• 検索結果がありません。

ON THE TOPOLOGY OF D-METRIC SPACES AND GENERATION OF D-METRIC SPACES FROM METRIC SPACES

N/A
N/A
Protected

Academic year: 2022

シェア "ON THE TOPOLOGY OF D-METRIC SPACES AND GENERATION OF D-METRIC SPACES FROM METRIC SPACES"

Copied!
23
0
0

読み込み中.... (全文を見る)

全文

(1)

PII. S0161171204311257 http://ijmms.hindawi.com

© Hindawi Publishing Corp.

ON THE TOPOLOGY OF D-METRIC SPACES AND GENERATION OF D-METRIC SPACES FROM METRIC SPACES

S. V. R. NAIDU, K. P. R. RAO, and N. SRINIVASA RAO Received 20 November 2003

An example of aD-metric space is given, in whichD-metric convergence does not define a topology and in which a convergent sequence can have infinitely many limits. Certain meth- ods for constructingD-metric spaces from a given metric space are developed and are used in constructing (1) an example of aD-metric space in whichD-metric convergence defines a topology which isT1but not Hausdorff, and (2) an example of aD-metric space in whichD- metric convergence defines a metrizable topology but theD-metric is not continuous even in a single variable.

2000 Mathematics Subject Classification: 54E99.

1. Introduction. Dhage [2] introduced the notion ofD-metric spaces and claimed thatD-metric convergence defines a Hausdorff topology and that theD-metric is (se- quentially) continuous in all the three variables. Many authors (see [1,2,3,4,5,6,7, 8,9,10,11,12,13,14]) have taken these claims for granted and used them in proving fixed point theorems inD-metric spaces.

In this paper, we give examples to show that in aD-metric space (1) D-metric convergence does not always define a topology,

(2) even whenD-metric convergence defines a topology, it need not be Hausdorff, (3) even when D-metric convergence defines a metrizable topology, the D-metric

need not be continuous even in a single variable.

In fact, we develop certain methods for constructing D-metric spaces from a given metric space and obtain from them, as by-products, examples illustrating the last two assertions. We also introduce the notions of strong convergence, and very strong con- vergence in aD-metric space and study in a decisive way the mutual implications among the three notions of convergence, strong convergence, and very strong convergence.

Throughout this paper,Rdenotes the set of all real numbers,R+the set of all non- negative real numbers,Nthe set of all positive integers, and(R+)3 = {(t1,t2,t3)∈ (R+)3:t1≤t2+t3, t2≤t3+t1,t3≤t1+t2}.

Note1.1. If(X,d)is a metric space, then(d(x,y),d(y,z),d(z,x))∈(R+)3 for all x,y,z∈X.

Definition1.2[2]. LetX be a nonempty set. A functionρ:X×X×X→[0,∞)is called aD-metric onXif

(i) ρ(x,y,z)=0 if and only ifx=y=z(coincidence),

(2)

(ii) ρ(x,y,z)=ρ(p(x,y,z))for allx,y,z∈Xand for any permutationp(x,y,z) ofx,y,z(symmetry),

(iii) ρ(x,y,z)≤ρ(x,y,a)+ρ(x,a,z)+ρ(a,y,z)for allx,y,z,a∈X(tetrahedral inequality).

IfXis a nonempty set andρisD-metric onX, then the ordered pair(X,ρ)is called a D-metric space. When theD-metricρis understood, we say thatXis aD-metric space.

Definition1.3[2,8]. A sequence{xn}in aD-metric space(X,ρ)is said to be con- vergent (orρ-convergent) if there exists an elementxofXwith the following property:

givenε >0, there exists anN∈Nsuch thatρ(xm,xn,x) < εfor allm,n≥N. In such a case,{xn}is said to converge toxandxis called a limit of{xn}.

Definition 1.4[2, 8]. A sequence {xn}in a D-metric space (X,ρ)is said to be Cauchy (orρ-Cauchy) if, givenε >0, there exists anN∈Nsuch thatρ(xm,xn,xp) < ε for allm,n,p≥N.

Remark 1.5. The definition ofρ-Cauchy sequence as given by Dhage [2] appears to be slightly different fromDefinition 1.4, but it is actually equivalent to it. It can be shown that in aD-metric space every convergent sequence is Cauchy.

Definition1.6[2,8]. AD-metric space(X,ρ)is said to be complete (orρ-complete) if everyρ-Cauchy sequence inXisρ-convergent inX.

Notation1.7. For a subsetEof aD-metric space(X,ρ),Ecdenotes{x∈X: there is a sequence inEwhich converges to xunder theD-metricρ}. For any setX,P (X) denotes the power set ofX, that is, the collection of all subsets ofX.

We now give an example of a completeD-metric space in whichD-metric convergence does not define a topology and in which there are convergent sequences with infinitely many limits.

Example1.8. LetX=A∪B∪{0}, whereA= {1/2n:n∈N}andB= {2n:n∈N}.

Defineρ:X×X×X→R+as follows:

(i) ρ(x,y,z)=0 ifx=y=z,

(ii) ρ(x,y,z)=min{max{x,y},max{y,z},max{z,x}}ifx,y,z∈A∪{0},0 does not occur more than once amongx,y,z, and at least two amongx,y,zare distinct, (iii) ρ(x,y,z)=1 if 0 and at least one element ofBoccur amongx,y,z, or 0 occurs

exactly twice amongx,y,z,

(iv) ρ(x,y,z)=min{x,y,z}if x,y,z∈A∪B and exactly one element ofB occurs exactly once amongx,y,z,

(v) ρ(x,y,z)=min{max{1/x,1/y},max{1/y,1/z},max{1/z,1/x}}, ifx,y,z∈A∪B and exactly one element ofAoccurs exactly once amongx,y,z,

(vi) ρ(x,y,z)= |1/x−1/y|+|1/y−1/z|+|1/z−1/x|ifx,y,z∈B.

