1]
K = K
aSN ← T
(a ∈ K×)
̊ 3 A1K − {0} → A1K − {0} = X K[T, T −1] ← K[T, T −1]
K ⊃ K
T ← T
ᲢKᲴ K ƷஊᨂഏЎᩉਘٻᲣ
̊ 4 ƜǕǒƷฆӳ
9
ؕஜ፭
π1(X)Ჴ profinite ˮႻ፭ s.t.
finite ´etale ᘮᙴ /X
∼
→
π1(X) - ᡲዓ˺ဇ
˄Ɩஊᨂᨼӳ
X ƕ᩼ཎီƳǒƹ
Gal(K(X)) π1(X) ཎƴ
Gal(K) = π1(Spec(K))
10
ഏƷܦμЗƕؕஜႎᲢX → Spec(K) ƴݣƢ ǔ fiber homotopy ЗᲣ
1 → π1(XK) → π1(X) pr→X Gal(K) → 1 π1(X)Ჴૠᛯႎؕஜ፭
π1(XK)Ჴ࠹˴ႎؕஜ፭
ρX : Gal(K) → Out(π1(XK))
ද 1 K ⊂ C ƷƸ π1(XK) = π1(XC) ư ρX Ƹ 1.1 ƷᘙྵƱɟᐲ
ද 2 π1(XK) Ʒɶ࣎ƕᐯଢƳǒƹ
(π1(X), prX) (π1(XK), ρX)
11
pro-l ؕஜ፭ᲢlᲴእૠᲣ (pro-l ፭) = lim
←−(ஊᨂ l - ፭) ΠᲴ profinite ፭
ΠlᲴ Π Ʒஇٻ pro-l ՠ
def= lim
←−(Π ƷƢǂƯƷˮૠ l ǂƖஊᨂՠ) π1(l)(XK) def= π1(XK)l
π1(l)(X) def=
π1(X)/ Ker(π1(XK) → π1(l)(XK))
1 → π1(l)(XK) → π1(l)(X) pr
(l)
→X Gal(K) → 1 ρ(Xl) : Gal(K) → Out(π1(l)(XK))
12
2. Grothendieck ʖे
ʖे
KᲴ Q ɥஊᨂဃƳ˳
CᲴӑႎˊૠዴ /K
SᲴ smooth ˊૠٶಮ˳ /K ƜƷŴ
HomdomK (S, C)
→∼ Hom extopen
Gal(K)(π1(S), π1(C)) C∗Ჴ C ƷdzȳȑǯȈ҄, gᲴ C∗ Ʒᆔૠ Σ = C∗ − C, ν = (Σ(K))
CᲴӑႎ ⇐⇒ χ(C) def= 2 − 2g − ν < 0
13
⎛
⎜⎝
S → C Ჴ dominant ݧ
Spec(K)
⎞
⎟⎠
↓
⎛
⎜⎝
π1(S) → π1(C) Ჴᡲዓ፭แӷ
Gal(K)
⎞
⎟⎠ modulo Inn(π1(CK))
14
ॖԛ
žK ɥƷӑႎˊૠዴƸƦƷૠᛯႎؕஜ፭ ƔǒܦμƴࣄΨƞǕǔſ
Ტᙸ૾Უ
(1) S = C ᲢӑႎˊૠዴᲣ ӑႎˊૠ
ዴ /K
dom
π1
→
profinite ፭ / Gal(K)
open
ext
ƕܱࣙΪŵ ཎƴ
