• 検索結果がありません。

ボイラ制御が容易 起動バイパス系統が不要 ドラムでの給水処理 薬品注入やブロー が可能なため, 復水脱塩装置などの高度な水質管理対策が不要 保有水量が多いのでボイラが万一消火しても各種パラメータに注意すれば若干の時間は低負荷による運転継続が可能 保有水量が多いので負荷の急変などの変動に強い 使用圧力

N/A
N/A
Protected

Academic year: 2021

シェア "ボイラ制御が容易 起動バイパス系統が不要 ドラムでの給水処理 薬品注入やブロー が可能なため, 復水脱塩装置などの高度な水質管理対策が不要 保有水量が多いのでボイラが万一消火しても各種パラメータに注意すれば若干の時間は低負荷による運転継続が可能 保有水量が多いので負荷の急変などの変動に強い 使用圧力"

Copied!
17
0
0

読み込み中.... (全文を見る)

全文

(1)

●平成25年度第二種電気主任技術者二次試験標準解答 配点:一題当たり30 点 電力・管理科目 4 題× 30 点= 120 点 機械・制御科目 2 題× 30 点= 60 点

<電力・管理科目>

〔問1の標準解答〕 (1)[原理] 汽水ドラムを有し,高温ガスから熱を吸収した水管内の汽水混合体と,火 炉外部に設置された降水管内の水の密度差から生じる循環力を利用してボイ ラ水を循環させながら蒸気を得るボイラ。 [適用範囲] 自然循環ボイラは臨界圧力より低い亜臨界圧での適用となる。 [理由] 水管内の汽水混合体と降水管内の水の密度差は圧力が高くなると減少する ため,蒸気圧力を高くするほど密度差のみで充分な循環力を得ることは難し くなる。このため,自然循環式の高圧大形ボイラにおいては,ボイラ高さを 高くするとともに循環経路をできるだけ直管で構成し,水管径を比較的太く して管内抵抗を減少させることで循環力を確保する必要がある。更に,臨界 圧力(22.06〔MPa〕)以上の圧力では水と蒸気の区別がなくなり,密度差もほ とんどなくなることから循環させながら蒸気を得ることはできない。 (2) ボイラ給水ポンプで供給される給水は煙道ガスの余熱を利用した節炭器で 加熱され汽水ドラムに入る。水は火炉外部に設置された降水管によりボイラ 下部に導かれて火炉内の水管(水冷壁)で燃焼ガスと熱交換し,水と蒸気の混 合物になって汽水ドラムに戻る。汽水ドラムでは水と飽和蒸気を分離し,過 熱器で飽和蒸気を過熱し蒸気タービンに供給する。分離された水は飽和蒸気 になるまで循環する。 (3) 自然循環ボイラは貫流ボイラと比較して, ・構造が非常に単純なボイラ

(2)

・ボイラ制御が容易 ・起動バイパス系統が不要 ・ドラムでの給水処理(薬品注入やブロー)が可能なため,復水脱塩装置 などの高度な水質管理対策が不要 ・保有水量が多いのでボイラが万一消火しても各種パラメータに注意すれ ば若干の時間は低負荷による運転継続が可能 ・保有水量が多いので負荷の急変などの変動に強い ・使用圧力が比較的低く,汽水の循環も自然対流によるので配管の圧力損 失分の給水ポンプ動力が少なくてすむ

(3)

〔問2の標準解答〕 (1) Cm並びに Coを含めた等価回路は図のようにな る。したがって,三導体に三相平衡電圧 V1〔V〕 を加えた際の条件より,このときの実効的なイン ピーダンスZ1〔W〕については と表すことができる。また,三導体を接続して電 圧 V2〔V〕を加えた際の条件より,このときの実 効的なインピーダンスZ2〔W〕については と表すことができる。 ②式より また,①式より であるから, (2) 図3のように接続すると実効的なインピーダンス Z3〔W〕は周波数の違い も考慮して次のようになる。 よって流れる電流I3〔A〕については次のように計算される。 ) 3 ( 2 1 3 1 o m 1 1 VI f C C Z o 2 2 2 VI 2 1fC Z 2 2 o 2 IfV C 1 1 m o 3C 2 3fIV C 2 2 1 1 m 61f V3I VI C ・・・・・・ ② …(答) …(答) 3 2 2 1 1 3 o m 3 3 3 ZV 20 f(C C )V 103 V3I 2VI V I …(答) ) ( 20 1 ) 2 2 ( 10 1 o m o m 3 f C C f C C Z Co Co Co Cm Cm Cm ・・・ ①