Then(X,ρ)is a completeD-metric space. Butρ-convergence does not define a topology onX.

Proof. Clearlyρ is symmetric in all the three variables andρ(x,y,z)=0 if and only ifx=y=z. We note thatρ(x,y,z)≤1 for allx,y,z∈X. Letx,y,z,u∈X.

(3)

D-METRIC SPACES...

Case(i). x=y=z.

Thenρ(x,y,z)=0≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

Case(ii). x,y,z∈A∪{0}, 0 does not occur more than once amongx,y,z, and at least two amongx,y,zare distinct.

We may assume thatx≥y≥z. Ifu∈A∪ {0}, thenρ(x,y,z)=y≤ρ(u,y,z)+ ρ(x,u,z)+ρ(x,y,u), since when u > y, ρ(u,y,z) =y; whenu=y, ρ(x,y,z)= ρ(x,u,z); and whenu < y,ρ(x,y,u)=y. Ifu∈B, then

ρ(x,y,z)=y=min{x,y,u} =ρ(x,y,u)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.1)

Case(iii). 0 occurs exactly twice amongx,y,z.

We may assume thatx=y=0. Thenz≠0. Ifu∈X\{0}, then ρ(x,y,z)=ρ(0,0,z)=1=ρ(0,0,u)=ρ(x,y,u)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.2)

Ifu=0, then

ρ(x,y,z)=ρ(0,0,z)=1=ρ(u,y,z)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.3)

Case(iv). 0 and at least one element ofBoccur amongx,y,z. We may assume thatx=0 andy∈B. Then

ρ(x,y,z)=ρ(0,y,z)=1=ρ(0,y,u)=ρ(x,y,u)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.4)

Case(v). x,y,z∈A∪Band exactly one element ofBoccurs exactly once amongx, y,z.

We may assume thatx∈B. Theny,z∈A. We may also assume thaty≥z. Ifu∈B, then

ρ(x,y,z)=min{x,y,z} =z=ρ(u,y,z)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.5) Ifu∈A∪{0}, then

ρ(x,y,z)=min{x,y,z} =z≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u), (1.6) since whenu < z,ρ(u,y,z)=z; whenu=z,ρ(x,y,z)=ρ(x,y,u); and whenu > z, ρ(u,y,z)=min{u,y} ≥z.

Case(vi). x,y,z∈A∪Band exactly one element ofAoccurs exactly once amongx, y,z.

(4)

We may assume thatx∈A. Theny,z∈B. We may also assume thaty≥z. Ifu∈A, then

ρ(x,y,z)=max 1

y,1 z

= 1

z=ρ(u,y,z)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.7)

Ifu=0, then

ρ(x,y,z)=max 1

y,1 z

=1 z≤1

2<1=ρ(u,y,z)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.8)

Ifu∈B, then

ρ(x,y,z)=max 1

y,1 z

= 1 z

max 1

u,1 z

=ρ(x,u,z)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.9)

Case(vii). x,y,z∈B.

We may assume that 1/x≥1/y≥1/z. Ifu=0, then

ρ(x,y,z)=2 1

x−1 z

<1=ρ(u,y,z)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.10)

Ifu∈A, then

ρ(x,y,z)=2 1

x−1 z

1 x+1

x

=ρ(x,u,z)+ρ(x,y,u)

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.11)

Ifu∈B, then

ρ(x,y,z)= 1

x−1 y

+ 1

y−1 z

+ 1

z−1 x

≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u),

(1.12)

since|1/x−1/y| ≤ρ(x,y,u), |1/y−1/z| ≤ρ(u,y,z), and|1/z−1/x| ≤ρ(x,u,z). Thus, for all x,y,z,u∈X, we have ρ(x,y,z) ≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). Henceρis aD-metric onX.

To show that(X,ρ)isD-complete.

Let{xn}be a Cauchy sequence inX.

(5)

D-METRIC SPACES...

Case1. There existsN∈Nsuch thatxn=xN for alln≥N. In this case, evidently{xn}converges toxN.

Case2. GivenN∈N, there existi,j∈Nsuch thati > N,j > N, andxixj. Then there existsN0Nsuch thatxi≠0 for eachi≥N0, sinceρ(0,0,x)=1, for all x∈X\{0}, and{xn}is Cauchy.

Subcase(i). There existsN1Nsuch thatN1≥N0andxi∈Afor alli≥N1. Claim1.9. xn0asn→ ∞in the usual sense.

Suppose the claim does not hold. Then there exists a positive real numberεsuch thatxn≥εfor infinitely manyn∈N. GivenN∈N, we can choosei,j,k∈Nsuch that k > j > i >max{N,N1},xi≥ε,xj≥ε, andxkxj. Then

ρ

xi,xj,xk

=min max

xi,xj ,max

xj,xk ,max xk,xi

≥ε. (1.13)

This is a contradiction since{xn}is Cauchy. Hence the claim.