žૠᛯႎؕஜ፭ƕӷƳ K ɥƷӑႎˊૠ
ዴƸӷſ
(2) ᡀ = C Ʒ S - ஊྸໜᨼӳ
15
ද
(i) Ǣȸșȫٶಮ˳Ʒ Tate ʖेᲢFaltings Ʒ ܭྸᲣƱ˩
HomK(A, A) ⊗Z Zˆ
→∼ HomGal(K)(π1(AK), π1(AK))
(ii) ᭗ഏΨٶಮ˳ǁƷɟᑍ҄ᲢசᚐൿᲣ
ʖेžanabelian Ƴˊૠٶಮ˳Ƹૠᛯႎؕஜ
፭ƔǒܦμƴࣄΨƞǕǔſ
“anabelian” ƱƸᲹ
சܭ፯ŵžabelian ƔǒDŽƲᢒƍؕஜ፭ƴǑƬ ƯƦƷ࠹˴ƕወСƞǕǔǑƏƳٶಮ˳ſ
̊ᲴӑႎዴƷ successive fibration ӑႎዴƷȢǸȥȩǤᆰ᧓
16
(iii) Section ʖेᲢசᚐൿᲣ
ቇҥƷƨNJ CᲴݧࢨႎᲢ ⇐⇒ C = C∗Უ ʖे
HomK(S, C)
→∼ Hom extGal(K)(π1(S), π1(C))
ཎƴ S = Spec(K) ƱƢǕƹ
C(K) → {∼ prC : π1(C) → Gal(K)
ƷᡲዓŴ፭ᛯႎ sections}ext
ᲢΣ = ∅ ƷƸ̲ദᙲ “tangential sections”Უ
17
3. ɶƷˁʙ
KᲴ Q ɥஊᨂဃƳ˳
CᲴ g = 0 Ტν ≥ 3Უ ቇҥƷƨNJ
C = P1K − Σ, P1(K) ⊃ Σ ⊃ {0, 1, ∞}
ܭྸᲢAnderson - ˙ҾᲣ
ρ(Cl) : Gal(K) → Out(π1(l)(CK))
ƷఋƴݣࣖƢǔ K ƷᲢᨂഏ GaloisᲣਘٻ
˳ KC(l) ƸŴ Σ ƔǒžᙐൔſƱžl ʈఌſǛጮ ǓᡉƠƯဃơǔžૠſǛ K ƴชьƠƨ˳
̊ Q(Pl)1
Q−{0,1,2,∞} = Q(Pl)1
Q−{0,1,3,∞}(l = 3)
૾ᤆᲴ Σ ƷࡈǛܦμƴࣄΨƢǔDŽƲƷऴإ ǛਤƬƨ K Ʒਘٻ˳Ǜ C Ʒૠᛯႎؕஜ፭Ɣ ǒ፭ᛯႎƴЏǓЈƤƳƍƔᲹ
18
CᲴӑႎዴᲢgᲴɟᑍᲣ, x ∈ Σ
π1(C) ⊃ Dx
ᲢЎᚐ፭Უ ⊃ Ix
Ტॄࣱ፭Უ Zˆ 1→ Ix → Dx → Gal(κ(x))→1
∩ ∩ ∩open
1→π1(CK)→π1(C)pr→C Gal(K) →1 LJƨ Dx = Nπ1(C)(Ix)
ᙀ᫆ (ॄࣱ፭Ʒ፭ᛯႎཎࣉ˄ƚ)
߹ׅᢿЎ፭ J ⊂ π1(CK) ƴݣƠ J = Ix(∃x ∈ Σ) ⇐⇒
ž∀H ⊂
open π1(CK) ƴݣƠƯ J ∩ H ƕ Hab Ʒ ‘όЎႎᢿЎ’ ƴλǔſNjƷƷɶưಊٻ
Riemann-Weil ʖेƴǑǓࢸƷவˑƸ፭ᛯႎ 19
C = P1K − {0, 1, ∞, λ} Ტλ ∈ K − {0, 1}Უ Ტν > 4 ƷƸᙀ᫆Ǜ̅ƬƯ ν = 4 ƴ࠙ბᲣ Step1 π1(C) K(ζn, λ n1 ) (n ∈ N)
