• 検索結果がありません。

A note on the length of starlike functions (Coefficient Inequalities in Univalent Function Theory and Related Topics)

N/A
N/A
Protected

Academic year: 2021

シェア "A note on the length of starlike functions (Coefficient Inequalities in Univalent Function Theory and Related Topics)"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

40

Anote on the length of starlike functions

Mamoru

Nunokawa,

Shigeyoshi

Owa and H.

Saitoh

(Memorial

Paper

for

Professor

Nicolae N. Pascu)

Abstract

Let $S$ be the class ofanalyticfunctions $f(z)$ normalizedwith $f(0)=0$ and $f’(0)=1$

whichare univalent in the open unit disk U. Also, let$S^{*}$ denote the subclass of$S$consisting

offunctions $f(\approx)$ which are starlike with respect to the origin in U. For $f(z)\in S^{*}$, Ch.

Pommerenke [J. LondonMath. Soc. 37(1962), 209-224] has shown the estimates for the

length of theimage curve of the circle $|z|=r<1$. The object of the present paper is to

derive the generalized theorem of the result due to Ch. Pommerenke.

1Introduction

Let $S$ denote the set offunctions $f(z)$ ofthe form

$f( \approx)=z+\sum_{n=2}^{\infty}a_{n}\approx^{n}$

that are analytic andunivalentin the open unit disk$\mathrm{u}=\{z\in \mathbb{C}| |z| <1\}$

.

Afunction

$f(z)\in S$ is called starlike with respect to the origin if it satisfies

${\rm Re}( \frac{\approx f’(_{\tilde{4}})}{f(\approx)})>0$ $(z \in \mathrm{U})$.

We denote by $S^{*}$ the subclass of$S$ consisting of all starlike functions with respect to the

origin in U. In 1962, Pommerenke [6] has shown

Theorem ALet $f(z)\in S^{*}$ and suppose that

$4 \mathrm{V}I(r)={\rm Max}_{|z|=r<1}|f(z)|\leqq\frac{1}{(1-r)^{\alpha}}$ $(0<\alpha\leqq 2)$. Then

$L(r)= \int_{0}^{2\pi}r|f’(re^{i\theta})|d\theta\leqq\frac{\wedge 4(\alpha)}{(1-r)^{\alpha}}$

,

where $A(\alpha)$ depends only on aand$L(r)$ denotes the length

of

$C(r)$ which is the image

of

the circle $|z|=r<1$ under the mapping $w=f(z)$

.

2004

Mathematics Subject

Classifications

Primary $30\mathrm{C}45$

.

(2)

Pommerenke [6, Remarks in p.214] has given the comments that Theorem A can

not be improved any more, except for the factor $A(\alpha)$. This is true, but it is not

ab-solutely perfect, because the order of infinity for $M(r)$ depends not only $(1-r)^{-\alpha}$ but $(\log(1-r)^{-1})^{\beta}$

In 1958, Hayman [1] has proved that if $f(z)\in S$ and $1/2<\alpha\leqq 2$, then

$M(r)=O(( \frac{1}{1-r})^{\alpha})$

implies that

$L(r)=O(( \frac{1}{1-r})^{\alpha})$

Littlewood [4] has shown that this implication breaks down for small $\alpha$. On the other

hand, Thomas [7] has obtained

Theorem $\mathrm{B}$ Let $f(z)$ $\in S^{*}$. Then

$L(r)=O( \sqrt{B(r)}\log(\frac{1}{1-r}))$ (as r $arrow 1$),

where $B(’r)$ is the area enclosed by the curve $C(r)$ which is the image curve

of

the circle

|z|

$=r<1$ under the mapping w $=\mathrm{f}(\mathrm{z})$.

It is the purpose of this paper to generalize Theorem A by Pommerenke [6].

2

Main

theorem

To discuss our main theorem, we need the following lemma due to Pommerenke [6] (or

also due to Hayman [1]$)$

.

Lemma

If

$f(z)\in S$, then,

for

$\lambda>1$,

$\frac{1}{2\pi}I_{0}^{2\pi}|f(re^{i\theta})|^{\lambda}dt\leqq\lambda^{2}\int_{0}^{r}\frac{\Lambda f(\rho)^{\lambda}}{\rho}d\rho$ $(0<r<1)$

.

Now, we give

Theorem Let $f(z)\in S^{*}$ and suppose that

$\Lambda f(r)={\rm Max}_{|z|=r<1}|f(z)|=O((\frac{1}{1-r})^{\alpha}(\log\frac{1}{1-r})^{\beta})$ ,

where $0<\alpha<k\leqq 2$, $k>1_{y}$ and $\beta>0$. Then we have

(3)

for

$0<\alpha<k-1$, and

$L(r)=O(( \frac{1}{1-r})^{2\alpha(1-\frac{1}{\mathrm{t}})+2-h}.\cdot$ $( \log\frac{1}{1-r})^{\beta})$

for

$0<k-1\leqq\alpha<k$.

