• 検索結果がありません。

講義案内 前田研究室 maedalab Fourier

N/A
N/A
Protected

Academic year: 2018

シェア "講義案内 前田研究室 maedalab Fourier"

Copied!
16
0
0

読み込み中.... (全文を見る)

全文

(1)

フ エ変換と地震 スペクト 分析

Spectrum Analysis of Earthquake and Fourier Transform

* ント 地震動 解析入門 大崎順彦, 鹿島出版会 を元 作成し います :The original of this document was from the above text book.

- 世界最初 強震記録: 強震計 Strong-Motion Acceleration: SMAC

Imperial Valley Earthquake at EL Centro(1940.5.18) 326gal 人類初 強震 記録

(Record of the first strong motion due to earthquake in the human history) Arvin-Tahachapi Earthquake at Taft(1952.7.12) 147gal

- 地震波 特長 Properties of Earthquake Wave

対象 す 地盤-構造物系 対し 与え 影響を考え ため 有力 手

最大振幅 maximum amplitude

時間 duration time

包絡曲線 envelope curve : 主要動 principal shock 波数 numbers of wave

振動周期 periods

エネ Energy

Duration time

Principal shock

Maximum amplitude

(2)

Finite Fourier Approximation of Time History and Time Series

and its Formulations

1) Approximation of digital time history data with Tri-angle series

Discrete System:

t 0

: data sampling interval

t

0

, x

0

,

  t

1

, x

1 ,

t

2

, x

2

, …,

t

N1

, x

N1

・・…N =(N-1) +1: data: N conditions

Duration Time:

T N t

(1.1)

Time:

t m t

(m= 0, 1, 2, …, N-1) (1.2)

A data point:

x

m

x   m t

N=16(m=0 – 15) : x0, x1, …….., x15. duration time: T=16t

2) Approximation of digital time history data with infinite tri-angle series

 

















kt

B

t

B

t

B

B

kt

A

t

A

t

A

A

k k

sin

2

sin

sin

cos

2

cos

cos

2 1

0

2 1

0 (2.1)

What is the period Tp of cos(kt)or sin(kt)?

   

k t T kt k t k

kt cos

p

cos 2 cos 2

cos

T

p

2 k

: As k increases, the period Tp decrease (the frequency f=1/Tp increases).

(3)

 

k0

A

k

cos kt B

k

sin kt

(2.2)

replace

t

by

t

T

2

or

t

t

N

2

k0

 A

k

cos 2 N kt t B

k

sin 2 N kt t 

(2.3)

3) Approximation of digital time history data with finite triangle series

Set k to be from 0 to N/2

 

 

2

0 2

0

sin 2

cos 2

sin 2

cos 2

N

k

k k

N

k

k k

m

N

B km

N

A km

t

N

B kt

t

N

A kt

x

(3.1)

 

 







2 2

1 0

2 2

1 0

,

,

,

,

,

,

,

,

,

,

,

,

N k

N k

B

B

B

B

B

A

A

A

A

A

Here, Number of unknown coefficients is 2(N/2+ 1) (3.2)

Number of unknown coefficient 2(N/2+1) =N+2 > number of conditions (data) N From partial consideration,

For the case of

k 0

, 0

cos 2 A

0

1 A

0

N

A km

and 0

sin 2  B

0

0 0

N

B km

(3.3)

For the case of

k N 2

, 2

sin 2 B

2

sin m 0

N

B

N

km

N

(3.4)

Consequently, Eq.(3.1) is reduced to

 

N

m

A N

N

B km

N

A km

A

x

N

N

k

k k

m

2

cos 2

sin 2

cos 2

2

1 2

1

0

 

(3.5)

For convenience

 

N

m

A N

N

B km

N

A km

A

x

N

N

k

k k

m

2

cos 2

2 2

2 sin

cos

2

2

1 2

1 0

 

 

(3.6)

 

 







1 2 2

1

2 1 2 2

1 0

,

,

,

,

,

,

,

,

,

,

,

,

N k

N N k

B

B

B

B

A

A

A

A

A

A

N/2+ 1+ N/2-1= N (3.7)

Therefore,

Numbers of unknown coefficient N = Condition Equation N (3.8)

(4)

4) Determination of A

k

and B

k

with orthogonal property of triangle functions

三角関数 ?/ Why do we use triangle functions for Fourier approximation?