Form,n≥N1anda∈A∪{0}, we have ρ

a,xm,xn

=min max

a,xm ,max

xm,xn ,max xn,a

max

xm,xn →0 asm,n → ∞. (1.14)

Hence{xn}converges toafor anya∈A∪{0}. It can also be shown that{xn}converges tobfor anyb∈B.

Subcase(ii). There existsN2Nsuch thatN2≥N0andxi∈Bfor alli≥N2. Claim1.10. xn→ +∞asn→ +∞.

Suppose the claim does not hold. Then there exists a positive real numberM such thatxn≤Mfor infinitely manyn∈N. GivenN∈N, we can findi,j,k∈Nsuch that k > j > i >max{N,N2}, xi≤M, xj≤M, andxjxk. Then ρ(xi,xj,xk)≥ |1/xj 1/xk| ≥1/2xj1/2M. This is a contradiction since{xn}is Cauchy. Hence the claim.

Form,n≥N2anda∈A, we have

ρ

a,xm,xn

=max 1

xm, 1 xn

→0 asm,n → ∞. (1.15)

Hence{xn}converges toafor anya∈A.

Subcase(iii). GivenN∈N, there existi,j∈Nsuch thati > N,j > N,xi∈A, and xj∈B.

Claim1.11. Any element ofAoccurs only finitely many times in the sequence{xn}. Suppose the claim does not hold. Then there existsa0∈Asuch thata0=xn for infinitely manyn∈N. LetN∈N. Then there existi,j,k∈Nsuch thatk > j > i > N,xi= xj=a0, andxk∈B. Thenρ(xi,xj,xk)=min{xi,xj,xk} =a0. This is a contradiction since{xn}is Cauchy. Hence the claim.

(6)

Claim1.12. Any element ofBoccurs only finitely many times in the sequence{xn}. Suppose the claim does not hold. Then there existsb∈B such thatb=xnfor in- finitely manyn∈N. LetN∈N. Then there existi,j,k∈Nsuch thatk > j > i > N, xi=xj=b, andxk∈A. Thenρ(xi,xj,xk)=1/b. This is a contradiction since{xn}is Cauchy. Hence the claim.

Letc∈A. Letε >0. FromClaim 1.11, it follows that there existsN3Nsuch that xn<min{ε,c}whenevern≥N3andxn∈A. FromClaim 1.12, it follows that there ex- istsN4Nsuch thatxn>1whenevern≥N4andxn∈B. LetN5=max{N0,N3,N4}.

Letm,n∈Nbe such thatm≥N5andn≥N5. Thenxn,xm∈A∪B. If bothxn,xm∈A, thenρ(c,xn,xm)=max{xn,xm}< ε. If bothxn,xm∈B, thenρ(c,xn,xm)=max{1/xn, 1/xm}< ε. Suppose that one ofxn,xm belongs toAand the other belongs toB. We may assume that xn∈A and xm∈B. Then ρ(c,xn,xm)=min{c,xn,xm} =xn< ε. Thusρ(c,xn,xm) < εfor alln,m≥N5. Hence{xn}converges toc.

Thus, in any case, {xn}is convergent inX with respect to the D-metricρ. Hence (X,ρ)is a completeD-metric space.

To show that(Bc)cBc.

Letp∈Bc. Then there exists a sequence{xn}inB such that{xn}converges top. Hence {xn}is Cauchy. If there existsN∈Nsuch that xk=xN for all k≥N, then ρ(p,xN,xN)=0 and hencep=xN∈B.

Suppose that such anNdoes not exist. Then givenN∈N, there existi,j∈Nsuch that i > N,j > N, andxixj. As in Subcase (ii) ofCase 2in the proof of the completeness ofρ, it can be shown thatxn→ +∞asn→ ∞and that{xn}converges to xfor any x∈A.

For anyx∈B, ρ

x,xn,xm

= 1

x− 1 xn

+ 1

xn 1 xm

+ 1

xm1 x

→ 2

x asm,n → ∞. (1.16) Hence {xn}does not converge tox for anyx ∈B. We have ρ(0,xn,xm)=1 for all m,n∈N. Therefore{xn}does not converge to 0. Hencep∈A. ThusBc⊆B∪A. Clearly B⊆Bc.{2n}converges toxfor anyxinA. HenceA⊆Bc. ThereforeA∪B=Bc. Since {1/2n}is a sequence inAand it converges toxfor anyx∈X,(Bc)c=X. Since 0∉A∪B, (Bc)cBc. Therefore the functionf:P (X)→P (X)defined asf (E)=Ecfor allE∈P (X) is not a closure operator. Henceρ-convergence does not define a topology onX.

Definition1.13. Let(X,ρ)be aD-metric space and{xn}a sequence inX.{xn}is said to converge strongly to an elementxofXif

(i) ρ(x,xm,xn)→0 asm,n→ ∞,

(ii) {ρ(y,y,xn)}converges toρ(y,y,x)for allyinX. In such a case,xis said to be a strong limit of{xn}.

Definition1.14. Let(X,ρ)be aD-metric space and{xn}a sequence inX.{xn}is said to converge very strongly to an elementxofXif

(i) ρ(x,xm,xn)→0 asm,n→ ∞,

(ii) {ρ(y,z,xn)}converges toρ(y,z,x)for any elementsy,zofX. In such a case,xis said to be a very strong limit of{xn}.

(7)

D-METRIC SPACES...

Remark 1.15. Let {xn}be a sequence in a D-metric space X and x∈X. If {xn} converges very strongly to x, then{xn}converges strongly to x. If{xn}converges strongly tox, then it converges tox with respect toρ. Examples1.21,1.39, and1.40 show that the converse statements are false.