(4)

〔問3の標準解答〕 (1) 配電線の地絡故障時には,地絡電流が配電用変電所側と発電機側との両方 から地絡故障点へ供給されるが,高圧配電系統は非接地系統であり,同期発 電機からの地絡電流は極めて小さいことから,地絡過電圧リレー(OVGR)を 用いて地絡電圧を検出し保護する。 (2) 配電線の短絡故障時には,短絡電流が配電用変電所側と発電機側との両方 から短絡故障点へ供給されるが,同期発電機からの短絡電流が比較的小さい ため過電流リレー(OCR)の整定感度では検出できない場合があり,逆に OCR の感度を高くすると負荷電流などにより誤作動の原因となる。このため, 同期発電機の場合は電流の方向も判断材料となる短絡方向リレー(DSR)を 用いて保護する。 (3) 地絡過電圧リレー(OVGR)と短絡方向リレー(DSR)は連系する配電線 以外の配電線事故で動作しないようにする必要がある。そのため,事故配電 線の遮断後に地絡過電圧リレー(OVGR)と短絡方向リレー(DSR)が動作 するように時限協調を図る必要がある。

(5)

〔問4の標準解答〕 (1) (2) (1)と cos2d+sin2d =1 より (3) ②式でV2が実数解をもつための条件は 電圧安定限界は等号が成立するときである。 与えられた数値より, 力率1 より Q = 0, (4) 力率 cosf= 0.9 (進み)より これを④式に代入 (5) ②式で E = V = 1.0 とすると ④式と⑤式を満足する解を求める。④式を⑤式に代入すると X V X EV Q X EV P sin , cos 2 ‥‥‥‥‥‥‥‥‥‥‥ ① ‥‥‥‥‥‥ ② ‥‥‥‥‥‥‥ ③ ‥‥‥‥‥‥‥‥‥ ⑤ …(答) …(答) …(答) … ( 答 ) … ( 答 ) 2 2 2 2 2 2 X V E X V Q P について整理すると とし, , V X E I X y 1 0 2 2 2 2 2 4 2V yQ I V P Q y 0 4 2yQ I2 2 y2 P2 Q2 すると ,これを代入して整理 , 25 5 I2 y ④ ‥‥‥‥  電圧安定限界の条件 0 4 25 5 2 Q P 〕 〔 題意より, , 2.50 p.u. 2 5 2 5 4 25 2 P P P P P P Q 0.4843 9 . 0 9 . 0 1 sin 9 . 0 2 ≒ 〕 〔 題意より , 限界は p.u. 99 . 3 567 . 1 989 . 3 778 . 2 211 . 1 25 . 6 211 . 1 211 . 1 0 25 . 6 422 . 2 2 2 P P P P 0 25 10 25 Q P2 Q2 〕 〔 ④より  重根 p.u. 33 . 4 33 . 4 4 75 4 25 2 5 5 2 5 0 4 25 5 2 2 P P P Q Q Q

(6)

〔問5の標準解答〕 (1) ① 配電系に流出する高調波電流を抑制し,配電系の電圧ひずみ率の上昇を 抑える。 ② 含有率の多い低次の高調波電流(第5 調波等)による,コンデンサの 過負荷を抑制する。 ③ 進相コンデンサの投入時の突入電流を抑制する。 ④ 進相コンデンサの開放時に,再点弧を発生した場合,そのサージ電圧を 抑制する。 (2) 第5 調波に対する等価回路図 題意よりXL=0.06 × XCとなり 第5 調波に対する各部のリアクタンスは, XL5=5 XL=5 × 0.06 × 30.0=9〔p.u.〕 XL05=5 XL0=5 × 0.2 = 1〔p.u.〕 となる。よって, ・・・(答) 〕 〔A 50 . 7 10 4 3 10 ) 6 9 1 ( j ) 6 9 ( j j 1 j j j 1 j 5 5 C 5 L 5 0 L 5 C 5 L 5 L I X X X X X I 5 I 5 L I jXT5 jXL05 高調波 電流源 jXL5 5 C j 1 X 〕 〔p.u. 6 5 0 . 30 5C 5 C X X

