# 2ページ目の練習 展開・因数分解 数学・算数の教材公開ページ

20

Loading....

Loading....

Loading....

Loading....

Loading....

## 全文

(1)

(1) b2

−10b+ 25 (2) x2−10x+ 25

(3) y2

−4y+ 4 (4) y2−2y+ 1

(5) x2 −16x+ 64 (6) x2−14x+ 49

## 2.

−3b−10 (2) y2+y−20

(3) y2

−2y−3 (4) a2+ 5a+ 6

(5) x2 + 10x+ 16 (6) y2+ 5y+ 4

(7) x2 + 11x+ 18 (8) x2+ 5x+ 6

(9) x2 + 5x+ 4

## 3.

−16 (2) x2−16

(3) x2 −64 (4) x2−49

## 4.

(1) y2+ 7y+ 10 (2) y2+y

−6

(3) x2 + 8x+ 16 (4) x2

−64

(5) x2

(2)

(1) b2

−10b+ 25

2 (2) x2−10x+ 25

2

(3) y2−4y+ 4

2 (4) y2−2y+ 1

2

(5) x2

−16x+ 64

2 (6) x2−14x+ 49

2

(1) b2−3b−10

(2) y2+y−20

(3) y2

−2y−3

(4) a2+ 5a+ 6

(5) x2 + 10x+ 16

(6) y2+ 5y+ 4

(7) x2 + 11x+ 18

(8) x2+ 5x+ 6

(9) x2 + 5x+ 4

−16

(2) x2−16

(3) x2

−64

(4) x2−49

## 4.

(1) y2+ 7y+ 10

(2) y2+y−6

(3) x2 + 8x+ 16

2 (4) x2

−64

### 8)

(5) x2

(3)

(1) y2

−6y+ 9 (2) b2+ 8b+ 16

(3) x2

−4x+ 4 (4) x2+ 12x+ 36

(5) x2 −12x+ 36 (6) x2+ 8x+ 16

## 2.

−10 (2) x2+ 3x−4

(3) x2

−6x+ 8 (4) x2+ 7x+ 12

(5) a2

−3a−10 (6) a2−6a−27

(7) x2 −7x−8 (8) x2−10x+ 21

(9) x2 + 7x+ 6

## 3.

−16 (2) y2−25

(3) y2−1 (4) a2−64

## 4.

(1) x2 + 7x+ 10 (2) x2+ 9x+ 20

(3) x2

−7x+ 12 (4) b2+ 14b+ 48

(5) a2

(4)

(1) y2

−6y+ 9

2 (2) b2+ 8b+ 16

2

(3) x2 −4x+ 4

### 2)

2 (4) x2+ 12x+ 36

2

(5) x2

−12x+ 36

2 (6) x2+ 8x+ 16

2

(1) y2+ 3y−10

(2) x2+ 3x−4

(3) x2

−6x+ 8

(4) x2+ 7x+ 12

(5) a2

−3a−10

(6) a2−6a−27

(7) x2 −7x−8

(8) x2−10x+ 21

(9) x2 + 7x+ 6

−16

(2) y2−25

(3) y2

−1

(4) a2−64

## 4.

(1) x2 + 7x+ 10

(2) x2+ 9x+ 20

(3) x2

−7x+ 12

(4) b2+ 14b+ 48

### + 6)

(5)

(1) y2+ 2y+ 1 (2) x2+ 6x+ 9

(3) a2

−6a+ 9 (4) x2+ 6x+ 9

(5) a2−8a+ 16 (6) y2+ 10y+ 25

## 2.

−4x−5 (2) b2−3b+ 2

(3) b2+ 7b+ 10 (4) x2

−3x+ 2

(5) y2+ 2y

−3 (6) a2+ 10a+ 24

(7) a2−a−2 (8) y2−14y+ 45

(9) y2

−17y+ 72

## 3.

−16 (2) x2−1

(3) x2 −64 (4) a2−1

## 4.

(1) x2 + 6x+ 9 (2) y2+ 4y+ 3

(3) a2

−4 (4) a2+ 6a+ 8

(5) x2

(6)