Proposition1.16. Let(X,ρ)be aD-metric space. Let{xn}be a sequence inXcon- verging to an elementxofX. Then{ρ(x,x,xn)}is convergent.

Proof. Since{xn}is convergent, it isD-Cauchy. We haveρ(x,x,xn)≤ρ(xm,x,xn)+

ρ(x,xm,xn)+ρ(x,x,xm). Henceρ(x,x,xn)−ρ(x,x,xm)≤2ρ(x,xm,xn). Similarly, we haveρ(x,x,xm)−ρ(x,x,xn)≤2(x,xn,xm). Hence |ρ(x,x,xn)−ρ(x,x,xm)| ≤ 2ρ(x,xn,xm). Since this inequality is true for allm,n∈Nand{xn}converges toxun- der theD-metricρ, it follows that{ρ(x,x,xn)}is a Cauchy sequence of real numbers and hence convergent.

Remark1.17. Example 1.21shows that the hypothesis ofProposition 1.16does not ensure that the limit of{ρ(x,x,xn)}isρ(x,x,x).

Proposition1.18. In aD-metric space, every strongly convergent sequence has a unique strong limit.

Proof. Let(X,ρ)be aD-metric space and{xn}a strongly convergent sequence in X. Lety,zbe strong limits of{xn}. Then{ρ(y,y,xn)}converges to bothρ(y,y,y) andρ(y,y,z). Henceρ(y,y,z)=ρ(y,y,y)=0. Hencey=z.

Theorem1.19. Let(X,d)be a metric space,x0∈X, and letAbe a nonempty subset ofX\{x0}. Defineρ:A×A×A→R+as

ρ(x,y,z)=















0 ifx=y=z,

min max

d x0,x

,d x0,y , max

d x0,y

,d x0,z , max

d x0,z

,d x0,x

otherwise.

(1.17)

Then(A,ρ)is a completeD-metric space andρ-convergence defines a topologyτonA. IfA∩{x∈X:d(x0,x) < r0} =φfor somer0∈(0,∞), thenτis the discrete topology on X; otherwiseτ= {φ}∪{E⊆A:{x∈A:d(x0,x) < r} ⊆Efor somer∈(0,∞)}and, in particular,τisT1but not Hausdorff.

Let{xn} ⊆A. Then{xn}converges toxwith respect toρfor somex∈Aandxnx for all sufficiently largen⇒d(xn,x0)→0asn→ ∞ ⇒ {xn}converges toxwith respect toρfor eachxinA. IfAhas at least two elements, there does not exist a sequence inA which is strongly convergent with respect toρ.

Proof. Clearlyρ is symmetric in all the three variables andρ(x,y,z)=0 if and only ifx=y=z. Letx,y,z,u∈A. We may assume thatd(x0,x)≥d(x0,y)≥d(x0,z). Irrespective of whetherd(x0,u) < d(x0,y)ord(x0,u)≥d(x0,y), we have

ρ(x,y,z)=d x0,y

≤ρ(x,y,u). (1.18)

(8)

Henceρ(x,y,z)≤ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u)for allx,y,z,u∈A. Henceρis a D-metric onA. Let{xn}be a sequence inAandx∈A. Ifxnx, we have

ρ

x,xn,xn

=min max

d x0,x

,d

x0,xn , max

d x0,xn

,d

x0,xn , max

d x0,xn

,d

x0,x

≥d x0,xn

.

(1.19)

That is, ρ(x,xn,xn)≥d(x0,xn) if xnx. Henced(x0,xn)→0 as n→ ∞ if {xn} converges toxwith respect toρfor somex∈Aandxnxfor all sufficiently largen. We have

ρ

xn,xm,x

min max

d x0,xn

,d

x0,xm , max

d x0,xm

,d x0,x , max

d x0,x

,d x0,xn

max d

x0,xn

,d

x0,xm ∀n,m∈N.

(1.20)

Thus{xn}converges toxwith respect toρfor eachxinAifd(x0,xn)→0 asn→ ∞. Ifxmxn, then we have

ρ

xn,xm,xn

=min max

d x0,xn

,d

x0,xm , max

d x0,xm

,d

x0,xn , max

d x0,xn

,d x0,xn

≥d x0,xn

.

(1.21)

Henced(x0,xn)→0 asn→ ∞if{xn}isρ-Cauchy and there does not exist anN∈N such thatxn=xN for alln > N. If there existsN∈Nsuch thatxn=xN for alln > N, then, evidently,{xn}converges toxN with respect toρ.

If such anN does not exist and {xn} isρ-Cauchy, thend(x0,xn)→0 asn→ ∞, and hence{xn}converges toxwith respect toρfor anyxinA. Hence everyρ-Cauchy sequence inAis convergent with respect toρ. Therefore(A,ρ)isD-complete. Ifxnx, we have

ρ x,x,xn

=min max

d x0,x

,d x0,x , max

d x0,x

,d

x0,xn , max

d x0,xn

,d x0,x

≥d x0,x

.

(1.22)

Sincex ∈A⊆ X\{x0}, d(x0,x) >0. Hence{ρ(x,x,xn)}does not converge to 0 if xnxfor infinitely manyn. Consequently,{xn}is not stronglyρ-convergent ifAhas at least two elements. LetEbe a subset ofA. Clearly,E⊆Ec.

