• 検索結果がありません。

Sampling Based Approximation Method for the Stochastic PERT Problem

N/A
N/A
Protected

Academic year: 2021

シェア "Sampling Based Approximation Method for the Stochastic PERT Problem"

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

瑠−『輪3

2003年日本オペレーションズ。リサーチ学会

春季研究発表会

Samp且五mg迅asedÅpp『0Ⅹ五ma七五omM如払od

鮎釘も払e Sも①C払a雨量c PE訊町野『の払皿em

OlO12560 王くoma2;aWaUniversityIJDA7もtsuo0

01206492 TbhokuUniversity SUZUKIKenichi

theもhenetworkofprojectswhoseprocesstimevary

randomly.Itisformulateda5fbllows・ A:SetOfarcs(eacharcrepresentssubproject) ∫=(1,2,…,Ⅳ): 且 Im屯『OdⅦCも五om

Traditionally PERT/CPM has been used to man−

ageIargeprojects・Theideaofthecriticalpathstill

Plays animportant partin thescheduling.How− ever,mOSt Ofexist・ing researches and applications Of PERT tackled the deterministic problem.On theother hand,unCertaintyisthemostsignificant aspectsofthepracticalproblem,Sinceitcancause

delayoftheschedule,increa5eOfthecost,andde−

teriorationofthequalityofoutputs.

HereweformulateastochasticPERTproblcma5

a two s†・age StOChasticlinear programmlng mOdel withrecourse(SLP),Sinceitcanhandleoptimiza− tion problemsunder uncertainty.Itiswe11known

thatSLPcanbesoIvedbythedecompositionba5ed

algorithm[1]・Themaindi爪cultyonthecomu−

tation ariscsfromthenumberofstates:比mayJn− CreaSeeXPOnentially,COnSumlngalargeamountof memories,eVenifproblem containsafbwrandom Variables.柑ence,COmbinationofdecompositional− gorithm and Monte Carlosampling technique are

proposcdbyseveralauthors(e・g.【3】)・

In our previous work(JORSJgeneralmeeting, Fhl12002),We Showed the efhciency ofsampling baseda)gorithm forthestochasticPERTproblem. AIso,WeSuggeSted theformulaofnewdensityon theimportancesamplingmethod,bywhichweex− pecttoreducevarianceoftheestimator.Unfbrtu− natelythecomputationalexperimentwerestillpre− 1iminaryone.Inoursubsequentresearch,WeCOn− ducted n】OrethorougllCOmPutationalexperimcnts・ We compare two variance reduction method:im−

portancesamplingandcontroIvariate.

thesetofnodes,WllereNisnumberofnodes

aij:arCfromnodeitonodej T;j:theactivitytimeofarcaij 73:tllearrivaltimeofnodej B=amOuntOfbudget

o The nodeland the node N correspond the

start no(le alld the銭nish node,reSpeCtively. WeindexaijSatisb,ingi<j・

o VVe assume theearliest start..

0Wecanreducetheactivitytimetocertainex− tentbyconsumingresources(budget)・

Xij:reducedtimeonarcaij・Itislessもhanupper

bou∫−d叫・ Cij:COStPerunittimetoreduce W:SCenarioorsample O:Set Ofscenario pU:PrObabilityofreali2;ationofthescenarioLL, 【ma5terprOblem]: min g(∬) S・t・∑叫∈Aqj∬iJ≦β 0≦∬iメ≦叫,∀叫∈A (1) whereQ(3:)=E[Q(77v;LJ)】・ 【childproblem]: Q(7≠;U)= 筍オ 一二 町勇 2 飢⊃『mⅦ且a屯瓦¢m

We focus on the stochastic PEnT problem with

crashing,Wheretheprojectmanagerdecidetheal−

locationムfhis/herlimitedresource(budget),given

句 ∀叫 ∀i∈g 0 (2) 一刀00− © 日本オペレーションズ・リサーチ学会. 無断複写・複製・転載を禁ず.