(7)

(3) 題意より XLがない場合は,(2)において,XL5=0 となるので よって, …(答) 〕 〔A0 . 12 10 5 6 10 ) 6 (1 j ) 6 ( j j 1 j j 1 5 5 C 5 0 L 5 C 5 L I X X X I 〕 % 〔 160 100 50 . 7 0 . 12 100 5 L 5 L I I

(8)

〔問6の標準解答〕 (1)[年負荷率向上のメリット] ・燃料費の安い電源をベース電源として活用することによるコスト低減 ・ピークカットの場合は,電力設備投資の低減と設備利用率の向上 [年負荷率改善の理由] 地域の負荷特性の違いから,ピークの発生する時期が異なり,合成最大 電力が抑制されるため。 (2)[揚水式発電所の特長] 夜間や休日など燃料費の安い時間帯に揚水して水を上池に汲み上げ,昼間の 火力燃料費の高い時間帯に発電する。夜間に揚水することで高効率の大容量 火力などのベース電源を高出力で運転し,昼間に発電して低効率火力の運転 を抑制又は回避でき全体としての燃料費が節約できる。また,供給力が不足 した場合,数分で全負荷運転が可能な電源であり発電調整力が高く,ピーク 電源として活用できる。 [可変速揚水発電方式を採用する理由] ・揚水時の周波数調整(出力調整)が可能 ・発電運転時の効率向上 ・電力動揺の抑制 ・運転可能落差の拡大 (3) 電力用蓄電池の効果 ・非常用電源としての活用 ・瞬時電圧低下対策 ・電気料金の安い夜間電力の活用 ・契約電力を下げることによるコスト削減 ・ピークカットによる電気設備の軽減

(9)

<機械・制御科目>

〔問1 の標準解答〕 (1) 鳳・テブナンの定理を用いると,図 1 の A,B から左側の部分を図 2 の回 路で表すことができる。 a. 同期速度で回転しているので滑り s = 0 であるから, となる。 に は電流が流れないので, はjxMの両端の電圧である。したがって, となり,その大きさは となる。 b. R+jX は となる。 (2) 始動時に二次回路に流れる電流 I2は滑りs = 1 としたときに を流れる電 流であるから,鳳・テブナンの等価回路から, となり,その大きさは 同期速度はw0,極対数をp,周波数を f とすれば であるから,始動トルクは s r2 t V 〕 〔V 1979 . 2 j 29 . 225 3 400 5 . 20 j 2 . 0 20 j ) (j j M 1 1 M t r xx x V V 〕 〔V 225 30 . 225 t V 〕 〔 690 . 0 j 190 . 0 68966 . 0 j 19035 . 0 ) (j ) j ( j j j M 1 1 1 1 M 2 rx rx xx x X R 〕 〔A 50 . 277 j 82 . 116 68966 . 0 j 1 . 0 19035 . 0 30 . 225 j 2 t 2 R rV X I 〕 〔A 301 08 . 301 2 I 〕 〔rad/s 50 . 188 2 60 2 2 0 pf 〕 ・ 〔N m 144 27 . 144 50 . 188 08 . 301 1 . 0 3 3 2 0 2 2 2 s r I T s r2 s r2 …(答) …(答) …(答) …(答)

(10)

〔問2 の標準解答〕 (1) V1ab: V2ab= 2 : 1 であるので, (2) I1a: I2a= 1 : 2 であるので, (3) 一次漏れリアクタンス x1を二次側換算すると 一次漏れリアクタンスの二次側換算値と二次漏れリアクタンスの和は, (4) 漏れリアクタンスに誘起する電圧の大きさは, 〔V〕 下図のように変圧器の二次電圧のフェーザは, であるので, 〕 〔V 200 400 2 1 2 1 ab 1 ab 2 V V 〕 〔A 100 50 2 1 2 a 1 2a I I 〕 〔 08 . 0 4 32 . 0 4 1 32 . 0 2 1 2 1 x 〕 〔 20 . 0 12 . 0 08 . 0 20 100 20 . 0 80 j 3 100 ) 20 100 j( 3 100 ab 2 V ) 10 200 j( 3 10 cb 2 V 〕 〔V 191 78 . 190 80 ) 3 100 ( 2 2 ab 2 V 〕 〔V 211 71 . 210 210 ) 3 10 ( 2 2 cb 2 V 2ab 1 V& ab 2 V& a 2 j IX & cb 2 V& 2 cb 1 V& c 2 j IX& a 1 V& a 1 I& c 1 I& c 1 V& …(答) …(答) …(答) …(答)