(1) y2+ 2y+ 1

2 (2) x2+ 6x+ 9

2

(3) a2−6a+ 9

2 (4) x2+ 6x+ 9

2

(5) a2

−8a+ 16

### 4)

2 (6) y2+ 10y+ 25

2

(1) x2 −4x−5

(2) b2−3b+ 2

(3) b2+ 7b+ 10

(4) x2

−3x+ 2

(5) y2+ 2y

−3

(6) a2+ 10a+ 24

(7) a2−a−2

(8) y2−14y+ 45

(9) y2−17y+ 72

−16

(2) x2−1

(3) x2

−64

(4) a2−1

## 4.

(1) x2 + 6x+ 9

2 (2) y2+ 4y+ 3

(3) a2

−4

(4) a2+ 6a+ 8

### + 2)

(5) x2

(7)

(1) y2

−2y+ 1 (2) x2+ 8x+ 16

(3) y2+ 6y+ 9 (4) x2+ 8x+ 16

(5) x2 + 18x+ 81 (6) x2−8x+ 16

## 2.

−x−20 (2) x2+x−20

(3) y2+ 7y+ 10 (4) y2+ 4y+ 3

(5) x2

−12x+ 32 (6) x2+ 12x+ 35

(7) a2+ 5a+ 6 (8) x2+ 12x+ 27

(9) b2

−12b+ 32

## 3.

−25 (2) x2−25

(3) a2−9 (4) a2−49

## 4.

−3x+ 2 (2) x2−3x−4

(3) x2

−4x+ 4 (4) x2−9

(5) x2

(8)

(1) y2

−2y+ 1

2 (2) x2+ 8x+ 16

2

(3) y2+ 6y+ 9

2 (4) x2+ 8x+ 16

2

(5) x2 + 18x+ 81

2 (6) x2

−8x+ 16

2

(1) x2 −x−20

(2) x2+x−20

(3) y2+ 7y+ 10

(4) y2+ 4y+ 3

(5) x2

−12x+ 32

(6) x2+ 12x+ 35

(7) a2+ 5a+ 6

(8) x2+ 12x+ 27

(9) b2−12b+ 32

−25

(2) x2−25

(3) a2

−9

(4) a2−49

## 4.

(1) x2 −3x+ 2

(2) x2−3x−4

(3) x2

−4x+ 4

2 (4) x2−9

### + 3)

(5) x2

(9)

(1) a2

−4a+ 4 (2) x2+ 2x+ 1

(3) x2

−10x+ 25 (4) y2−18y+ 81

(5) x2 −6x+ 9 (6) x2+ 12x+ 36

## 2.

−5 (2) x2−6x+ 5

(3) x2 + 5x+ 4 (4) b2+ 4b

−5

(5) y2

−10y+ 16 (6) x2+ 2x−35

(7) y2+ 10y+ 9 (8) a2−10a+ 21

(9) x2

−7x−8

## 3.

−1 (2) x2−25

(3) x2 −25 (4) a2−64

## 4.

−9y+ 20 (2) x2−4

(3) x2 + 7x+ 10 (4) a2

−16a+ 63

(5) x2 + 10x+ 25 (6) b2

(10)

(1) a2

−4a+ 4

2 (2) x2+ 2x+ 1

2

(3) x2 −10x+ 25

2 (4) y2−18y+ 81

2

(5) x2

−6x+ 9

### 3)

2 (6) x2+ 12x+ 36

2

(1) x2 + 4x−5

(2) x2−6x+ 5

(3) x2 + 5x+ 4

(4) b2+ 4b

−5

(5) y2

−10y+ 16

(6) x2+ 2x−35

(7) y2+ 10y+ 9

(8) a2−10a+ 21

(9) x2 −7x−8

−1

(2) x2−25

(3) x2

−25

(4) a2−64

## 4.

(1) y2−9y+ 20

(2) x2−4

(3) x2 + 7x+ 10

(4) a2

−16a+ 63

(5) x2 + 10x+ 25

### + 5)

2 (6) b2

(11)

