• 検索結果がありません。

Mechanical Properties of DLC Coatings Prepared on PPS by RF Plasma CVD

N/A
N/A
Protected

Academic year: 2021

シェア "Mechanical Properties of DLC Coatings Prepared on PPS by RF Plasma CVD "

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

㧝㧚ߪߓ߼ߦ

ㄭᐕ㧘ᯏ᪾ߩዊဳൻ࡮㜞ᕈ⢻ൻߩߚ߼ߦ㧘៺ᡂ࡮៺

⠻․ᕈߩᡷༀࠍ⋡⊛ߣߒߚ⴫㕙ᡷ⾰ᛛⴚ߇ᯏ᭴ㇱຠߦ ኻߒߡᐢߊ↪޿ࠄࠇߡ޿ࠆ㧚ߘߩਛߢ߽DLC⤑ߪ㧘㜞

⎬ᐲ㧘ૐ៺ᡂଥᢙ㧘⠴៺⠻ᕈߦఝࠇࠆߥߤߩ㜞ᯏ⢻․

ᕈࠍ᦭ߔࠆߎߣ߆ࠄ㧘ฦಽ㊁ߢᵈ⋡ࠍ㓸߼ߡ޿ࠆ㧚DLC

⤑ߪήẢṖਅߢఝࠇߚૐ៺ᡂࠍᓧࠄࠇࠆߎߣ߅ࠃ߮὇

⚛ࠍਥߣߒߡ᭴ᚑߐࠇࠆߎߣ߆ࠄ㧘ㄭᐕߩⅣႺߦఝߒ

޿᧚ᢱߣ޿߁ⷐ᳞ߣ৻⥌ߒߚߎߣ߽ᵈ⋡ߩⷐ࿃ߣߥߞ ߡ޿ࠆ㧚ߘߩߚ߼㧘DLC⤑ߩᏒ႐ߪᐕ㑆⚂20㧑ߩ൓޿

ߢჇടߒߡ߅ࠅ1)㧘᭽ޘߥಽ㊁ߢታ↪ൻ⎇ⓥ߇ㅴ߼ࠄࠇ ߡ޿ࠆ㧚

৻ᣇ㧘ࡊ࡜ࠬ࠴࠶ࠢ᧚ᢱߪ㊄ዻ᧚ᢱߦᲧߴߡシ㊂㧘 ᤃᚑᒻᕈ㧘ૐ㛍㖸㧘ૐଔᩰ㧘⥄ᏆẢṖᕈߦఝࠇࠆߣ޿

ߞߚ․ᕈࠍ᦭ߒߡ޿ࠆߎߣ߆ࠄ㧘ߒࠀ߁േㇱ᧚ߣߒߡ ᐢߊ↪޿ࠄࠇߡ޿ࠆ2)㧚ߒ߆ߒ㧘ࡊ࡜ࠬ࠴࠶ࠢ᧚ᢱߪ

Mechanical Properties of DLC Coatings Prepared on PPS by RF Plasma CVD

Atsumu HONDA*, Morimasa NAKAMURA**, Takashi MATSUOKA***, and Tomoko HIRAYAMA****

(Received June 16, 2007)

In this paper, we report DLC coatings prepared on PPS (polyphenylene sulfide) substrate by RF plasma CVD technique. The substrate surface roughness was controlled to approximately Ra 0.1µm and four types of specimen were prepared under different RF power, from 100W to 400W. The coating thickness was controlled to 2.0µm. Structures and surface properties of the coatings were evaluated by raman spectroscopy, surface roughness test, surface observation using SEM, hardness test, and scratch test. Friction/wear properties were evaluated by ball-on-disk tribometer. SUS304, SUJ2, ZrO2 and Si3N4 ball were used as sliding partner of the friction test. After the friction test, friction coefficient and specific wear rate of each specimen were calculated. Surface roughness Ra decreased with RF power to 300W, however Ra of RF 400W DLC was higher than that of RF 300W because of number of cracks on RF 400W DLC. Dynamic hardness increased with RF power. Adhesiveness of RF 300W DLC was the best, however strength of adhesion seemed to be better than RF 300W DLC. Specific wear rates of RF300W and 400W DLC were found to be small in spite of ball material of sliding partner.

-G[YQTFUDLC, PPS, Surface morphology, Hardness, Adhesion, Tribological property

ࠠ࡯ࡢ࡯࠼&.%㧘225㧘⴫㕙ᕈ⁁㧘⎬ߐ㧘ኒ⌕ᕈ㧘៺ᡂ៺⠻․ᕈ

4( ࡊ࡜࠭ࡑ %8& ᴺࠍ↪޿ߡ 225 ਄ߦᒻᚑߒߚ &.% ⤑ߩᯏ᪾⊛․ᕈ

ᧄᄙ ⛔㧘ਛ᧛቞ᱜ㧘᧻ጟ ᢘ㧘ᐔጊ᦮ሶ

*Graduate Student, Department of Mechanical Engineering, Graduate School, Doshisha University, Kyotanabe, Kyoto Telephone/ Fax :+81-774-65-6419

**Department of Mechanical Engineering, Graduate School, Doshisha University, Kyotanabe, Kyoto Telephone/ Fax :+81-774-65-6419, E-mail:etf1303@mail4.doshisha.ac.jp

***Department of Mechanical and Systems Engineering, Doshisha University, Kyoto Telephone/ Fax :+81-774-65-6414, E-mail:tmatsuok@mail.doshisha.ac.jp

**** Department of Energy and Mechanical Engineering, Doshisha University, Kyoto Telephone/ Fax :+81-774-65-6413, E-mail:thirayam@mail.doshisha.ac.jp

(2)