Proof Application of the H\"older’s inequality gives us that

$L(r)= \int_{0}^{2\pi}r|f’(re^{j\theta})|d\theta=I_{0}^{2\pi}|\frac{zf’(z)}{f(z)}||f(z)|d\theta$ $\leqq(\int_{0}^{2\pi}|\frac{zf’(z)}{f(z)}|^{\frac{k}{\mathrm{A}\cdot-\alpha}}d\theta)\frac{k-\alpha}{k}(\int_{0}^{2\pi}|f(z)|^{\frac{k}{a}}d\theta)\frac{\alpha}{k}$ $=I^{\frac{k-\alpha}{k}}.J^{\frac{\alpha}{k}}$ , where $k>\alpha$, $I=I_{0}^{2\pi}| \frac{zf’(z)}{f(z)}|^{\frac{k}{k-\alpha}}d\theta$ and $J= \int_{0}^{27\ulcorner}|f(z)|^{\frac{k}{\alpha}}$ . $d\theta$

.

By Keogh [2, Theorem 1], it is well known that

$\int_{0}^{2\pi}|\frac{zf’(z)}{f(z)}|d\theta=O(\log\frac{1}{1-\uparrow},)$ (as $rarrow 1$).

On the other hand, we see that

$| \frac{\sim\gamma f(\tilde{k})}{f(z)},|=O(\frac{1}{1-r})$ (as $rarrow 1$)

by Nehari [5]. Thus, we have the following estimates for $0<\alpha<k-1$ that

$I= \int_{0}^{2\pi}|\frac{zf’(z)}{f(\approx)}||\frac{zf’(\sim\vee)}{f(z)}|^{\frac{a}{k-a}}d\theta$

$=(o( \frac{1}{1-r})^{\frac{\alpha}{k-0}})\int_{0}^{2\pi}|\frac{zf’(z)}{f(z)}|d\theta$

(4)

43

which shows that

$I^{\frac{k-a}{k}}=O(( \frac{1}{1-r})\frac{a}{k}(1o\mathrm{g}\frac{1}{1-r})\frac{k-\alpha}{k}.)$

Inorder to consider for the case $0<k-1\leqq\alpha<k$, we haveto recall here the following

result by Littlewood [3, p.484] that if $f(z)$ is subordinate to $F(z)$ in $\mathrm{u}$, then for each $r(0\leqq r<1)$ and each $k(k\geqq 0)$,

$\int_{0}^{2\pi}|f(re^{i\theta})|^{\mathrm{A}}.d\theta\leqq\int_{0}^{2\pi}|F(re^{i\theta})|^{k}d\theta$.

Since

$f(z)\in \mathrm{S}^{*}$,

we

see that

$\frac{zf’(z)}{f(z)}\prec\frac{1+z}{1-z}$ $(z\in \mathrm{U})$,

where the $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{b}\mathrm{o}\mathrm{l}\prec \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ the subordination. Applying the result by Littlewood [3], we

have for $1<k\leqq 2$ that

$\int_{0}^{2\pi}|\frac{zf’(z)}{f(z)}|^{k}d\theta\leqq I_{0}^{2\pi}|\frac{1+z}{1-z}|^{k}d\theta\leqq\int_{0}^{2\pi}|\frac{1+z}{1-z}|^{2}d\theta$

$=O( \frac{\mathrm{I}}{1-r})$ (as $rarrow 1$). Therefore, for the case of$0<k-1\leqq\alpha<k$,

$I= \int_{0}^{2\pi}|\frac{zf’(z)}{f(z)}|^{k}|\frac{zf’(z)}{f(z)}|^{\frac{k(\alpha-k+1)}{k-\alpha}}d\theta$

$=(o( \frac{1}{1-r})^{\frac{\mathrm{A}(\alpha-k+1)}{k-\alpha}}.)\int_{0}^{2\pi}|\frac{\sim\sim f’(\approx)}{f(z)}|^{k}d\theta$

$=O( \frac{1}{1-r})^{\frac{(k-1)(\alpha-k+1)+1}{k-\alpha}}$

(as $rarrow 1$),

which implies that

$I^{\frac{k-a}{\mathrm{A}}}.=O( \frac{1}{1-r})^{(1^{1})\alpha-(k-2)}-_{\mathrm{F}}\cdot$

Next,

we

have to consider $J$ by using the lemma due to Pommerenke [6]. By

us

$\dot{\mathrm{u}}$ the

lemma and Schwarz lemma, we have, for $0<\alpha<k$, that

(5)