0, ∞ ƷLjưᲢܦμᲣЎޟƢǔ P1K(ζn) Ʒ n ഏ
߹ׅᘮᙴƴƓƚǔ 1, λ Ʒ fibers Ʒй˷˳Ʒ ӳ˳ǛᎋƑŴƦƷǑƏƳᘮᙴμƯǛឥƬƯ ƦƷσᡫᢿЎǛӕǔᲢᙀ᫆ƴǑǓž፭ᛯႎſᲣ Step2 {K(ζn, λ n1 )}n∈N λ
Kummer ྸᛯŴҥૠ፭Ʒஊᨂဃࣱ
Step3
P1K − {0, 1, ∞, λ} λ
|
P1K − {0, 1, ∞, 1 − λ} 1 − λ
|
P1K − {0, 1, ∞, λ−1λ } λ−1λ
⎫⎪
⎪⎪
⎬
⎪⎪
⎪⎭
λ
20
pro-l ˩
AutK(C)→∼ Aut extGal(K)(π1(l)(C)) ƱƳǔ̊ǛɨƑƨ
ඥᲴ pro-l ϙ፭Ტ⊂ Out(π1(l)(CK))Უ Ʒ weight filtration ǛဇƍƯ pro-l ٳ Galois ᘙྵƴƓƚǔ Galois Ǜᚡᡓ
᭗ᆔૠƷዴǍƦƷᣐፗᆰ᧓ƷئӳƴNjᄂᆮ Ტᚌႏܨȷ᭗ރݵനƱσӷᲣ
21
4. ྚ߷Ʒˁʙ
Grothendieck ʖे / ஊᨂ˳
kᲴஊᨂ˳
CᲴӑႎዴ /k, ν > 0 Ტν = 0 ƸசᚐൿᲣ
ܭྸᲢϋဋᲣ
k(C) Ƹ Gal(k(C)) ƔǒࣄΨƞǕǔ ᚰଢƷ૾ᤆᲴ
Step1 C∗ ƷӲໜƴݣƢǔЎᚐ፭Ʒ፭ᛯႎ ཎࣉ˄ƚ
Step2 ʈඥ፭ k(C)× ƷࣄΨ
Step3 k(C) = k(C)× ∪ {0} ƷɥƷьඥನᡯ ƷࣄΨ
22
Step1
ቇҥƷƨNJ x ∈ C {1}
αx
1→ Ix → Dx →∼ Gal(κ(x))→1
∩ ∩ ∩open
1→π1(CK)→π1(C)pr→C Gal(k) →1 x ∈ C(k) Ƴǒƹ
αx : Gal(k) → π1(C), prC ◦ αx = idGal(k)
23
ᡞƴ
α : Gal(k) → π1(C), prC ◦ α = idGal(k) ƴݣƠƯ
α = αx(∃x ∈ C(k))
⇐⇒ α(Gal(k)) ƴݣࣖƢǔ C ƷᲢpro -Უ ᘮᙴƕ k - ஊྸໜǛਤƭ
⇐⇒ α(Gal(k)) ⊂ ∀H ⊂
open π1(C)
H ƴݣࣖƢǔᘮᙴƕ k - ஊྸໜǛਤƭ
Lefschetz ួπࡸƴǑǓஇࢸƷவˑƸ፭ᛯႎ
Step2 k(C) Ʒ˳ᛯƷႻʝࢷᲴ k(C)× = Artin ϙƷఋ Step3 ဦ
24
π1tame/ ஊᨂ˳Ʒ Grothendieck ʖे
π1/ ஊᨂဃ˳ /Q Ʒ⇓ Grothendieck ʖे
ද ࠹˴ႎؕஜ፭ƴƭƍƯ CᲴዴ / ૠ 0 Ʒˊૠ˳
=⇒ π1(C) Ƹ (g, ν) ƷLjưൿLJǔ ܭྸ