ᒝᐲ㧘೰ᕈ߇ૐ޿ߚ߼ߦ⠴ࠕࡉ࡟࠶ࠪࡉᕈ߇ᒙ޿㧘

⎬⾰᧚ᢱࠍ⋧ᚻߦߒߚ႐ว㧘៺⠻߇ᕆỗߦㅴⴕߒ߿

ߔ޿ߥߤߩᰳὐࠍᜬߞߡ޿ࠆ3)㧚ߘߎߢ㧘ૐ⎬ᐲߥࡊ

࡜ࠬ࠴࠶ࠢ᧚ᢱߦ DLC ⤑ࠍᒻᚑߒ⴫㕙ࠍ㜞⎬ᐲൻߔ ࠆߎߣߦࠃࠅ㧘ࠕࡉ࡟࠶ࠪࡉ៺⠻ࠍᛥ೙ߔࠆߣߣ߽ߦ

៺ᡂ․ᕈߩะ਄߇ᦼᓙߢ߈㧘ࡊ࡜ࠬ࠴࠶ࠢ᧚ᢱߩ↪ㅜ

᜛ᄢ߇น⢻ߣߥࠆ㧚ߒ߆ߒ㊄ዻ᧚ᢱߦᲧߴߡࡊ࡜ࠬ࠴

࠶ࠢ᧚ᢱ߳ߩ DLC ⤑ᒻᚑߦ㑐ߔࠆ⎇ⓥႎ๔ߪ޽߹ࠅ ߥߐࠇߡ޿ߥ޿㧚㜞⎬ᐲߩDLC⤑ᒻᚑߦߪၮ᧼߳ߩࠗ

ࠝࡦⴣ᠄ߦࠃࠆౝㇱᔕജߩઃਈ߇ᔅⷐߣߐࠇߡ߅ࠅ4)㧘 ࡊ࡜ࠬ࠴࠶ࠢ᧚ᢱߢߪ DLC ⤑ߩ⎬ߐ߇ૐ޿น⢻ᕈ߇

޽ࠆ㧚ࡊ࡜ࠬ࠴࠶ࠢ᧚ᢱߪ὇⚛ߦࠃࠅ᭴ᚑߐࠇߡ޿ࠆ ߚ߼ DLC ⤑ߣߩኒ⌕ᕈߪᲧセ⊛⦟޿ߣ⠨߃ࠄࠇߡ޿

ࠆ߇3)㧘៺⠻ߩㅴⴕߦ⿠࿃ߒߡDLC⤑߇೸㔌ߔࠆߣ࠻

࡜ࠗࡏࡠࠫ࡯․ᕈߩะ਄ߪ⷗ㄟ߼ߥ޿㧚

ߘߎߢᧄ⎇ⓥߢߪ㧘ၮ᧼᧚ᢱߦࠬ࡯ࡄ࡯ࠛࡦࡊ࡜ߩ

৻⒳ߢ޽ࠆ PPS㧔ࡐ࡝ࡈࠚ࠾࡟ࡦࠨ࡞ࡈࠔࠗ࠼㧕ࠍၮ

᧼ߦ↪޿㧘RFࡊ࡜࠭ࡑCVDᴺߦࠃࠅ⇣ߥࠆRF಴ജ ߢᒻᚑߒߚDLC⤑ߩᯏ᪾⊛․ᕈࠍ⺞ߴߚ㧚ౕ૕⊛ߦߪ㧘

⊹⤑ߩ⴫㕙ᕈ⁁㧘⎬ߐ㧘ኒ⌕ᕈߣ࠻࡜ࠗࡏࡠࠫ࡯․ᕈ ߩⷰὐ߆ࠄ㧘PPSߦኻߔࠆDLC⤑ㆡ↪ߩ᦭ലᕈࠍᬌ⸛

ߒߚ㧚

㧞㧚ታ㛎ᣇᴺ ⵍⷒᣇᴺ

DLC⤑ߩᒻᚑߦߪ㧘RFࡊ࡜࠭ࡑCVDⵝ⟎㧔ࠨࡓࠦ

ࢃ⵾ PD-10M․㧕ࠍ↪޿ߚ㧚ⵝ⟎ߩ᭎⇛࿑ࠍFig. 1ߦ

␜ߔ㧚ᧄⵝ⟎ߪᐔⴕᐔ᧼ဳߢ޽ࠅ㧘RF ๟ᵄᢙߪ

13.56MHzߢ࠮࡞ࡈࡃࠗࠕࠬᣇᑼߣߥߞߡ޿ࠆ㧚ၮ᧼ߦ

ߪPPS㧔࠹ࠢ࠻ࡠࡦPPS ᣣᧄࡐ࡝ࡍࡦࠦࢃ⵾㧕ࠍ↪

޿ߚ㧚PPS ၮ᧼ߪᒻ⁁Ǿ19×4mm ߢ޽ࠅ㧘⴫㕙☻ߐߪ

⎇⏴ߦࠃࠅ▚ⴚᐔဋ☻ߐ㧔Ra㧕⚂0.1Pmߦ⺞⵾ߒߚ㧚 ⵍⷒ᧦ઙߪ㧘ේᢱࠟࠬߦࡔ࠲ࡦ㧔CH4㧕ࠍ↪޿㧘ᵹ

㊂ࠍ30sccm㧘࿶ജࠍ13Paߣߒ㧘RF಴ജߪ100W㧘200W㧘 300W߅ࠃ߮400㨃ߣߒߚ㧚߹ߚ⤑ෘߪⵍⷒᤨ㑆ࠍᄌ߃ ࠆߎߣߢ㧘⚂2.0Pmߣߥࠆࠃ߁ᚑ⤑ߒߚ㧚㔚ᭂ㑆㓒ߪ 50mm㧘ၮ᧼ߪ㕖ടᾲߢⴕߞߚ㧚PPSၮ᧼ߪࠛ࠲ࡁ࡯࡞

ਛߢ10ಽ㑆ߩ⿥㖸ᵄᵞᵺ㧘ⵍⷒ⋥೨ߦⵝ⟎ౝߢ1ಽ㑆 ߩArࠟࠬߦࠃࠆࠗࠝࡦࡏࡦࡃ࡯࠼ಣℂࠍᣉߒߚ㧚

⴫㕙ᕈ⁁

ฦRF಴ജߢᒻᚑߒߚDLC⤑⴫㕙ࠍ⿛ᩏ㔚ሶ㗼ᓸ㏜

㧔SEM㧘JSM5200ᣣᧄ㔚ሶࢃ⵾㧕ߦࠃࠅⷰኤߒߚ㧚߹

ߚ㧘⴫㕙ᒻ⁁᷹ቯⵝ⟎㧔Dektak 6M ࢃࠕ࡞ࡃ࠶ࠢ⵾㧕 ࠍ↪޿ߡ㧘DLC⤑ᒻᚑߦࠃࠆၮ᧼ߩ⴫㕙☻ߐߩᄌൻࠍ

⺞ߴߚ㧚

⎬ߐ᷹ቯ

RF ಴ജߩ㆑޿ߦࠃࠆ⊹⤑⎬ߐߩᄌൻࠍ⺞ߴࠆߚ߼

ߦ㧘⎬ߐ⹜㛎ࠍⴕߞߚ㧚᷹ቯᯏེߦߪ㧘࠳ࠗ࠽ࡒ࠶ࠢ

⿥ᓸዊ⎬ᐲ⸘㧔DUH-201 ࢃፉᵤ⵾૞ᚲ⵾㧕ࠍ↪޿ߚ㧚 ᧄ⹜㛎ᯏߢᓧࠄࠇࠆ࠳ࠗ࠽ࡒ࠶ࠢ⎬ߐDHߪ㧘࿶ሶࠍ

⹜ᢱߦ᛼ߒㄟ߻ㆊ⒟ߢߩ⩄㊀ߣ᛼ߒㄟߺᷓߐ߆ࠄᓧࠄ ࠇࠆᧄ⹜㛎ᯏ⁛⥄ߩ⎬ߐߢ޽ࠅ㧘ਅᑼߦࠃߞߡ▚಴ߐ ࠇࠆ㧚

D2

P Į

DH 㧔1㧕

ߎߎߢ㧘P㧦⹜㛎⩄㊀㧔mN㧕㧘D㧦᛼ߒㄟߺᷓߐ㧔Pm㧕㧘 ǩ㧦࿶ሶᒻ⁁ߦࠃࠆቯᢙ㧔ᧄ⎇ⓥߢ↪޿ߚ 115qਃⷺ

㍙࿶ሶߢߪǩ㧩3.8584㧕ߢ޽ࠆ㧚⹜㛎᧦ઙߪ㧘⹜㛎⩄

㊀1.0mN㧘⩄㊀⽶⩄ㅦᐲ 0.02844mN/s㧘଻ᜬᤨ㑆5sec ߣߒߚ㧚

ࠬࠢ࡜࠶࠴⹜㛎

PPSၮ᧼ߣDLC⤑ߩኒ⌕ᕈࠍ⺞ߴࠆߚ߼㧘⿛ᩏᒻࠬ

ࠢ࡜࠶࠴࠹ࠬ࠲㧔SST-101 ࢃፉᵤ⵾૞ᚲ⵾㧕ࠍ↪޿ߡ

ࠬࠢ࡜࠶࠴⹜㛎ࠍⴕߞߚ㧚⹜㛎ߦߪᦛ₸ඨᓘ15P

࠳ࠗࡗࡕࡦ࠼ࠬ࠲ࠗ࡜ࠬࠍ૶↪ߒ㧘⹜㛎᧦ઙߪ࿶ሶ㒠 Fig. 1. Schematic diagram of RF plasma CVD apparatus.