三角関数系 直交性を利用す (We utilize orthogonal property for Triangle Functions)

 

  coscos   cos

cos

2

(a)

       

  sincos   sin

cos

2

(b)

 

  sin   cos   cos

sin

2

(c)

1 cos 2

cos

2

2

(d)

1 cos 2

sin

2

2

(e)

       

sin 2

sin 2

2

cos 1

1

cos

2

cos

cos

cos

 

N

N

N

 

 





(f)

       

sin 2

sin 2

2

sin 1

1

sin

2

sin

sin

sin

 

N

N

N

 

 





(g)

if

0

, summarize the results.

sin 2

sin 2

2

cos 1

cos

1

0

 

N

N

m

N

m

 

(h)

sin 2

sin 2

2

sin 1

sin

1

0

 

N

N

m

N

m

 

(i)

 

 

 

 

 

 

1

0 1

0 1

0

2 0

2 cos

sin

0

2 2

2 sin

sin

0

2 2

2 cos

cos

N

m N

m N

m

N

km

N

lm

l

k

l

k

N

N

km

N

lm

l

k

l

k

N

N

km

N

lm

(j)

(5)

For Ak

たとえ Akを求める / For example, we calculate the factor Ak,

 

N

m

A N

N

B lm

N

A lm

A

x

N

N

l

l l

m

2

cos 2

2 2

2 sin

cos

2

2

1 2

1

0

 

(4.1)

1)上式の両辺に

cos 2 km N

を掛ける / Multiplication of

cos 2 km N

to Eq.(4.1).

 

N

km

N A

km

x

m

cos 2

2 2

cos

0

 

21

1

cos 2

sin 2

cos 2

cos 2

N

l

l

l

N

km

N

B lm

N

km

N

A lm

 

N

km

N

m

A

N

N 2

2 cos

cos 2

2

2 (4.2)

2)

m 0

から

m  N 1

総和を / Summation from m=0 to m=N-1 in Eq. (4.2)

 

N10

cos 2 2

0 mN01

cos 2

m

m

N

km

N A

km

x

( -> 0 )

 





21

1 1

0

cos 2

cos 2

N

l

l N

m

N

km

N

A lm

 





21

1 1

0

cos 2

sin 2

N

l

l N

m

N

km

N

B lm

( -> 0 )

 

N

km

N

m

A

N

N 2

2 cos

cos 2

2

2 ( -> 0 ) (4.3)

1st term, 3rd term and 4th term in right formula =0 with account for the orthogonal

   

N01

cos 2

Nl211 l



mN01

cos 2 cos 2 

m

m

N

km

N

A lm

N

km

x

(4.4)

2 0

0

2 0

2 cos

cos

1 2 2 1

1 2

1

1

0





 

 

 

k N

N

l

N

m

l

A

A N

A

N A

km

N

A lm

(4.5)

N

x km

A N

N

m m

k

cos 2

2

1

1

(4.6)

 

 





1

2

,

,

2

,

1

2

,

1

2

,

,

2

,

1

,

0

sin 2

2

cos 2

2

1

1 1

1

N

k

N

N

k

N

x km

B N

N

x km

A N

N

m m k

N

m m k

(4.7)

1

0

0

1

2

N

m

x

m

N

A

: mean value (4.8)

(6)

3)時間関数

x   t

の近似: Fourier Approximation

t

m

t

,

t

m t

 

(4.9)

   

t

N

t

A N

t

N

B kt

t

N

A kt

A

t

x

N

N

k

k

k

 

 

 

2

cos 2

2 2

2 sin

cos

2

2

1 2

1 0

(4.10)

(7)

5) Spectrum Properties

   

t

N

t

A N

t

N

B kt

t

N

A kt

A

t

x

N

N

k

k

k

 

 

 

2

cos 2

2 2

2 sin

cos

2

2

1 2

1 0

(5.1)

1)周波数 周期 Frequency/Period

T

k k

t

k

N

22

 

(5.2)

k

T

N

k

T T

k k

 

 

2

,

T

N

k

T

k

f T

k

k

1

(5.3)

k 0

,

0

0

f

f

k : 直流成分(Cascade Component)

1

0

0

1

2

N

m

x

m

N

A

全体 ゼ 点 (5.4)

k 0

,

0

f

k :

2 / 1 2 / 2

1

f f

N

f

N

f 

,

T

1

T

2

 T

N/21

T

N/2 (5.5)

- 分解す 周波数 トビトビ Discontinuity of Decomposed Frequency

t

f N

f

f

k k

 

1

1 (5.6)

2)基本振動数(Fundamental Frequency)

T

N

T

f T

 

1 1 1

1

1 (5.7)

3)ナイキスト振動数(Nyquist Frequency) 分解能:Resolving power

検出可能 高周波数 限界値 /: Limit value of detection possible high frequency

T

f T

N

N

2

1

1

2

2 (5.8)

01

.