ዴ C/Fp, g = 0 ƷᲢǹǭȸȠƱƠƯƷᲣ ӷƸ π1(C) ƴǑƬƯܦμƴൿܭƞǕǔ ᲢgᲴɟᑍƸசᚐൿᲣ
25
5. ஓஉƷˁʙ
Grothendieck ʖे /p ᡶ˳
ኽௐ
KᲴ Qp ɥஊᨂဃƳ˳ƷᢿЎ˳
̊ KᲴ Q ɥஊᨂဃ
KᲴ Qp ɥஊᨂဃ
K = ∪
[K:Q]≤NK
26
ܭྸᲫ
CᲴӑႎˊૠዴ /K
SᲴ smooth ˊૠٶಮ˳ /K ƜƷŴ
HomdomK (S, C)
→∼ Hom extopen
Gal(K)(π1(S), π1(C))
→∼ Hom extopen
Gal(K)(π1(p)(S), π1(p)(C)) ܭྸᲬ
L, MᲴᲢ˓ॖഏΨᲣˊૠٶಮ˳ /K Ʒ᧙ૠ˳
ƜƷŴ
HomK(M, L)
→∼ Hom extopen
Gal(K)(Gal(L), Gal(M))
27
ද
(i) Ǣȸșȫٶಮ˳Ʒ Tate ʖेƸ p ᡶ˳ɥ ưƸᇌƠƳƍŵ
(ii) K ƕ Q ɥஊᨂဃƷŴܭྸᲬƷ Isom
༿Ƹ Pop Ʒܭྸ
ᚰଢᲴ p ᡶ Hodge ྸᛯƷࣖဇ Ტ[K : Qp] < ∞Უ
28
Grothendieck ʖे
ٶಮ˳Ʒݧ ൔ᠋
←→ ؕஜ፭ᲢƷݧᲣ
ž᧙ૠſႎ
ˮႻႎ
´etale ႎ
Galois ᘙྵႎ p ᡶ Hodge ྸᛯ
p ᡶ˳ɥƷˊૠٶಮ˳ƴݣƠƯ de Rham
(crystalline) cohomology
←→ൔ᠋ p ᡶ ´etale cohomology
ࣇЎь፭ႎ ž᧙ૠſႎ
ˮႻႎ
´etale ႎ
Galois ᘙྵႎ
29
ቇҥƷƨNJ C = C∗, non-hyperelliptic π1(p)(CK)ab Tp(JK)
ᲢJᲴ C Ʒ Jacobi ٶಮ˳Უ
Hodge-Tate ЎᚐᲢCp = (K)ᲣᲴ π1(p)(CK)ab ⊗
ZpCp {Γ(C, Ω1C/K)⊗
KCp} ⊕ {H1(C, OC)⊗
KCp(1)} ǏƑƴ
(π1(p)(CK)ab ⊗
ZpCp)Gal(K)
= Γ(C, Ω1C/K) = Kω1 ⊕ · · · ⊕ Kωg canonical embeddingᲴ C → PgK−1
30
ƷࣄΨƷƨNJƷ KeyᲴ
LᲴ K Ǜԃlj p ᡶܦͳƳᩉ˄͌˳Ŵй˷˳
Ƹ K Ʒй˷˳ƷɥƷɟ٭ૠˊૠ᧙ૠ˳
ƜƷŴɨƑǒǕƨ
Gal(L) →
Gal(K) π1(C) ƕ࠹˴ႎƔƲƏƔŴ i.e.
Spec(L) →
Spec(K) C
ƔǒஹǔNjƷƔƲƏƔǛ፭ᛯႎƴЙܭ
Ტmod pN ༿ p ᡶ Hodge ྸᛯǛ C ƷӲᘮᙴ ƴᢘဇŴƳƲᲣ
ܭྸᲬᲴ
M/K Ʒឬឭഏૠƴ᧙Ƣǔ࠙ኛඥ
→ ܭྸᲫƴ࠙ბ
31