CH4

Source gas Vacuum

RF generator pump MFC

Plasma

Substrate CH4

Source gas Vacuum

RF generator pump MFC

Plasma Plasma

Substrate

(3)

ਅㅦᐲ1Pm/s㧘ᝄ᏷50Pm㧘ㅍࠅㅦᐲ20Pm/sߣߒߚ㧚 ኒ⌕ᕈߪDLC⤑߇೸㔌ߒߚ㓙ߩ⩄㊀㧔⥃⇇⩄㊀㧕ࠍ

᳞߼ࠆߎߣߢ⹏ଔߒߚ㧚ߥ߅㧘⥃⇇⩄㊀ࠍ᳞߼ࠆ㓙㧘

⊹⤑ߩ೸㔌ὐࠍ᳿ቯߔࠆᔅⷐ߇޽ࠆߚ߼㧘⹜㛎ᤨߩࠬ

ࠢ࡜࠶࠴〒㔌ߦኻߔࠆ㔚࿶ᄌൻߣ⹜㛎ᓟߩࠬࠢ࡜࠶࠴

∥ⷰኤߦࠃࠆ೸㔌⊒↢߹ߢߩࠬࠢ࡜࠶࠴〒㔌ࠍᲧセߒ ߡ᳿ቯߒߚ㧚ࠬࠢ࡜࠶࠴∥ߩⷰኤߦߪ㧘శቇ㗼ᓸ㏜

㧔VH-8000 ࢃࠠ࡯ࠛࡦࠬ⵾㧕ࠍ↪޿ߚ㧚

៺ᡂ࡮៺⠻⹜㛎

ࡏ࡯࡞࡮ࠝࡦ࡮࠺ࠖࠬࠢဳ៺ᡂ⹜㛎ᯏ㧔FPR-2000 ࢃ

࡟ࠬࠞ⵾㧕ࠍ↪޿ߡ៺ᡂ࡮៺⠻⹜㛎ࠍⴕߞߚ㧚࠺ࠖࠬ

ࠢߦฦRF಴ജߢDLC⤑ࠍᒻᚑߒߚPPS⹜ᢱ㧘⋧ᚻ᧚ ߣߥࠆࡏ࡯࡞㧔Ǿ4.8mm㧕ߦ18-8ࠬ࠹ࡦ࡟ࠬ㧔SUS304㧕㧘 㜞὇⚛ࠢࡠࡓゲฃߌ㍑㧔SUJ2㧕㧘ࠫ࡞ࠦ࠾ࠕ㧔ZrO2㧕㧘

⓸ൻ⃯⚛㧔Si3N4㧕ࠍ૶↪ߒߚ㧚ฦࡏ࡯࡞᧚ᢱߩ⎬ߐߪ SUS304㧘SUJ2㧘ZrO2㧘Si3N4ߩ㗅ߦࡆ࠶ࠞ࡯ࠬ⎬ߐ㧔HV㧕 ߢߘࠇߙࠇ160㧘806㧘1312㧘1647ߢ޽ࠅ㧘࠳ࠗ࠽ࡒ࠶