(9)

D-METRIC SPACES...

Case1. E∩{x∈X:d(x,x0) < r} =φfor somer∈(0,∞).

Letz∈Ec. Then there exists a sequence{xn}inE such that{xn}converges toz with respect toρ. Suppose thatxnzfor eachn. Thend(x0,xn)→0 asn→ ∞. Since E∩{x∈X:d(x,x0) < r} =φ, we haved(x,x0)≥r for allx∈E. Henced(xn,x0)≥ r for alln∈N. Therefore {d(xn,x0)}does not converge to 0. Thus we arrived at a contradiction. Consequently,xn=zfor somen∈N. Hencez∈E. ThereforeEc⊆E. ThusE=Ec.

Case2. Case 1is false.

ThenE∩{x∈X:d(x,x0) <1/n}φfor eachn∈N. Hence there exists a sequence {un}inEsuch thatd(un,x0) <1/nfor alln∈N. Therefored(un,x0)→0 asn→ ∞.

Hence{un}converges toxwith respect toρfor eachxinA. HenceEc=A. Case(I). A∩{x∈X:d(x,x0) < r0} =φfor somer0∈(0,∞).

In this case, for any subsetEofA, we haveEc=E, and hence(Ec)c=Ec=E. Thus the functionf defined on the power setP (A)ofAasf (E)=Ec for allE∈P (A)is a closure operator. Thereforeρ-convergence defines a topologyτ onAin which every subset ofAis closed. Henceτ= {E:E⊆A}. Consequently,τis the discrete topology onX.

Case(II). A∩{x∈X:d(x,x0) < r}φfor anyr∈(0,∞).

In this case, for a subsetEofX, we haveEc=EorAaccording to whetherCase 1or Case 2holds. Hence(Ec)c=Ecfor allE∈P (A). Therefore the functionf defined on P (A)asf (E)=Ecfor allE∈P (A)is a closure operator. Thusρ-convergence defines a topologyτonAwith respect to which a subsetBofAis closed if and only ifB=Ec for someE∈P (A). Hence

τ=

A\Ec:E∈P (A)

= {φ}∪

E∈P (A):

x∈A:d x0,x

< r ⊆Efor somer∈(0,∞) . (1.23) IfU1,U2are nonempty open sets inτ, thenU1∩U2φsince there existr1,r2∈(0,∞) such that

x∈A:d x0,x

< ri ⊆Ui, i=1,2. (1.24) Henceτis not Hausdorff. Letp,qbe distinct elements ofA. Sincex0A,d(p,x0)and d(q,x0)are positive real numbers. Let 0< r <min{d(p,x0),d(q,x0)}. LetV0= {x∈ A:d(x,x0) < r}. ThenV0∪ {p}is aτ-open subset ofAcontainingpbut notq, and V0∪ {q}is aτ-open subset ofAcontainingqbut notp. Hence the topologyτ isT1.

Example1.20. LetX=R with the usual metric,x0=0, andA=[1,2]. Then the functionρdefined inTheorem 1.19onA×A×Areduces to the following:

ρ(x,y,z)=



0 ifx=y=z,

min

max{x,y},max{y,z},max{z,x} otherwise. (1.25) From Theorem 1.19it follows that (A,ρ) is a complete D-metric space and that ρ- convergence defines a topologyτonA, which is the discrete topology onA.

(10)

Example1.21. LetX=Rwith the usual metric,x0=0, andA= {1/n:n∈N}. Then the functionρdefined inTheorem 1.19onA×A×Ahas the same form as that given in Example 1.20. FromTheorem 1.19it follows that(A,ρ)is a completeD-metric space, any sequence in A which converges to zero in the usual sense converges tox with respect toρfor eachx inA, and thatρ-convergence defines a topologyτ onAwith respect to which nonempty subsetEofAis open if and only ifEcontains{1/n:n∈N and n≥N} for someN∈N. Further, τ is T1 but not Hausdorff. Letxn=1/nfor alln∈Nandx0=1/2. Then{xn}converges to 1/2 under theD-metricρ. We have ρ(x0,x0,xn)=ρ(1/2,1/2,1/n)=1/2 for all n∈N\{2}. Hence {ρ(x0,x0,xn)}does not converge to 0=ρ(x0,x0,x0). We note that{1/n}does not converge strongly even though it converges to every element ofX.

Theorem1.22. Let(X,d)be a metric space,x0∈X, and let{xn}be a convergent sequence inX\{x0}with limitx0,Aa proper subset ofX\{x0}containing{xn}, andB a subset ofX\{x0}which containsAproperly. Defineρ:B×B×B→R+as

ρ(x,y,z)=















0 ifx=y=z,

min max

d x0,x

,d x0,y , max

d x0,y

,d x0,z , max

d x0,z

,d x0,x

otherwise.

(1.26)

Letρ0denote the restriction ofρtoA×A×A. Then(B,ρ)and(A,ρ0)are completeD- metric spaces,A⊆B, but{x∈B: there is a sequence{yn}inAwhich converges tox with respect toρ} =BA.

Proof. The proof follows fromTheorem 1.19.

Remark1.23. If(X,d)is a metric space,Y ⊆X,d0is the restriction ofdtoY×Y, and(Y ,d0)is complete, then{x∈X: there is a sequence{yn}inY which converges to x} =Y.Theorem 1.22shows that an analogous result does not hold inD-metric spaces.