(1) a2+ 8a+ 16 (2) x2

−4x+ 4

(3) y2+ 4y+ 4 (4) b2+ 10b+ 25

(5) x2 + 8x+ 16 (6) x2+ 18x+ 81

## 2.

−4 (2) y2−6y+ 5

(3) x2 +x

−6 (4) x2+ 4x+ 3

(5) b2

−10b+ 21 (6) b2+ 15b+ 54

(7) x2 + 10x+ 24 (8) b2+ 2b−24

(9) a2+ 11a+ 18

## 3.

−4 (2) x2−9

(3) x2 −25 (4) x2−4

## 4.

(1) b2+ 4b+ 4 (2) x2

−9

(3) a2

−4 (4) y2−y−2

(5) x2

(12)

(1) a2+ 8a+ 16

2 (2) x2

−4x+ 4

2

(3) y2+ 4y+ 4

### + 2)

2 (4) b2+ 10b+ 25

2

(5) x2 + 8x+ 16

### + 4)

2 (6) x2+ 18x+ 81

2

(1) x2 + 3x−4

(2) y2−6y+ 5

(3) x2 +x

−6

(4) x2+ 4x+ 3

(5) b2

−10b+ 21

(6) b2+ 15b+ 54

(7) x2 + 10x+ 24

(8) b2+ 2b−24

(9) a2+ 11a+ 18

−4

(2) x2−9

(3) x2

−25

(4) x2−4

## 4.

(1) b2+ 4b+ 4

2 (2) x2

−9

(3) a2

−4

(4) y2−y−2

### + 1)

(5) x2

(13)

(1) y2

−2y+ 1 (2) y2+ 6y+ 9

(3) x2

−10x+ 25 (4) a2+ 14a+ 49

(5) x2 −12x+ 36 (6) x2+ 12x+ 36

## 2.

−8 (2) x2−5x+ 4

(3) a2+ 4a

−5 (4) b2−6b+ 5

(5) x2

−2x−63 (6) a2+ 10a+ 24

(7) a2−4a−12 (8) y2−y−20

(9) b2+ 5b

−14

## 3.

−1 (2) b2−4

(3) x2 −9 (4) a2−9

## 4.

−20 (2) x2+x−6

(3) b2

−10b+ 25 (4) b2+ 4b+ 3

(5) x2

(14)

(1) y2

−2y+ 1

2 (2) y2+ 6y+ 9

2

(3) x2 −10x+ 25

### 5)

2 (4) a2+ 14a+ 49

2

(5) x2

−12x+ 36

### 6)

2 (6) x2+ 12x+ 36

2

(1) x2 + 2x−8

(2) x2−5x+ 4

(3) a2+ 4a

−5

(4) b2−6b+ 5

(5) x2

−2x−63

(6) a2+ 10a+ 24

(7) a2−4a−12

(8) y2−y−20

(9) b2+ 5b−14

−1

(2) b2−4

(3) x2

−9

(4) a2−9

## 4.

(1) x2 +x−20

(2) x2+x−6

(3) b2

−10b+ 25

2 (4) b2+ 4b+ 3

### + 3)

(5) x2

(15)

(1) x2 + 2x+ 1 (2) x2+ 6x+ 9

(3) a2

−6a+ 9 (4) y2−10y+ 25

(5) x2 + 8x+ 16 (6) a2+ 8a+ 16

## 2.

−6x+ 5 (2) x2−5x+ 4

(3) y2

−3y−4 (4) x2+ 4x+ 3

(5) a2

−a−20 (6) y2+ 14y+ 45

(7) x2 + 3x−10 (8) x2+ 11x+ 24

(9) x2 +x

−72

## 3.

−16 (2) x2−9

(3) b2−81 (4) x2−16

## 4.

(1) b2+ 5b+ 6 (2) b2

−6b+ 8

(3) a2+ 6a+ 9 (4) x2

−11x+ 18

(5) b2

(16)