ࠢ⎬ߐ(DH)ߢߪߘࠇߙࠇ260㧘1140㧘1512㧘2078ߢ޽

ߞߚ㧚⹜㛎᧦ઙߪ⩄㊀0.98N㧘࿁ォᢙ100rpm㧘᠁േඨ ᓘ3mm㧘ߔߴࠅ〒㔌678m(PPS)߅ࠃ߮1130m(DLC)㧘 ᄢ᳇ਛήẢṖߢ޽ࠆ㧚

៺ᡂଥᢙߪ㧘৻ቯߩု⋥⩄㊀ࠍਈ߃ߡࡏ࡯࡞ࠍ⹜ᢱ ߦ᛼ߒઃߌߚ⁁ᘒߢ㧘⹜ᢱࠍ৻ቯㅦᐲߢ࿁ォߐߖߚᤨ

ߩ៺ᡂജࠍ᷹ቯߒ㧘ᰴᑼࠍ↪޿ߡ▚಴ߒߚ㧚 N

µ F 㧔2㧕

ߎߎߢ㧘Ǵ㧦៺ᡂଥᢙ㧘F㧦៺ᡂജ0㧘N㧦ု⋥⩄㊀(N) ߢ޽ࠆ㧚

߹ߚ㧘៺ᡂ⹜㛎ᓟߩ⹜ᢱ߅ࠃ߮ࡏ࡯࡞ߦ㑐ߒߡᲧ៺

⠻㊂(mm3/(N࡮m))ࠍ᷹ቯߒ㧘៺⠻․ᕈࠍ⹏ଔߒߚ㧚Ყ

៺⠻㊂ߪ㧘៺⠻૕Ⓧ(mm3)ࠍ⽶⩄⩄㊀(N)߅ࠃ߮᠁േ〒

㔌(m)ߢ㒰ߒߚ୯ߢ޽ࠆ㧚⹜ᢱ㧘ࡏ࡯࡞ߘࠇߙࠇߩ៺⠻

∥ߩᢿ㕙ᒻ⁁⸘᷹ߦߪ㧘Dektak 6M㧘⿥ᷓᐲᒻ⁁᷹ቯ㗼

ᓸ㏜㧔VK-8500 ࢃࠠ࡯ࠛࡦࠬ⵾㧕ࠍߘࠇߙࠇ↪޿ߚ㧚

⚿ᨐ߅ࠃ߮⠨ኤ ⴫㕙ᕈ⁁

Fig. 2ߦ㧘ฦRF಴ജߢᒻᚑߒߚDLC⤑ߩ⴫㕙SEM

௝ࠍ␜ߔ㧚ᒻᚑߒߚDLC⤑ߪၮ᧼⴫㕙ߣή㑐ଥߥಳಲ

ࠍ᦭ߒߡ߅ࠅ㧘RF಴ജߩჇᄢߦ઻ߞߡ⊹⤑߇✺ኒൻߒ ߡ޿ࠆࠃ߁ߦ⷗߃ࠆ㧚⊹⤑ߩಳಲߪ⊹⤑ߩᚑ㐳ㆊ⒟ߦ

⿠࿃ߒߡ޿ࠆߣ⠨߃ࠄࠇ㧘ᩭߩᒻᚑߣፉ⁁ߩᚑ㐳ᒻᘒ ࠍߣߞߡDLC⤑߇ᒻᚑߐࠇߚߎߣߦࠃࠆߣᕁࠊࠇࠆ㧚

߹ߚ㧘RF100WߢߩDLC⤑ߪ㧘ಳಲ߇ᄢ߈ߊߥߞߡ޿

ࠆࠃ߁ߦ⷗ฃߌࠄࠇࠆ㧚DLC⤑ߪㆊᐲߥ᳓⚛ᷝടߦࠃ ࠅࡐ࡝ࡑ࡯ൻߔࠆߎߣ5)߇⍮ࠄࠇߡ߅ࠅ㧘ߘߒߡࠕࡕ࡞

ࡈࠔࠬ὇⚛⤑ߪ㤥⦡ߢ޽ࠆߩߦኻߒ㧘㜞ಽሶ♽ߩ὇⚛

⤑⨥ⶊ⦡ߢ޽ࠆߣߩႎ๔߇޽ࠆ6)㧚ᧄ⺰ᢥߢ↪޿ߚDLC

⤑ߪ㧘RF200W એ਄ߢߪ㤥⦡ࠍ๒ߒߡ޿ߚߩߦኻߒ

RF100W ߢߪ⨥ⶊ⦡ߢ޽ߞߚ㧚߹ߚ㧘࡜ࡑࡦࠬࡍࠢ࠻

࡞ߩࡌ࡯ࠬ࡜ࠗࡦߩ௑߈߇ዊߐ޿ߣ⊹⤑ਛߩ᳓⚛Ớᐲ ߇ૐ޿ߣߩႎ๔߇ߥߐࠇߡ޿ࠆߎߣ߆ࠄ7)㧘ฦRF಴ജ ߢᒻᚑߒߚDLC⤑ߦ࡜ࡑࡦಽశಽᨆࠍⴕ޿㧘࡜ࡑࡦࠬ

ࡍࠢ࠻࡞ߩࡌ࡯ࠬ࡜ࠗࡦߩ௑߈ࠍᲧセߒߚ㧚Fig. 3ߦ㧘

RF100W ߩࡌ࡯ࠬ࡜ࠗࡦߩ௑߈ࠍၮḰߣߒߡ㧘ฦ RF

಴ജߩ௑߈ߣߩᲧࠍ␜ߔ㧚ߎߩ⚿ᨐࠃࠅRF100Wߪઁ

ߩ RF ಴ജߦᲧߴߡࡌ࡯ࠬ࡜ࠗࡦߩ௑߈߇㕖Ᏹߦᄢ߈

Fig. 2. SEM images of DLC coatings on each RF power.

Fig. 3. Relative gradient of the baseline of Raman spectra on each RF power.

10m RF100W

10m

10m

10m

RF300W RF400W

RF200W

10m RF100W

10m

10m

10m

RF300W RF400W

RF200W

0 0.5 1 1.5

0 100 200 300 400 500 RF power [W]

Relative gradient of baseline

0 0.5 1 1.5

0 100 200 300 400 500 RF power [W]

Relative gradient of baseline

(4)

ߊ㧘⊹⤑ਛߩ᳓⚛Ớᐲ߇㜞޿ߣᕁࠊࠇࠆ㧚ߎࠇࠄߩ⚿

ᨐ߆ࠄ㧘RF100WߢᒻᚑߒߚDLC⤑ߪࡐ࡝ࡑ࡯⁁ߩ⊹

⤑ߢ޽ߞߚߣផ᷹ߐࠇ㧘ߘߩߚ߼⊹⤑⴫㕙ߩಳಲ߇ᄢ ߈ߊߥߞߚߣ⠨߃ࠄࠇࠆ㧚

Fig. 4ߦ㧘DLC⤑ߩ⴫㕙☻ߐࠍ᷹ቯߒߚ⚿ᨐࠍ␜ߔ㧚 DLC⤑ࠍᒻᚑߔࠆߣPPSၮ᧼ߩ⴫㕙☻ߐࠃࠅ⊹⤑ߩ⴫

㕙☻ߐ߇Ⴧᄢߒߚ㧚ߘߒߡ㧘RF300W߹ߢߪRF಴ജߩ ߩߎߣߪ㧘Fig. 2ߢ߽⏕⹺ߒߚ߇㧘RF಴ജߩჇᄢߦ઻

޿⊹⤑߇✺ኒൻߒߡ޿ࠆߎߣ߇ⷐ࿃ߣ⠨߃ࠄࠇࠆ㧚ߒ

߆ߒ㧘RF400W ߢ⊹⤑ߪᦨ߽✺ኒൻߒߡ޿ߚߦ߽㑐ࠄ

ߕ㧘⴫㕙☻ߐߪRF300Wࠃࠅ߽Ⴧᄢߔࠆ⚿ᨐࠍ␜ߒߚ㧚

ߘߎߢ㧘RF300W㧘400WߩDLC⤑ߩߺ⊹⤑⴫㕙ࠍFig.

2ࠃࠅ߽ૐ୚₸ߢⷰኤߒߚ㧚Fig. 5ߦߘߩ⚿ᨐࠍ␜ߔ㧚

RF300W ߢߪ⊹⤑⴫㕙ߦᄢ߈ߥഀࠇߪ⹺߼ࠄࠇߥ޿߇㧘

RF400W ߢߪᄙᢙߩഀࠇ߇⹺߼ࠄࠇࠆ㧚RF400Wߩ⊹

⤑⴫㕙ߩഀࠇߪ㧘ᚑ⤑᷷ᐲߣࠗࠝࡦⴣ⓭ߩᒝߐߦ⿠࿃

ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ㧚㜞޿ᚑ⤑᷷ᐲ߿ᒝ޿ࠗࠝࡦⴣ

⓭ߪ㧘⊹⤑ߦ㜞޿ౝㇱᔕജࠍౝ࿷ߔࠆⷐ࿃ߣߥࠆ㧚

RF400W ߢߪ㧘㜞޿ౝㇱᔕജߦ⿠࿃ߒߡ⊹⤑⴫㕙ߦഀ

ࠇ߇↢ߓߚߣ⠨߃ࠄࠇࠆ㧚

⊹⤑⎬ߐ

Fig. 6ߦ㧘⎬ߐ⹜㛎⚿ᨐࠍ␜ߔ㧚PPSၮ᧼਄ߦDLC

⤑ࠍᒻᚑߔࠆߎߣߢ㧘PPSߦᲧߴ⎬ߐ߇8㨪15୚⒟ᐲ

਄᣹ߒߡ޿ࠆߎߣ߇ࠊ߆ࠆ㧚ߘߒߡ㧘RF಴ജߩჇടߦ

઻޿⎬ߐߪ਄᣹ߔࠆ௑ะࠍ␜ߒߡ޿ࠆ㧚ౝㇱᔕജߩჇ ᄢߣ⎬ߐߩ਄᣹ߩ⋧㑐߇৻⥸⊛ߦ⍮ࠄࠇߡ޿ࠆߎߣ߆ ࠄ㧘RF಴ജߩჇടߦ઻߁ౝㇱᔕജߩჇᄢ߇ⷐ࿃ߩ৻ߟ ߣߒߡ⠨߃ࠄࠇࠆ㧚RF಴ജߩჇടߪၮ᧼߳ߩࠗࠝࡦߩ ⴣ⓭ㅦᐲߩ਄᣹ࠍᒁ߈⿠ߎߔߚ߼㧘DLC⤑ߦ㜞޿ౝㇱ ᔕജࠍౝ࿷ߐߖߚߣផ᷹ߐࠇࠆ㧚߹ߚ㧘⊹⤑ਛߩ᳓⚛