(11)

(5) 変圧器の二次電流は, であるので,2 台の変圧器の有効電力 P2abP2cb及び無効電力 Q2abQ2cbは, したがって, [別解]なお,変圧器の損失は無視できるので,負荷へ供給する電力は一次 入力電力に等しく,P2ab= P1abかつ P2cb= P1cbである。このとき,一次電圧と 一次電流の位相差は であるので, としてもよい。 100 a 2 I 3 50 j 50 c 2 I 000 8 j 3 000 10 100 ) 80 j 3 100 ( j 2ab 2ab 2a ab 2 Q V I P 000 12 j 3 000 10 ) 3 50 j 50 ( ) 210 j 3 10 ( j 2cb 2cb 2c cb 2 Q V I P 〕 〔 〕 〔W 17.3 kW 320 17 3 000 10 ab 2 P 〕 〔 〕 〔W 17.3 kW 320 17 3 000 10 cb 2 P 〕 〔 〕 〔W 17.3 kW 320 17 2 3 50 400 6 cos a ab ab 1 ab 2 P V I P 〕 〔 〕 〔W 17.3 kW 320 17 2 3 50 400 6 cos c cb ca 1 cb 2 P V I P …(答) 〕 〔rad 6 …(答)

(12)

〔問3 の標準解答〕 (1) Th1の電圧v1,Th1の電流i1,及び負荷電流iLの波形は,次の図となる。 電圧 v1 にはサイリスタ Th2 がオンしたときに電圧が零となる影響が現れる が,電流 i1はサイリスタ Th1に流れる電流だけである。負荷電流iLは正負の 電流が流れる。 (2) Th1又はTh2がオンしている期間,負荷には次の電流iL0が流れる。 , ただし, 制御遅れ角a〔rad〕における負荷電流 iLの実効値 IL〔A〕は,半周期で 求めればよいので次式となる。 〕 〔A sin 2 sin 2 0 L VR t I t i R V I 〕 〔A d sin 2 d ) sin 2 ( 1 2 2 L I t t I t t I v 0 0 p 2p a a G1 G2 v1 0 i1 0 iL 0 wt wt wt wt wt wt

(13)

ここで, を利用する。 したがって,実効値IL〔A〕は次式となる。 (3) 負荷がインダクタンス L のリアクトルと抵抗 R とが直列接続された誘導性 負荷の場合,負荷の力率角を とすると,制御遅れ角 a>g 〔rad〕の範囲で電圧制御が可能である。 純インダクタンスの負荷であれば, 〔rad〕 であるので,電圧制御が可能な制御遅れ角a〔rad〕の範囲は次式である。 〔rad〕 (4) 三相負荷と並列接続される三相無効電力補償装置(TCR 式三相 SVC)の 主回路構成は,固定の進み電流を流す固定のコンデンサ C と並列に,可変の 遅れ電流を流す逆並列サイリスタと固定のリアクトル L との直列回路を接続 した回 路と なる。 した がっ て,TCR 式三相 SVC を構成するコンデンサ, リアクトル及びサイリスタの接続図は次の図となる。 C 2 1 2 sin 4 1 d sin2 4 2 sin 2 2 1 2 sin 4 1 d sin2 t t t t 〕 〔A 2 2 sin ) ( 2 4 2 sin 2 2 L I VR I 〕 〔rad tan 1 R L 2 tan tan 1 1 R L 2 …(答) …(答)

(14)

ただし,回路構成としてはD 接続でも Y 接続でもよい。サイリスタと リアクトルの接続も,図のように直列に接続するか,Y 接続のリアクトル とD 接続のサイリスタとの組合せでもよい。また,進相コンデンサC に フィルタ機能のリアクトルを追加した構成でもよい。 L0 C Th L 三相 負荷 三相交流電源 TCR式三相SVC