Theorem1.24. Suppose thatΦ:(R+)3R+is (i) symmetric in all the three variables,

(ii) Φ(t1,t2,t3)=0if and only ift1=t2=t3=0,

(iii) Φ(t1,t2,t3)≤Φ(t1,t2,t3)+Φ(t1,t2,t3)+Φ(t1,t2,t3)whenever(t1,t2,t3),(t1,t2, t3),(t1,t2,t3),(t1,t2,t3)∈(R+)3 andti≤ti+ti for alli=1,2,3.

Letdbe a metric onXand letρ:X×X×X→R+be defined as ρ(x,y,z)=Φ

d(x,y),d(y,z),d(z,x)

. (1.27)

Thenρis aD-metric onX. IfΦis continuous at(0,0,0), then (1) anyd-Cauchy sequence inXisρ-Cauchy,

(2) {xn} ⊆X,x∈X, andd(xn,x)→0asn→ ∞ ⇒ {xn}converges toxwith respect to theD-metricρ.

Suppose thatΦhas the following property:

(iv) givenε >0, there existsδ >0such thatt < εwhenevert∈R+andΦ(0,t,t) < δ.

(11)

D-METRIC SPACES...

Then

(1) anyρ-Cauchy sequence isd-Cauchy,

(2) {xn}(⊆X)converges tox∈Xwith respect toρ⇒d(xn,x)→0asn→ ∞. IfΦis continuous at(0,0,0),{Φ(0,tn,tn)}converges toΦ(0,t,t)whenevert∈R+, and {tn}is a sequence inR+ converging tot, then{xn} ⊆X,x∈X, andd(xn,x)→0as n→ ∞ ⇒ {xn}converges strongly toxwith respect to theD-metricρ.

IfΦis continuous at(0,0,0)and is continuous in any two variables, then{xn} ⊆X, x∈X, andd(xn,x)→0asn→ ∞ ⇒ {xn}converges very strongly toxwith respect to theD-metricρ.

Proof. We prove thatρis aD-metric onX. SinceΦ is symmetric in all the three variables, so isρ. From property (ii) of Φ, it follows thatρ(x,y,z)=0 if and only if x=y=z.

Letx,y,z,u∈X. From property (iii) ofΦ, we have ρ(x,y,z)=Φ

d(x,y),d(y,z),d(z,x)

Φ

d(x,y),d(y,u),d(u,x)

d(u,y),d(y,z),d(z,u)

d(x,u),d(u,z),d(z,x)

(1.28)

sinced(x,y)≤d(u,y)+d(x,u),d(y,z)≤d(y,u)+d(u,z), andd(z,x)≤d(u,x)+ d(z,u). Henceρ(x,y,z)≤ρ(x,y,u)+ρ(u,y,z)+ρ(x,u,z)for allx,y,z,u∈X. Hence ρis aD-metric onX.

Suppose thatΦis continuous at(0,0,0).

(1) Let{xn}be ad-Cauchy sequence inX. Thend(xn,xm)→0 asn,m→ ∞. We have ρ

xn,xm,xk

=Φ d

xn,xm ,d

xm,xk ,d

xk,xn

→Φ(0,0,0)=0 asn,m,k → ∞ (sinceΦis continuous at(0,0,0)).

(1.29) Hence{xn}isρ-Cauchy inX.

(2) Let{xn} ⊆Xand letx∈Xbe such thatd(xn,x)→0 asn→ ∞. We have ρ

x,xn,xm

=Φ d

x,xn

,d xn,xm

,d xm,x

→Φ(0,0,0)=0 asn,m → ∞ (1.30) (since everyd-convergent sequence isd-Cauchy andΦis continuous at(0,0,0)).

Henceρ(x,xn,xm)→0 asn,m→ ∞. Hence{xn}converges toxwith respect toρ. Suppose thatΦhas property (iv).

(1) Let{xn}be a ρ-Cauchy sequence in X. Let εbe a positive real number. Then there existsδ >0 such thatt < εwhenevert∈R+and Φ(0,t,t) < δ. Sinceρ(xn,xm, xn)→0 as n,m→ ∞, there existsN∈Nsuch thatρ(xn,xm,xn) < δfor alln,m≥ N. That is, Φ(d(xn,xm),d(xm,xn),d(xn,xn)) < δ for all n,m≥N. In other words, Φ(0,d(xn,xm),d(xn,xm)) < δfor alln,m≥N(sinceΦis symmetric). Henced(xn,xm)

< εfor alln,m≥N. Therefore{xn}isd-Cauchy.

(12)

(2) Let{xn} ⊆Xconverge tox∈Xwith respect to theD-metricρ. Letε >0. Then there existsδ >0 such thatt < εwhenevert∈R+andΦ(0,t,t) < δ. Sinceρ(xn,xn,x)→ 0 as n→ ∞, there exists N N such that ρ(xn,xn,x) < δ for all n≥N. That is, Φ(d(xn,xn),d(xn,x),d(x,xn)) < δfor all n≥N. That isΦ(0,d(xn,x),d(xn,x)) < δ for alln≥N. Henced(xn,x) < εfor alln≥N. Therefore{xn}converges tox with respect to the metricd.