 0

t

(sec.) →

f

N

50 Hz

01

.

0

2

1

2

 

(5.9)

4)振幅 位相角(Amplitude/Phase Angle) 情報 2

   t     tX   t   

A

k

cos B

k

sin

k

cos

(5.10)

2 2

k k

k

A B

X

(5.11)

 

 

k k

A

1

B

 tan

(5.12)

4) 振幅 スペクト (Fourier Amplitude Spectrum/ Fourier Spectrum)

X

k

T

2

dimension:

   X

k

sec .

(5.13) 5)パワ スペクト (Power Spectrum): Invariant Value

N10 2

0 2

2

Nk/211 k 2

N2 2

m

m

t T C T C T C

x C

k: 複素数フ エ振幅 (5.14)

(8)

0 5 10 15 20 -800

-600 -400 -200 0 200 400 600 800

PI-83m, NS-component

Acc., (gal)

Time (sec.)

0 20 40 60 80 100

-250 -200 -150 -100 -50 0 50 100 150 200 250

Kushiro West port, NS-component

Acc., (gal)

Time (sec.)

0 20 40 60 80 100

-500 -400 -300 -200 -100 0 100 200 300 400 500

Sanriku Harukaoki, NS-component

Acc., (gal)

Time (sec.)

0.1 1 10

1 10 100

Kushirooki Harukaoki PI-83NS

Fourier Amp, (cm/sec)

Period, (sec.)

(9)

6) Finite Fourier Approximation with Complex Number

ib

a

c

:

c

: complex number,

a

: real part,

b

:imaginary part,

i 1

(6.1)

2

2

b

a

c

: absolute value (6.2)

* 2

c

c

c

,

c

*

a ib

: conjugate complex number (6.3)

   

cos i sin

e

i

: Euler’s Formula (6.4)

 

 

i i

i i

e

e

e

e

2

sin 1

2

cos 1

(6.5)

Approximation with Complex Number

 

 

N km i N km i

N km i N km i

e

e

N i

km

e

N e

km

/ 2 /

2

/ 2 /

2

2

1

sin 2

2

1

cos 2

(6.6)

Finite series

1

0 N 2

k

N i km k

m

C e

x

,

m

= 0, 1, 2,..., N-1 (6.7)

2

k k k

iB

C A

,

k

= 0, 1, 2,..., N-1 N (6.8)

Determination of

C

k

1

0

1

N 2 m

N i km m

k

x e

C N

,

k

= 0, 1, 2,..., N-1 N (6.9)

k N

k

C

C

: folding frequency

f

N

t

 

2

1

2 (6.10)

   

k k

k k

C

B

C

al

A

Im

2

Re

2

,

k

= 0, 1, 2,..., N/2 (6.11)

(10)

7) Fast Fourier Transform FFT

C

0

C

1

C

2

C

3

C

4

C

5

C

6

C

7

1×8

一回分割

C

0

C

2

C

4

C

6

2×4

C

1

C

3

C

5

C

7

2回分割

C

0

C

4

4×2

C

2

C

6

C

1

C

5

C

3

C

7

3回分割

C

0

8×1

C

4

C

2

C

6

C

1

C

5

C

3

C

7

- 計算時間(Time for Fourier Coefficient Calculations):

T

ca l Fourier Transform(FT)

T

ca l

N

2

Fast Fourier Transform(FFT)

T

ca l

N log

2

N

Comparison for Cal. Time

N Factor Ratio for

T

ca l

4094 2×23×89 12.9

4095 32×5×7×13 3.9

4096 212 1

4097 17×241 28

4098 2×3×683 77

4099 - 460

4100 22×52×41 6.3

- 後続 ゼロ(Trailing Zero):

N 2累乗 を後

N=3000 → N=3000+1096=4096=212 ン 効果(Link Effect)を解消

(11)