Ớᐲ߇ૐ޿߶ߤ DLC ⤑ߩ⎬ߐ߇਄᣹ߔࠆߎߣ߇ႎ๔ ߐࠇߡ޿ࠆ8)㧚ᧄ⎇ⓥߦ߅޿ߡ߽㧘࡜ࡑࡦಽశಽᨆߩ⚿

ᨐࠃࠅ RF ಴ജߩჇടߦ઻߁⊹⤑ਛߩ᳓⚛Ớᐲߩૐਅ ߇⏕⹺ߐࠇߡ޿ࠆߎߣ߆ࠄ㧘RF಴ജߩჇടߦ઻߁⎬ߐ ߩ਄᣹ߪ㧘᳓⚛Ớᐲߩૐਅ߽⿠࿃ߒߡ޿ࠆߣᕁࠊࠇࠆ㧚

ኒ⌕ᕈ

Fig㧚7ߦ㧘ࠬࠢ࡜࠶࠴⹜㛎ߩ⚿ᨐࠍ␜ߔ㧚ߘߒߡ㧘 Fig. 8ߦࠬࠢ࡜࠶࠴∥ߩSEM௝ࠍ␜ߔ㧚RF಴ജ߇300W

߹ߢߪ RF ಴ജߩჇടߣߣ߽ߦኒ⌕ᕈ߇ะ਄ߒ㧘 RF400Wߩኒ⌕ᕈߪRF300Wߣᄢ߈ߊᄌൻߒߡ޿ߥ޿㧚 RF಴ജߩჇടߣߣ߽ߦኒ⌕ᕈ߇ะ਄ߔࠆߩߪ㧘ࠗࠝࡦ ߩⴣ⓭ㅦᐲ਄᣹ߦࠃࠆၮ᧼ߣDLC⤑ߩઃ⌕ജߩჇᄢ㧘 ߅ࠃ߮⊹⤑⎬ᐲ਄᣹߇ⷐ࿃ߣ⠨߃ࠄࠇࠆ㧚Fig. 8ߦ߅޿

ߡRF಴ജߩჇടߦ઻޿DLC⤑ߩ೸㔌ὐ߇᣿⏕ߦ⃻ࠇ ߡ߅ࠅ㧘ߎߩߎߣߦߪઃ⌕ജߩჇᄢߣ⊹⤑⎬ߐߩ਄᣹

߇ᄢ߈ߊᓇ㗀ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ㧚

೸㔌ὐߢߪ⊹⤑ߩઃ⌕ജߩჇᄢߦ઻ߞߡPPSၮ᧼߇

ᷓߊ೥ࠅขࠄࠇߡ޿ࠆ᭽ሶ߇⷗ࠄࠇߚߎߣ߆ࠄ㧘೸㔌 ὐ೨ᓟߢၮ᧼ߩᢿ㕙ᒻ⁁ࠍ⺞ߴߚ㧚Fig. 9ߦߘߩ⚿ᨐࠍ Fig. 6. Dynamic hardness of DLC coatings on each RF

power.

Fig. 4. Surface roughness of DLC coatings deposited by each RF power.

Fig. 5. SEM images of DLC coatings on two types of RF power.

(non-coating)PPS RF100W RF200W RF300W RF400W 0

200 400 600 800 1000

Specimen

Dynamic hardness DH

(non-coating)PPS RF100W RF200W RF300W RF400W 0

200 400 600 800 1000

Specimen

Dynamic hardness DH

100

m 100

m

RF300W RF400W

100

m 100

m

RF300W RF400W

0 0.1 0.2 0.3 0.4 0.5

PPS RF100W RF200W RF300W RF400W Specimen

Surface roughness Ra

(non-coating) 0

0.1 0.2 0.3 0.4 0.5

PPS RF100W RF200W RF300W RF400W Specimen

Surface roughness Ra

(non-coating)

[㱘m]

(5)

␜ߔ㧚RF100Wߢߪ⊹⤑⎬ᐲߣઃ⌕ജ߇ૐ޿ߚ߼㧘DLC

⤑߇೥ࠅขࠄࠇPPSၮ᧼߇ᓢޘߦ⃻ࠇߡ޿ࠆ᭽ሶ߇⏕

⹺ߢ߈ࠆߩߦኻߒ㧘RF200W㨪400Wߢߪ೸㔌ὐߢᄢ߈ ߊᒻ⁁߇ᄌൻߒߡ߅ࠅ㧘DLC⤑ߣߣ߽ߦPPSၮ᧼߇৻

᳇ߦ⎕უߒߡ޿ࠆࠃ߁ߦ⷗߃ࠆ㧚߹ߚ㧘RF200W㨪400W ߢߪRF಴ജߩჇടߦ઻޿PPSၮ᧼ߩ⎕უ߇ᕆỗߦߥ ࠆࠃ߁ߦ⷗ฃߌࠄࠇࠆߎߣ߆ࠄ㧘RF಴ജߩჇടߦ઻޿

ၮ᧼ߣDLC⤑ߩઃ⌕ജ߇Ⴧᄢߒߡ޿ߚߣ⠨߃ࠄࠇࠆ㧚 ߚߛ㧘RF300Wࠃࠅ߽400Wߢ⥃⇇⩄㊀߇Ⴧᄢߒߥ߆ ߞߚߩߪ㧘ᚑ⤑᷷ᐲ߇⿠࿃ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ㧚㜞 ಽሶ᧚ᢱߢ޽ࠆPPSߪ✢⤘ᒛଥᢙ߇Ყセ⊛㜞޿ߚ߼ߦ ⵍⷒᤨߩ᷷ᐲߩᓇ㗀ࠍฃߌ߿ߔߊ㧘ⵍⷒᓟߩ಄ළᤨߦ PPSၮ᧼ߣDLC⤑ߣߩ✢⤘ᒛଥᢙߩᏅߦࠃߞߡ⇇㕙ߦ ߖࠎᢿജ߇↢ߓࠆ㧚RF಴ജߩჇടߦ઻߁ᚑ⤑᷷ᐲߩჇ ᄢߦࠃߞߡߖࠎᢿജ߇Ⴧᄢߒ㧘⇇㕙ߢߩઃ⌕ജࠍ⿥߃ ࠆߣ೸㔌߇↢ߓࠆ㧚Fig. 5ߢ㧘RF300Wߢߪ⷗ࠄࠇߥ޿