Suppose that Φ is continuous at (0,0,0) and {Φ(0,tn,tn)} converges to Φ(0,t,t) whenever t∈R+ and {tn} is a sequence in R+ converging tot. Let{xn} ⊆X and letx∈X be such thatd(xn,x)→0 asn→ ∞. Lety∈X. Thend(xn,y)→d(x,y) asn→ ∞. Hence{Φ(0,d(xn,y),d(xn,y))} →Φ(0,d(x,y),d(x,y))asn→ ∞. That is, ρ(y,y,xn)→ρ(y,y,x)asn→ ∞. SinceΦ is continuous at(0,0,0), from what we have already proved, it follows that{xn}converges toxwith respect toρ. Hence{xn} converges strongly tox with respect to the D-metricρ. Suppose that Φ is continu- ous at(0,0,0)and is continuous in any two variables. Let{xn} ⊆Xand letx∈Xbe such thatd(xn,x)→0 asn→ ∞. Lety,z∈X. Then {d(z,xn)}and {d(xn,y)}con- verge tod(z,x)andd(x,y), respectively. SinceΦis continuous in any two variables, it follows that{Φ(d(y,z),d(z,xn),d(xn,y))}converges to Φ(d(y,z),d(z,x),d(x,y)), that is,{ρ(y,z,xn)} converges toρ(y,z,x). Since Φ is continuous at(0,0,0), {xn} converges toxwith respect toρ. Hence{xn}converges very strongly toxwith respect toρ.

Corollary1.25. Let(X,d)be a metric space and letΦ:(R+)3R+be continuous at(0,0,0), and have properties (i), (ii), (iii), and (iv) specified inTheorem 1.24. Letρbe defined as inTheorem 1.24. Thenρis aD-metric onX, a sequence inX isD-Cauchy if and only if it isρ-Cauchy, and a sequence{xn}inXconverges with respect todto an elementxofX if and only if{xn}converges tox with respect toρ. In particular, ρ-convergence defines a topology onXwhich coincides with the metric topology induced by the metricdonX, andXis complete with respect to the metricdif and only if it is complete with respect to theD-metricρ. Further, the following statements are true.

(1)If{Φ(0,tn,tn)}converges toΦ(0,t,t)whenevert∈R+and{tn}is a sequence in R+converging tot,{xn} ⊆X, andx∈X, then{xn}converges toxwith respect toρif and only if{xn}converges strongly toxwith respect toρ.

(2)IfΦis continuous in any two variables,{xn} ⊆X, andx∈X, then{xn}converges toxwith respect toρif and only if{xn}converges very strongly toxwith respect toρ. (3) IfΦ is continuous on(R+)3, then ρis sequentially continuous in all the three variables, that is,{ρ(un,vn,wn)}converges to ρ(u,v,w)whenever u,v,w∈X and {un},{vn}, and{wn}are sequences inXconverging tou,v, andw, respectively with respect toρ.

Note1.26. Corollary 1.25is useful in generating a number ofD-metrics from a given metric on a set.

We now prove a number of propositions which show that the class of functionsΦ: (R+)3R+, which are continuous at(0,t,t)for allt∈R+and which satisfy properties (i), (ii), (iii), and (iv) specified inTheorem 1.24, is very rich.

(13)

D-METRIC SPACES...

Lemma1.27. Letp∈[1,∞). Then(a+b)p≥ap+bpfor alla,b∈R+.

Proof. Definef :R+ Rasf (t)=(1+t)p1−tp for allt∈R+. Thenf(t)= p(1+t)p−1−pt(p−1)=p[(1+t)p−1−t(p−1)]. Since 1+t≥tfor allt∈R+andp−10, we have(1+t)p−1≥t(p−1)for allt∈R+.

Hencef(t)≥0 for allt∈R+. Thereforef is monotonically increasing onR+. We havef (0)=0. Hencef (t)≥f (0)for allt∈R+. Therefore

(1+t)p1+tp ∀t∈R+. (1.31)

Leta,b∈R+. We may assume thata≥b. Ifa=0, thenb=0 and(a+b)p=0=ap+bp. Suppose thata >0. Then, from what we have already proved above, we have

1+b

a p

1+ b

a p

, (1.32)

that is,

a+b a

p

1+bp

ap. (1.33)

Hence(a+b)p≥ap+bp.

Corollary1.28. Letp∈[1,∞). Then(a+b+c)p≥ap+bp+cpfor alla,b,c∈R+. Proof. Leta,b,c∈R+. Then, fromLemma 1.27, we have

(a+b+c)p=

(a+b)+cp

≥(a+b)p+cp≥ap+bp+cp. (1.34)

Proposition1.29. Suppose thatΨ:R+R+is monotonically increasing andΨ(t)=0 if and only ift=0. Letp∈[1,∞). DefineΦ:(R+)3R+as

Φ t1,t2,t3

= Ψ

t1

p +

Ψ t2

p +

Ψ t3

p1/p

t1,t2,t3

R+3

. (1.35)

ThenΦhas properties (i), (ii), (iii), and (iv) specified inTheorem 1.24. If Ψis continuous at0, thenΦis continuous at(0,0,0), and ifΨis continuous onR+, thenΦis continuous on(R+)3.

Proof. ClearlyΦis symmetric in all the three variables:

Φ

t1,t2,t3

=0⇐⇒

Ψ

t1p+ Ψ

t2p+ Ψ

t3p1/p=0

⇐⇒

Ψ ti

p

=0 ∀i

⇐⇒Ψ ti

=0 ∀i

⇐⇒ti=0 ∀i.

(1.36)

(14)

Lett1,t1,t1,t2,t2,t2,t3,t3,t3R+. Let

a= Ψ

t1

p

+ Ψ

t2

p

+ Ψ

t3

p1/p

, b=

Ψ t1

p

+ Ψ

t2

p

+ Ψ

t3

p1/p

, c=

Ψ t1

p

+ Ψ

t2

p

+ Ψ

t3

p1/p

.