(15)

〔問4 の標準解答〕 (1) インパルス応答の計算: ラプラス変換の公式:

及び

[d(t)] = 1 を利用する。 ここで,d(t)は単位インパルス入力(d 関数)とする。単位 インパルス応答g(t)は次式で求められる。

…(答) (2) 閉ループ伝達関数の計算: マイナーループの伝達関数を求めると となる。これを用いて,R(s)から E(s)までの伝達関数を求めると …(答) となる。 (3) 安定限界: 制御系が安定であるためには,特性方程式 の根がすべて左半面にあればよい。ラウスの判別法を適用すると 2 2 ] [sin s t 0 2 sin 2 1 4 2 2 1 1 4 1 ) ( 1 2 2 1 t t s s t g , 4 1 4 1 4 1 ) ( 2 2 22 2 s K s s s K s s P 1 1 2 2 3 2 2 2 2 1 1 ) 4 ( ) 4 ( 4 1 1 1 ) ( ) ( K s K s K s s K s s s K s s K s K s R s E 0 ) 4 ( 1 1 2 2 3 K s K s K s 1 0 2 1 1 2 1 1 2 2 1 3 0 ) 4 ( 4 1 K s K K K K s K K s K s

(16)

となり,安定限界では …(答) となる。 このとき制御系の応答は持続振動となる。 …(答) (4) 伝達関数の計算: 図から各変数の間に成り立つ関係を記述すると,

U(s) = F(s)R(s)+C1(s)E(s)-C2(s)G(s)U(s) ‥‥‥①

E(s)=R(s)-G(s)U(s) ‥‥‥② が得られる。これから,答は次となる。 (a) F(s), (b) C1(s), (c) C2(s)G(s), (d) G(s) …(答) ①式から, が得られ,これを②式へ代入すると となり,上式を整理すると が得られる。したがって, となる。以上から,答は次となる。 (e) G(s)[C2(s)- F(s)], (f) G(s)[C2(s)+C1(s)] …(答) (5) 定常偏差の計算: F(s),C1(s),C2(s)及び G(s)の各伝達関数を代入すると ) 4 ( 1 2 1 K K K ) ( ) ( 1 ) ( ) ( ) ( ) ( ) ( 2 1 s G s C s E s C s R s F s U ) ( ) ( 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 1 s G s C s E s C s R s F s G s R s E ) ( ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( ) ( 1 ) ( ) ( 1 2 2 1 R s s G s C s F s G s E s G s C s G s C ) ( ) ( ) ( ) ( 1 ) ( ) ( ) ( ) ( 1 ) ( ) ( 1 2 2 s G s C s G s C s G s F s G s C s R s E

(17)

となる。ここで,目標値r(t)=t のラプラス変換

[t]= を利用し,最終値 の定理を用いると …(答) が得られる。 1 1 2 2 2 2 2 2 1 1 22 2 22 ) 4 ( ) ( ) 4 ( 4 1 4 4 4 1 ) ( ) ( K s K s K s s K s s s s K s K s s Ks s s K s R s E 0 1 ) 4 ( ) ( lim 2 1 1 2 2 2 2 2 0 s s s s s Ks sK K s K s e s 2 1 s

参照

関連したドキュメント

2012 年度時点では、我が国は年間約 13.6 億トンの天然資源を消費しているが、その

2012 年度時点では、我が国は年間約 13.6 億トンの天然資源を消費しているが、その

低圧代替注水系(常設)による注水継続により炉心が冠水し,炉心の冷 却が維持される。その後は,約 17

原子炉水位変化について,原子炉圧力容器内挙動をより精緻に評価可能な SAFER コ ードと比較を行った。CCFL

・グリーンシールマークとそれに表示する環境負荷が少ないことを示す内容のコメントを含め

「有価物」となっている。但し,マテリアル処理能力以上に大量の廃棄物が

雨地域であるが、河川の勾配 が急で短いため、降雨がすぐ に海に流れ出すなど、水資源 の利用が困難な自然条件下に

地下水の揚水量が多かった頃なの で、地下水が溜まっている砂層(滞