ㇱಽ⊛ߥ೸㔌߇ RF400W ߦߪ↢ߓߡ޿ߚߎߣ߆ࠄ㧘

RF400W ߢߪ⇇㕙ㄭறߦ㜞޿ߖࠎᢿജ߇ሽ࿷ߒߡ߅ࠅ㧘

ᄖജߦࠃࠅ೸㔌ߒ߿ߔ޿⁁ᘒߦߥߞߡ޿ߚߣផ᷹ߐࠇ ࠆ㧚ߒߚ߇ߞߡ㧘RF400WߢᒻᚑߔࠆߣPPSၮ᧼ߣDLC

⤑ߩઃ⌕ജߪᦨ߽㜞޿ߪߕߢ޽ࠆ߇㧘ၮ᧼ߣDLC⤑ߩ

⇇㕙ߦᓸዊߥ೸㔌߿㜞޿ߖࠎᢿജ߇ሽ࿷ߒߡ޿ߚߚ߼㧘

RF300W ߦᲧߴߡኒ⌕ᕈ߇ะ਄ߒߥ߆ߞߚߣᕁࠊࠇࠆ㧚

࠻࡜ࠗࡏࡠࠫ࡯․ᕈ ៺ᡂ․ᕈ

Fig. 10ߦ㧘ቯᏱ⁁ᘒߢߩᐔဋ៺ᡂଥᢙࠍ␜ߔ㧚ߥ߅㧘

Fig. 10ߦ߅ߌࠆ᫔ࠣ࡜ࡈ਄ߩࠛ࡜࡯ࡃ࡯ߪ㧘៺ᡂଥᢙ

ߩᄌേ᏷ࠍ␜ߒߡ޿ࠆ㧚RF100W㧘200W ߦ߅ߌࠆ SUS304ࡏ࡯࡞ߣSUJ2ࡏ࡯࡞ࠍ↪޿ߚ႐วߦߪ㧘DLC

⤑ߩ೸㔌ߦࠃࠅPPSߣห⒟ᐲ߹ߢ៺ᡂଥᢙ߇㜞ߊߥߞ ߡ޿ࠆ㧚ߒ߆ߒ㧘DLC⤑߇೸㔌ߒߥ޿႐วߦߪ㧘ߤߩ ࡏ࡯࡞ࠍ↪޿ߚ႐วߢ߽PPSߦᲧߴ៺ᡂଥᢙߪᄢ߈ߊ

ᷫዋߒߡ޿ࠆ㧚ߐࠄߦ㧘៺ᡂଥᢙߩᄌേ᏷߽ዊߐߊߥ ࠅ㧘៺ᡂ᜼േ߇቟ቯߒߡ޿ࠆߎߣ߇ࠊ߆ࠆ㧚ฦࡏ࡯࡞

ࠍ៺ᡂ⋧ᚻ᧚ߣߒߚ៺ᡂଥᢙߩૐਅ₸ߪSUS304ߢ⚂

50㧑㧘SUJ2ߢ⚂35㧑㧘ZrO2ߢ40㨪60㧑㧘Si3N4ߢ50 㨪65㧑ߢ޽ࠅ㧘ૐਅ₸ߣࡏ࡯࡞ߩ⎬ߐߦ⋧㑐ߪ⹺߼ࠄ ࠇߥ߆ߞߚ㧚ߣߎࠈߢ㧘Fig. 10ߦ߅޿ߡ㧘ࡏ࡯࡞߇㊄ ዻ᧚ᢱߩ႐วࠃࠅ߽࠮࡜ࡒ࠶ࠢ᧚ᢱߩ႐วߩᣇ߇㧘៺

ᡂଥᢙ߇ૐ޿㧚㊄ዻ᧚ᢱࠍࡏ࡯࡞ߦ↪޿ߚ႐วߢߪ㧘 RF100W㧘200W ߩDLC ⤑ߪ೸㔌ߒߚ߇㧘RF300W㧘 Fig. 7. Critical load of DLC coatings on scratch test as a

function of RF power.

Fig. 8. SEM images of scratch tracks on DLC coatings deposited by different RF power.

Fig. 9. Surface profiles in the vicinity of the flaking point of the scratch track on DLC coatings.

10

m

10

m

10

m

10

m Scratch direction

RF100W RF200W

RF300W RF400W

10

m

10

m

10

m

10

m Scratch direction

RF100W RF200W

RF300W RF400W

-10 0 10

Profile [㱘m]

0 100

RF100W

0 100

RF200W

-10 0 10

Profile [㱘m]

0 100

Distance [㱘m]

RF300W

0 100

Distance [㱘m]

RF400W Sliding distance

-10 0 10

Profile [㱘m]

0 100

RF100W

0 100

RF200W

-10 0 10

Profile [㱘m]

0 100

Distance [㱘m]

RF300W

0 100

Distance [㱘m]

RF400W Sliding distance 0

10 20 30 40 50 60

100 200 300 400

RF power [W]

Critical load [mN]

0 10 20 30 40 50 60

100 200 300 400

RF power [W]

Critical load [mN]

(6)

400WߩDLC⤑ߪ೸㔌ߖߕ㧘ࡏ࡯࡞᧚ᢱߦࠃࠅ៺ᡂଥ ᢙߦᏅ߇⷗ࠄࠇࠆ㧚৻ᣇ㧘࠮࡜ࡒ࠶ࠢ᧚ᢱࠍࡏ࡯࡞ߦ

↪޿ߚ႐วߢߪ㧘޿ߕࠇߩRF಴ജߩDLC⤑߽೸㔌ߒ ߥ߆ߞߚ਄㧘ࡏ࡯࡞᧚ᢱߩ㆑޿ߦࠃࠆ៺ᡂଥᢙߩᄌൻ ߪ㧘㊄ዻ᧚ᢱߩ႐วߣᲧセߒߡ߶ߣࠎߤߥ߆ߞߚ㧚ߒ ߚ߇ߞߡ㧘ࡏ࡯࡞߇㊄ዻ᧚ᢱߣ࠮࡜ࡒ࠶ࠢ᧚ᢱߩ៺ᡂ

․ᕈߩ㆑޿ߪ㧘ࡏ࡯࡞ߩ᧚ᢱ․ᕈ߿៺ᡂ⁁ᘒߩ㆑޿ߦ ࠃࠆ߽ߩߣ⠨߃ࠄࠇࠆ㧚߹ߚ㧘ࡏ࡯࡞߇㊄ዻ᧚ᢱߩ႐ วߦߪ㧘RF300W㧘400Wߢߪࡏ࡯࡞ߩ៺⠻∥ߦ⒖⌕⤑

߇ᒻᚑߐࠇߡ޿ߚ㧚 RF100W㧘200W ߢߪ⒖⌕⤑ߩᒻ ᚑߪ⹺߼ࠄࠇߥ߆ߞߚ㧚ߎߩߎߣߪ㧘ࡏ࡯࡞߇㊄ዻ᧚ ᢱߩ႐วߪ㜞޿ಝ⌕ᕈߦࠃࠅ DLC ⤑ߩ៺⠻߇↢ߓ߿

ߔ޿⁁ᘒߦ޽ࠆ߇㧘⒖⌕⤑߇ᒻᚑߐࠇࠆߣ⦟ᅢߥ៺ᡂ

․ᕈ߇ᓧࠄࠇࠆߎߣࠍ␜ໂߔࠆ߽ߩߣ⸒߃ࠆ㧚⒖⌕⤑

ᒻᚑࡔࠞ࠾࠭ࡓߩ⸃᣿ߪ⃻Ბ㓏ߢߪ࿎㔍ߢ޽ࠆ߇㧘 DLC⤑ߩ⎬ߐ߇㜞޿ߎߣ߅ࠃ߮Sp2⚿วࠞ࡯ࡏࡦߩሽ

࿷₸ߦ⿠࿃ߒߡ޿ࠆߩߢߪߥ޿߆ߣ⠨߃ߡ޿ࠆ㧚

៺⠻․ᕈ

Fig. 11ߦ㧘ฦࡏ࡯࡞ࠍ↪޿ߚ៺ᡂ⹜㛎ᓟߩ⹜ᢱߩᲧ

៺⠻㊂ࠍ␜ߔ㧚 DLC⤑߇೸㔌ߒߥ޿㒢ࠅߪฦRF಴ജ ߢᚑ⤑ߒߚ⹜ᢱߩᲧ៺⠻㊂߇PPSߩ⚂1/10㨪1/50୚ߦ ૐᷫߒߡ޿ࠆ㧚ߎߩⷐ࿃ߪ㧘DLC⤑ࠍᒻᚑߔࠆߎߣߦ ࠃࠅ⹜ᢱ⴫㕙ߩ⎬ߐ߇ᄢ᏷ߦะ਄ߒߚߎߣ㧘߅ࠃ߮ૐ