(1.37)

We have

(a+b+c)p≥ap+bp+cp

= Ψ

t1

+ Ψ

t2

+ Ψ

t3

+

Ψ t1

p +

Ψ t2

p +

Ψ t3

p +

Ψ t1

p+ Ψ

t2

p+ Ψ

t3p

Ψ

t1p+ Ψ

t2p+ Ψ

t3p

.

(1.38)

Hence a+b+c≥[[Ψ(t1)]p+[Ψ(t2)]p+[Ψ(t3)]p]1/p. ThereforeΦ has property (iii).

We have

Φ(0,t,t)= Ψ(0)p

+ Ψ(t)p

+

Ψ(t)p1/p

= 2

Ψ(t)p1/p

=21/pΨ(t).

(1.39)

Letεbe a positive real number. Chooseδ=21/pΨ(ε). Thenδ >0 sinceΨ(t)=0 implies t=0.

Φ(0,t,t) < δ ⇒21/pΨ(t) <21/pΨ(ε)

⇒Ψ(t) <Ψ(ε)

t < ε (sinceΨ is monotonically increasing).

(1.40)

HenceΦhas property (iv).

Corollary 1.30. Let p [1,∞). Then the function Φ :(R+)3 R+ defined as Φ(t1,t2,t3)=[tp1+t2p+t3p]1/p for all(t1,t2,t3)∈(R+)3 is continuous on(R+)3 and has properties (i), (ii), (iii), and (iv) specified inTheorem 1.24.

Proof. The proof follows fromProposition 1.29by takingΨ(t)=tfor allt∈R+.

Proposition1.31. Suppose thatΨ:R+R+is monotonically increasing andΨ(t)=0 if and only ift=0. DefineΦ:(R+)3R+as

Φ t1,t2,t3

=max Ψ

t1

t2

t3 t1,t2,t3

R+3

. (1.41)

(15)

D-METRIC SPACES...

ThenΦhas properties (i), (ii), (iii), and (iv) specified inTheorem 1.24. If Ψis continuous at0, thenΦis continuous at(0,0,0), and ifΨis continuous onR+, thenΦis continuous on(R+)3.

Proof. ClearlyΦis symmetric in all the three variables.

Φ

t1,t2,t3

=0⇐⇒max Ψ

t1 ,Ψ

t2

t3 =0

⇐⇒Ψ ti

=0 ∀i

⇐⇒ti=0 ∀i.

(1.42)

HenceΦhas property (ii).

Lett1,t1,t1,t2,t2,t2,t3,t3,t3R+. Then

max Ψ

t1

t2

t3 max Ψ

t1

t2

t3

+max Ψ

t1

t2

t3

+max Ψ

t1

t2

t3 .

(1.43)

HenceΦhas property (iii).

Letεbe a positive real number. Chooseδ=Ψ(ε). Thenδ >0 sinceΨ(t)=0 implies t=0.

Φ(0,t,t) < δ ⇒max

Ψ(0),Ψ(t),Ψ(t) <Ψ(ε)

⇒Ψ(t) <Ψ(ε)

t < ε (sinceΨ is monotonically increasing).

(1.44)

HenceΦhas property (iv).

Corollary1.32. The functionΦ:(R+)3R+ defined asΦ(t1,t2,t3)=max{t1,t2, t3}for all(t1,t2,t3)∈(R+)3is continuous on(R+)3and has properties (i), (ii), (iii), and (iv) specified inTheorem 1.24.

Proof. The proof follows fromProposition 1.31by takingΨ(t)=tfor allt∈R+.

Proposition1.33. Suppose thatΨ:R+R+is monotonically increasing,Ψ(s+t)≤ Ψ(s)+Ψ(t)for alls,t∈R+, andΨ(t)=0if and only ift=0. DefineΦ:(R+)3R+as

Φ t1,t2,t3

=min max

Ψ t1

t2 ,max Ψ

t2

t3 , max

Ψ t3

,Ψ t1

t1,t2,t3

R+3

.

(1.45)

参照

関連したドキュメント

Suzuki, “Generalized distance and existence theorems in complete metric spaces,” Journal of Mathematical Analysis and Applications, vol. Ume, “Some existence theorems generalizing

In the context of finite metric spaces with integer distances, we investigate the new Ramsey-type question of how many points can a space contain and yet be free of

Certain meth- ods for constructing D-metric spaces from a given metric space are developed and are used in constructing (1) an example of a D-metric space in which D-metric

Since a first extension of Orlicz-Sobolev spaces on metric spaces, denoted by M Φ 1 (X), following Hajłasz’ method, was studied in [4], it is natural to examine

Aydi, “Common fixed point results for mappings satisfying ψ, φ-weak contractions in ordered partial metric spaces,” International Journal of Mathematics and Statistics, vol..

In Bj¨ orn–Bj¨ orn–Shanmugalingam [10, Section 8], the study of removable sets for bounded p -harmonic and superharmonic functions was extended to bounded domains Ω (with

Beer introduced the problem of the global coincidence on C(X, Y ) for metric spaces, and proved that if the metric space Y contains a non trivial arc, than the above two

It follows that if a compact, doubling metric space satisfies the hypotheses of Theorem 1.5 as well as either condition (2) or condition (3), then it admits a bi-Lipschitz embedding