8) Link effect

(a) Periodic Function: earthquake motion transformed by Fourier series (b) Non-periodic function: real earthquake motion

Link Effect in Fourier transform

(12)

9) Fourier Integral: Discrete system / Continuous System

Time

Frequency or Period

Spectrum

Time Domain Frequency Domain

Fourier Transfom

(Fourier Integral)

Fourier Inverse Transfom

  





k

T i kt k k

T i kt

k

e TC e T

C

t

x ( ) 1

2

2

: for Discrete System (9.1)

 

1

TT22 i2Tkt

k

x t e dt

C T

,

k

(9.2)

T

f

k

k

,

f T

f

f

k 1

k

1

(9.3)

  

 

 

function

continuos

f

F

discr ete

TC

T df

f

T f

k

T

k

: :

1 0

(9.4)

 

     

     

 

 

 

 

 



dt

e

t

x

f

F

dt

e

t

T x

TC

df

e

f

F

t

T x

e

TC

t

x

function

continuos

f

F

discr ete

TC

T df

f

T f

k

T

ft T i

T

T i kt k

ft i k

T i kt k k

2 2 2

2

2 2

1

) 1

(

:

:

1 0

(9.5)

Fourier transform(Fourier integral):

     

T

TC

k

f

F

t

x lim

(9.6)

Fourier inverse transform:

F   f x   t

(9.7) Fourier Spectrum:

T C

k

k k

k

A iB

TC T

2

(9.8)

k k

k

k

X

B T

T A

C

T 2 2

2

2

 

(9.9)

(13)

10) Smoothing / Filters

a) Data Window b) Spectral Windouw

c) Lag Window

(14)

0.01 0.1 1 10

0

10

20

30

40

50

Number of Data=2048, Nyquist Frequency=1/(2*0.01) Spectrum Window, Parzen's Filter

Band=0.0Hz

Fo urie r Amp, (c m/se c)

Period, (sec.)

0.01 0.1 1 10

0

10

20

30

40

Number of Data=2048, Nyquist Frequency=1/(2*0.01) Spectrum Window, Parzen's Filter

Band=0.5Hz Band=1.0Hz Band=2.0Hz

Fo urie r Amp, (c m/se c)

Period, (sec.)

(15)

地震による建物の被害と地盤の関係 : Relation between the damage of the

building by the earthquake and ground condition: おもしろジ テク 技報

Complete collapse

rate of buildings Wooden building Storehouse

Ocean, water front

Reclaimed Land Alluvial Land

Dilluvial Land

東京のウ タ フロントの経緯 埋立て事業の経緯 : Process of water-

front and Reclamation in Tokyo-bay

Tokyo Bay

Reclaimed Land Alluvial Land

Dilluvial Land

Recent time

1923

1855

(16)

推薦図書 Recommendation Text and Papers

1) 地震動 スペクト 解析入門 大崎順彦, 鹿島出版会

2) スペクト 解析 日野幹雄, 朝倉書店

3) エ解析 大石進一, 岩波書店 理工系 数学入門コ

For examples

1) “The Fourier Integral and Its Applications”, papoulis, A.(1962), McGraw-Hill

2) “Random Data: Analysis and measurement Procedures”, Bendat, J.S. and Piersol, A.G.(1971), John Wiley & Sons.

参照

関連したドキュメント

We treat linear differential equations containing both left and right Riemann-Liouville fractional derivatives arising from fractional variational problems.. We use the

In the latter half of the section and in the Appendix 3, we prove stronger results on elliptic eta-products: 1) an elliptic eta-product η (R,G) is holomorphic (resp. cuspidal) if

ZHIZHIASHVILI, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers, Dobrecht, Boston, London, 1996.

By using the Fourier transform, Green’s function and the weighted energy method, the authors in [24, 25] showed the global stability of critical traveling waves, which depends on

The properties of limit periodic homoge- neous linear difference systems with respect to their almost periodic solutions are mentioned, e.g., in [9, 24].. This paper is divided

Theorem 1.6 For every f in the group M 1 of 1. 14 ) converts the convolution of multiplicative functions on non-crossing partitions into the multiplication of formal power

Keywords: Hardy spaces, H p -atom, interpolation, Fourier series, circular, triangu- lar, cubic and rectangular summability.. This Project is supported by the European Union

MEHMET AL SARIG ¨ OL Department of Mathematics, Pamukkale University, 20017 Denizli, Turkey e-mail