៺ᡂ․ᕈ߇ᓧࠄࠇߚߎߣߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚RF಴ജ ߩ㆑޿ߦࠃࠆᲧ៺⠻㊂ࠍᲧセߔࠆߣ㧘SUS304ࠍ㒰޿ߡ

޿ߕࠇߩࡏ࡯࡞ࠍ↪޿ߚ႐วߢ߽RF300Wߩ⹜ᢱߢᦨ

߽Ყ៺⠻㊂߇ዊߐ޿௑ะ߇⹺߼ࠄࠇࠆ㧚ߎࠇߪ㧘

RF300W ߩ⹜ᢱߩ⴫㕙☻ߐ߇ᦨ߽ዊߐ߆ߞߚߚ߼㧘ೋ

ᦼ៺⠻߇ዋߥ޿⁁ᘒߢ៺ᡂ㕙߇቟ቯߒߚߎߣ㧘߅ࠃ߮

ኒ⌕ᕈ߇ᦨ߽㜞߆ߞߚߎߣ߇ⷐ࿃ߣ⠨߃ࠄࠇࠆ㧚ߎߎ ߢ㧘ࡏ࡯࡞߇SUS304ߩ႐วߦᲧ៺⠻㊂߇RF300Wߢ ᦨ߽ዊߐߊߥࠄߥ߆ߞߚߎߣߦߟ޿ߡ⠨߃ࠆ㧚RF400W ߢᒻᚑߒߚDLC⤑ߩ⎬ߐߪᦨ߽㜞߆ߞߚ߇㧘⊹⤑⎬ߐ ߩ਄᣹ߪࡏ࡯࡞ߩ៺⠻ࠍჇᄢߐߖࠆⷐ࿃ߦ߽ߥࠅ㧘㜞

⎬ᐲߩࡏ࡯࡞ߩ៺⠻☳ߪࠕࡉ࡟࠶ࠪࡉ៺⠻ࠍᒁ߈⿠ߎ ߒߚߣ⠨߃ࠄࠇࠆ㧚SUS304ߪૐ⎬ᐲߩߚ߼៺⠻☳߇ࠕ ࡉ࡟࠶ࠪࡉ៺⠻ߩⷐ࿃ߣߪߥࠄߕ㧘RF400W ߢߪ⹜ᢱ ߩ៺⠻㊂߇Ⴧടߔࠆ௑ะࠍ␜ߐߥ߆ߞߚߣᕁࠊࠇࠆ㧚

ᰴߦ㧘ࡏ࡯࡞ߏߣߦ⹜ᢱߩᲧ៺⠻㊂ࠍᲧセߔࠆߣ㧘 DLC⤑߇೸㔌ߒߚRF100W㧘200Wߩ⹜ᢱߦ㊄ዻ᧚ᢱ ߩࡏ࡯࡞ࠍ↪޿ߚ႐วߣ㧘ࡏ࡯࡞ߦZrO2ࠍ↪޿ߚ႐ว ࠍ㒰޿ߡߪ㧘Ყ៺⠻㊂ߪ߶ߣࠎߤᄌൻߒߡ޿ߥ޿㧚৻

ᣇ㧘RF300W㧘400Wߩ⊹⤑ߦ࠮࡜ࡒ࠶ࠢ᧚ᢱߩࡏ࡯࡞

ࠍ↪޿ߚ႐วߢߪ㧘៺ᡂ․ᕈߦ߶ߣࠎߤᄌൻ߇ߥ߆ߞ ߚߦ߽㑐ࠊࠄߕ㧘Ყ៺⠻㊂ߦߪᏅ߇↢ߓߡ޿ࠆ㧚ZrO2

ߣSi3N4ߦ߅ߌࠆᲧ៺⠻㊂ߩᏅߪ㧘៺⠻☳ߦࠃࠆࠕࡉ࡟

࠶ࠪࡉ៺⠻ߦ⿠࿃ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ߇㧘SUS304 ߣ SUJ2 ߦ߅ߌࠆᲧ៺⠻㊂ߩᏅߪࡏ࡯࡞ߩ៺⠻ߩㅴⴕ ㅦᐲߦ⿠࿃ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆ㧚ቯᏱ⁁ᘒߦ㆐ߒߚ 㓙ߦࡏ࡯࡞ߩ៺⠻㊂ߪ߶߷ห⒟ᐲߢ޽ߞߡ߽㧘SUS304 ߇ૐ⎬ᐲߢ޽ࠆߚ߼ࡏ࡯࡞ߩ៺⠻㊂ߪ៺ᡂೋᦼ߆ࠄᄢ ߈ߊߥߞߡ޿ࠆߣ⠨߃ࠄࠇࠆ㧚ߒߚ߇ߞߡ㧘SUS304 ߪ SUJ2 ࠃࠅ߽ᄢ߈ߥ㕙Ⓧߢធ⸅ߒߡ⹜ᢱࠍ៺⠻ߐߖ

Fig. 10. Friction coefficient of each specimen with four

types of ball material as reached by steady-state friction. Fig. 11. Specific wear rate of each specimen with four types of ball material.

SUS304 SUJ2 ZrO2 Si3N4 Ball material

Disk specific wear rate [mm3/N

m]

PPS(non-coating) RF100W

RF200W RF300W RF400W

1.0㬍10-6 1.0㬍10-4 1.0㬍10-5

1.0㬍10-7 1.0㬍10-8

SUS304 SUJ2 ZrO2 Si3N4 Ball material

Disk specific wear rate [mm3/N

m]

PPS(non-coating) RF100W

RF200W RF300W RF400W

1.0㬍10-6 1.0㬍10-4 1.0㬍10-5

1.0㬍10-7 1.0㬍10-8 0

0.1 0.2 0.3 0.4 0.5

SUS304 SUJ2 ZrO2 Si3N4 Ball material

Friction coefficient

PPS(non-coating) RF100W RF200W RF300W RF400W

0 0.1 0.2 0.3 0.4 0.5

SUS304 SUJ2 ZrO2 Si3N4 Ball material

Friction coefficient

PPS(non-coating) RF100W RF200W RF300W RF400W PPS(non-coating) RF100W RF200W RF300W RF400W

(7)

ߡ޿ߚߣផ᷹ߢ߈ࠆ㧚ࠃߞߡ⹜ᢱ஥ߩ៺⠻ߩㅴⴕㅦᐲ ߦ߽Ꮕ߇↢ߓ㧘RF300W ߦ߅޿ߡ⹜㛎⚳ੌᤨߦߪ SUS304ߣSUJ2ߩ⹜ᢱߩ៺⠻㊂߇ห⒟ᐲߦߥߞߚߣᕁ ࠊࠇࠆ㧚