(1) x2 + 2x+ 1

2 (2) x2+ 6x+ 9

2

(3) a2−6a+ 9

2 (4) y2−10y+ 25

2

(5) x2 + 8x+ 16

2 (6) a2+ 8a+ 16

2

(1) x2 −6x+ 5

(2) x2−5x+ 4

(3) y2

−3y−4

(4) x2+ 4x+ 3

(5) a2

−a−20

(6) y2+ 14y+ 45

(7) x2 + 3x−10

(8) x2+ 11x+ 24

(9) x2 +x−72

−16

(2) x2−9

(3) b2

−81

(4) x2−16

## 4.

(1) b2+ 5b+ 6

(2) b2−6b+ 8

(3) a2+ 6a+ 9

2 (4) x2

−11x+ 18

### 9)

(17)

(1) x2

−10x+ 25 (2) a2−10a+ 25

(3) a2

−2a+ 1 (4) b2−4b+ 4

(5) y2+ 4y+ 4 (6) a2+ 10a+ 25

## 2.

−10 (2) x2−3x−4

(3) x2 + 3x

−10 (4) x2−9x+ 20

(5) x2 + 11x+ 30 (6) b2+ 7b

−8

(7) b2+ 13b+ 36 (8) a2+ 13a+ 40

(9) x2

−7x+ 6

## 3.

−9 (2) a2−16

(3) y2−16 (4) x2−64

## 4.

−9 (2) y2−10y+ 25

(3) x2

−4 (4) x2+ 5x−6

(5) b2

(18)

(1) x2

−10x+ 25

2 (2) a2−10a+ 25

2

(3) a2−2a+ 1

2 (4) b2−4b+ 4

2

(5) y2+ 4y+ 4

### + 2)

2 (6) a2+ 10a+ 25

2

(1) b2+ 3b−10

(2) x2−3x−4

(3) x2 + 3x

−10

(4) x2−9x+ 20

(5) x2 + 11x+ 30

(6) b2+ 7b

−8

(7) b2+ 13b+ 36

(8) a2+ 13a+ 40

(9) x2 −7x+ 6

−9

(2) a2−16

(3) y2

−16

(4) x2−64

## 4.

(1) x2 −9

(2) y2−10y+ 25

2

(3) x2

−4

(4) x2+ 5x−6

### 1)

(5) b2

(19)

(1) b2

−6b+ 9 (2) a2+ 6a+ 9

(3) y2

−4y+ 4 (4) y2+ 18y+ 81

(5) b2−12b+ 36 (6) x2−8x+ 16

## 2.

(1) y2+ 6y+ 8 (2) x2+ 3x

−4

(3) x2 + 2x

−15 (4) x2−x−12

(5) a2+ 11a+ 30 (6) x2+ 6x

−16

(7) x2 −x−12 (8) a2−2a−63

(9) b2

−9b+ 14

## 3.

−4 (2) x2−1

(3) x2 −49 (4) x2−36

## 4.

−4a−5 (2) x2+ 6x+ 9

(3) x2

−x−6 (4) b2+ 11b+ 18

(5) b2

(20)

(1) b2

−6b+ 9

2 (2) a2+ 6a+ 9

2

(3) y2−4y+ 4

### 2)

2 (4) y2+ 18y+ 81

2

(5) b2

−12b+ 36

2 (6) x2−8x+ 16

2

(1) y2+ 6y+ 8

(2) x2+ 3x−4

(3) x2 + 2x

−15

(4) x2−x−12

(5) a2+ 11a+ 30

(6) x2+ 6x

−16

(7) x2 −x−12

(8) a2−2a−63

(9) b2−9b+ 14

−4

(2) x2−1

(3) x2

−49

(4) x2−36

(1) a2−4a−5

(2) x2+ 6x+ 9

2

(3) x2

−x−6

(4) b2+ 11b+ 18

(5) b2

Updating...

Updating...