(2)

3 L−Shapedmethod usingMonte

Carlo sampling

Tb’solvetheprob7em(l),Weneedtoevaluate the Objective function Q(x)・Sinceitisdefinedascx− pecte(1valueoftlleObjectivein(2),WeCan eVal− uateit byMonteCarZosamp7ing.However,Crude SamPlingisknowntobeiTlefBcienttoensuretheac−

C−1raCy・Numprousvariancereduction methodsare

Cla5S摘ed toseveralcategories.Even thoughthe−

OreticalcharacteristicofeachInethodsarealready Clarified,Weneedtocustomizeandmodifythemto applytoindjvidualproblems. 3.1 importance sampling 3C:1st$tagedecisionvariable LetA=(al,a2,・‥,af(),WhereKisnumberof arCS. 7L‘‥PrOCeSStimefbrarc FbranarCi,)et usdefinethefb1lowingfunction: 怖‘(7芸,〇)=maX(7芸+J叫(T,訂),エーα‘(T,可), ・Wherelat(T,X)=lニ‘(T,3,)−7L‘andl;‘(T,X)indi− CateS thelength ofいIelongest path containingai under the base sample T and thefirst stage varト ablex・AIsoL−ai(T, . tain arcai.Weselectthebasesampleasthemini− mumprojecttime. Let吼‘(x)=E(吼‘(7Li,X)],thenwegenfrate thesamplesfromthedistribl・ltionofp。iMa‘/〃町

The aboveidea can be exploited to the ad−

vanced proced11rP,in which we consjder multip】e arcsal,a2,.‥,akratherthanslnglearcai. 〃妬.‥,αk(花,・‥,7㌫,‡) =maX(花+J几l(T,諾),…,7芸+J。鳥(T,諾),

エ叫1,…,_αた(T,∬))′

3.2 controIvariates TheetrktivenessofthccontroIvariatesdependson thechoiceofvariates.Theyshouldbeeasytocalctl− 1ateexpectedval11eSalldbehighlycorrelatedwith targetedvariable,Whichiscompletetimeofproject lnOurCaSe. normpbasedcontrol:Higlesuggestedin【2】two methodtoconstructthecontroIvariateforgen−

eralstochasticlinearprograms・HereweappJy

thenorm−basedcontrol.Underoutnotations, cont.roIZis Z=∑(句一β恥】)・ 叫∈A

upper bound control‥Weproposeanother con−

trol based on the upper bound of completion

time.Fbr acertain realization LL),WeCanCal−

Culateacriticalpath.Ofcourseitmaynotbe

thecriticalpathinotherrealizationofu,butit PrOvidesupperboundofcompletiontime.We

CaneXPeCtthattheupperboundpositivelycor−

related with truecompletion time.Moreover,

WeCanimmediatelycalculateexpectationvalue

Ofupper bound becauseitis thesumofpro−

CeSSlngtimeonfixedpath.

Z=∑鶴一利れJ】),

叫∈鞄

where PE indicates the critical path derived

from the project network with expected pro−

CeSSlngtime・ ■tll▼l、●−−t

Figurel:tlleprOjectnetworkusedforthecompu−

tationalexperitnents:26nodesand38arcs

Refbrences

tl]JohnR・BirgeandFtanGOisLoVeauX・Int7V−

duction to Stochastic PTT)gmmmm9.Springer, 1997.

[2】Julia L・Higle・Variance reduction and ob− jective function evaluation in stochastic linear

programs.INFORMSJoumαlqFComputin9, 10(2):236「247,1998・ 【3)GerdInfanger・Montecarlo(importance)sam− plingwithinabendersdecompositionalgorithm brstochasticlinearprograms.ATmaLsq/Oper・− α如那月eβeα化九,39:69−95,1992. −】01− © 日本オペレーションズ・リサーチ学会. 無断複写・複製・転載を禁ず.

参照

関連したドキュメント

40 , Distaso 41 , and Harvill and Ray 42 used various estimation methods the least squares method, the Yule-Walker method, the method of stochastic approximation, and robust

In this paper, we use the reproducing kernel Hilbert space method (RKHSM) for solving a boundary value problem for the second order Bratu’s differential equation.. Convergence

Functions on M are said to be bandlimited if their Fourier transform has compact support. Such func- tions have many remarkable properties. In particu- lar, they are determined by

For arbitrary 1 < p < ∞ , but again in the starlike case, we obtain a global convergence proof for a particular analytical trial free boundary method for the

Since the boundary integral equation is Fredholm, the solvability theorem follows from the uniqueness theorem, which is ensured for the Neumann problem in the case of the

For a given complex square matrix A, we develop, implement and test a fast geometric algorithm to find a unit vector that generates a given point in the complex plane if this point

In this paper, we propose an exact algorithm based on dichotomic search to solve the two-dimensional strip packing problem with guillotine cut2. In Section 2 we present some

We also discuss applications of these bounds to the central limit theorem, simple random sampling, Poisson- Charlier approximation and geometric approximation using