߹ߣ߼

ᧄ⺰ᢥߢߪ㧘RFࡊ࡜࠭ࡑCVDᴺࠍ↪޿ߡPPSၮ᧼

਄ߦᒻᚑߒߚDLC⤑ߩ․ᕈߦߟ޿ߡ⺞ᩏߒߚ㧚ᓧࠄࠇ ߚ⚿ᨐࠍએਅߦㅀߴࠆ㧚

(1)RF಴ജߩჇടߦ઻޿㧘ᒻᚑߐࠇߚDLC⤑ߪ✺ኒൻ

ߒߡ޿ߚ㧚ߚߛ㧘಴ജߩჇടߣߣ߽ߦ⊹⤑ߩౝㇱᔕജ ߇Ⴧᄢߔࠆߚ߼㧘⊹⤑⴫㕙ߦഀࠇ߇⊒↢ߔࠆߎߣ߇ࠊ ߆ߞߚ㧚

(2)RF಴ജߩჇടߦ઻޿㧘DLC⤑ߩ⎬ߐ߇Ⴧᄢߒߚ㧚

(3)ࠬࠢ࡜࠶࠴⹜㛎ߩ⚿ᨐ㧘RF300WߢᒻᚑߒߚDLC⤑ ߇ᦨ߽ኒ⌕ᕈ߇㜞߆ߞߚ㧚ߚߛ㧘ઃ⌕ജߦߟ޿ߡߪ

RF400WߢᒻᚑߒߚDLC⤑ߩᣇ߇㜞޿ߣផ᷹ߐࠇߚ㧚

(4)⦟ᅢߥ៺ᡂ․ᕈࠍᓧࠆߚ߼ߦߪ㧘៺ᡂ⋧ᚻ᧚ߩ៺ᡂ 㕙ߦ⒖⌕⤑ߩᒻᚑ߇㊀ⷐߢ޽ࠆߎߣ߇␜ໂߐࠇߚ㧚 (5) RF100W㧘200WߢᒻᚑߒߚDLC⤑ߩᲧ៺⠻㊂ߪ㧘 ࡏ࡯࡞ߦ㊄ዻ᧚ᢱࠍ↪޿ࠆߣᄢ߈߆ߞߚ߇㧘࠮࡜ࡒ࠶

ࠢ᧚ᢱࠍ↪޿ࠆߣዊߐߊߥߞߚ㧚৻ᣇRF300W㧘400W ߢᒻᚑߒߚDLC⤑ߪ㧘ࡏ࡯࡞᧚ᢱߦࠃࠄߕ㧘Ყ៺⠻㊂ ߪዊߐ޿ߎߣ߇ࠊ߆ߞߚ㧚

ᧄ⎇ⓥߪ㧘ᄹ⦟⋵Ꮏᬺᛛⴚ࠮ࡦ࠲࡯ ਃᧁ㕏ᶈ✚᜝

⎇ⓥຬ㧘⿷┙⨃ኡਥછ⎇ⓥຬߩᄙᄢߥࠆߏදജ࡮ߏᜰ ዉࠍฃߌߡㆀⴕߐࠇߚ㧚ߎߎߦ⸥ߒߡ㧘ᷓ↟ߩ⻢ᗧࠍ

⴫ߒ߹ߔ㧚

ෳ⠨ᢥ₂

1㧕 ਛ᧲ቁᶈ㧘ᯏ᪾⸳⸘㧘̌DLCࠦ࡯࠹ࠖࡦࠣߦࠃࠆήẢṖ

᠁േߣㇱຠߩήẢṖಾ೥̍4823-27 (2004).

2㧕 ⨹’ノᄦ㧘̌ᣂߒ޿㧼㧼㧿♽ߒࠀ߁േ᧚ᢱߩ․ᓽߣᔕ↪̍

࠻࡜ࠗࡏࡠࠫࠬ࠻㧘34642-647 (1989).

3㧕 ਃቛᱜੑ㇢㧘ᢧ⮮༜჻㧘ᷰㇱୃ৻㧘ᨋᩕ৻㧘ਛਣ㓉㧘̌ࡑ

ࠣࡀ࠻ࡠࡦࠬࡄ࠶࠲࡝ࡦࠣߢᒻᚑߒߚ࠳ࠗࡗࡕࡦ࠼࡜

ࠗࠢࠞ࡯ࡏࡦ㧔DLC㧕⤑ߦࠃࠆ⠴ᾲᕈ㜞ಽሶ᧚ᢱߩ៺ᡂ̍

⴫㕙ᛛⴚ㧘52878-882 (2001).

4㧕 ⿒ℂቁ৻㇢㧘̌DLC ⤑ߩኒ⌕ᕈะ਄ᛛⴚ̍㧘࠻࡜ࠗࡏࡠ

ࠫࠬ࠻㧘47809-814 (2002).

5 A. C. Ferrari and J. Robertson, “Interpretation of Raman

spectra of disordered and amorphous carbon”, Physical Review B, 61, 14095-14107 (2000).

6㧕 ᄢ┻ዏ⊓㧘㜞㑆ᐽਯ㧘ጟ↰ᜏ਎㧘ട⮮๺ౖ̌ὶ㔚ᕈ㜞ಽ ሶࡈࠖ࡞ࡓ਄߳ߩࠕࡕ࡞ࡈࠔࠬ὇⚛⤑ߩวᚑ෸߮ߘߩ ශ೚ࡊࡠ࠮ࠬ߳ߩㆡ↪̍㧘ᣣᧄᯏ᪾ቇળ⺰ᢥ㓸C✬㧘67 547-552 (2001).

7 I. R. Lewis and H. G.M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, (Marcel Dekker, New York, 2001), p.989.

8 Y. Ohkawara, S. Ohshiio, T. Suzuki, H. Ito, K. Yatsui and H.

Saitoh : “Quantitative Analysis of Hydrogen in Amorphous Films of Hydrogenated Carbon Nitride”, Jpn. J. Appl. Phys., 40, 7007-7012 (2001).

Fig. 2. SEM images of DLC coatings on each RF power.
Fig.  4.  Surface  roughness  of  DLC  coatings  deposited  by  each RF power.
Fig. 9. Surface profiles in the vicinity of the flaking point of  the scratch track on DLC coatings.
Fig.  10.  Friction  coefficient  of  each  specimen  with  four

参照

関連したドキュメント

pirn rotating at high speed was analysed and considered by using parameters as numbers of revolutions and pirn surface conditions The results obtained from this analysis were

Using the yarn model, the tension relaxation simulations of the yarn package structures were performed, and it was found that our yarn model has a suffcient ability to express

Furthermore, the relationships between mechanical properties of cores taken from various portions of bridge pier and ASR degradation ranks classified by the various inspection

Then we have to examine all possible 2g-gons up to 6(g − 1)-gons as [10] indicated, but the procedure is of highly exponentional complexity by g [15]... The list of fundamental

Many of the proper- ties of the Coxeter groups extend to zircons: in particular, we prove that zircons are Eulerian posets, that open intervals in zircons are isomorphic to spheres,

Nicolaescu and the author formulated a conjecture which relates the geometric genus of a complex analytic normal surface singularity (X, 0) — whose link M is a rational homology

In Section 3, we show that the clique- width is unbounded in any superfactorial class of graphs, and in Section 4, we prove that the clique-width is bounded in any hereditary

The Mumford–Tate conjecture is a precise way of saying that the Hodge structure on singular cohomology conveys the same information as the Galois representation on ℓ-adic