$\leqq\frac{2k^{2}\pi}{\alpha^{2}}I_{0}^{r}\frac{1}{\rho}\{\frac{\rho}{(1-\rho)^{\alpha}}(\log\frac{1}{1-\rho})^{\beta}\}^{\frac{k}{\alpha}}d\rho$

$= \frac{2k^{2}\pi}{\alpha^{2}}\int_{0}^{f}.\frac{\rho^{\frac{k}{\alpha}-1}}{(1-\rho)^{k}}$

. $( \log\frac{1}{1-\rho})^{\frac{k\beta}{\alpha}}d\rho$

$\leqq\frac{2k^{2}\wedge\pi}{a^{2}}\int_{0}^{r}(\frac{1}{1-\rho})^{k}(\log\frac{1}{1-\rho})\frac{k\beta}{\alpha}d\rho$

$\leqq\frac{2k^{2}\pi}{\alpha^{2}}.(\log\frac{1}{1-r})^{\frac{k\beta}{\alpha}}l^{r}(\frac{1}{1-\rho})^{k}d\rho$

$=O(( \frac{1}{1-r})^{k-1}(\log\frac{1}{1-r})^{\frac{k\beta}{\alpha}})$ (as $rarrow 1$),

which gives us that

$J^{\frac{\alpha}{k}}=O(( \frac{1}{1-r})^{\frac{\alpha(k-1)}{k}}(\log\frac{1}{1-r})^{\beta})$

Consequently, we conclude that, for $0<\alpha<k-1$,

$L(r)=O(( \frac{1}{1-r})^{\alpha}(\log\frac{1}{1-r})^{\beta+1-\frac{\alpha}{k}})$ ,

and, for $0<k-1\leqq\alpha<k$,

$L(r)=O(( \frac{1}{1-r})^{2\alpha(1-\frac{1}{k})+(2-k)}(\log\frac{1}{1-r}.)^{\beta})$

This completes tlle proof of our main theorem.

Taking $k=2$ in Theorem, we have

Corollary Let $f(z)\in S^{*}$ and suppose that

$\mathrm{M}(\mathrm{r})={\rm Max}_{|z|=r<1}|f(z)|=O((\frac{1}{1-r})^{\alpha}(\log\frac{1}{1-r})^{\beta})$,

where $0<\alpha<\underline{9}$ and$\beta>0$

.

Then we have

$\mathrm{M}(\mathrm{r})=O((\frac{1}{1-r})^{\alpha}(\log\frac{1}{1-r})^{\beta+1-\frac{\alpha}{2}})$ (for $0<\alpha<1$)

and

(6)

References

45

[1] $\mathrm{t}\forall$

.

K. Hayman, Multivalent Functions, Cambridge Univ. Press, London (1967).

[2] F. R. Keogh, Some theorems on

comformal

mapping

of

bounded star-shaped domains,

Proc. London Math. Soc, $9(1959)$,

481-491.

[3] J. E. Littlewood., On inequalities in the theory

of

functions,Proc. London Math. Soc,

23(1925), 481

–519.

[4] J. E. Littlewood, On the

coefficients of

Schlichtfunctions, Quart. J. Math., $9(1938)$, 14–20.

[5] Z. Nehari,

Comformal

Mapping, Dover Publ., New York (1952).

[6] Ch. Pommerenke,

On

starlike and

convex

functions, J. London Math. Soc, 37(1962),

209

–224.

[7] D. K. Thomas, A note on $sta\mathrm{r}lik^{\wedge}e$ functions, J. London Math. Soc, 43(1968),

703-706.

Mamom Nunokawa

Emeritus

Professor of

University

of

Gunma

Asakuramachi

1-35-12

Maebashi 377-0811

Japan $e$-mail: nunokawa@mg.0038.net

Shigeyoshi $Owa$

Department

of

Mathematics

Kinki University

Higashi-Osaka, Osaka 577-8502

Japan $e$-mail:owa@math.k$\wedge indai$.ac.j

Hitoshi Saitoh

Department

of

Mathematics

Gunma College

of

$Te$chnology

Toriba, Maebashi, Gunma

371-8530

Japan $e$-mail:saitoh@nat.gunma-ct.ac.j

参照

関連したドキュメント

Aouf, On fractional derivative and fractional integrals of certain sub- classes of starlike and convex functions, Math.. Srivastava, Some families of starlike functions with

In this article, we prove the almost global existence of solutions for quasilinear wave equations in the complement of star-shaped domains in three dimensions, with a Neumann

&amp;BSCT. Let C, S and K be the classes of convex, starlike and close-to-convex functions respectively. Its basic properties, its relationship with other subclasses of S,

This class of starlike meromorphic functions is developed from Robertson’s concept of star center points [11].. Ma and Minda [7] gave a unified presentation of various subclasses

Thus, if we color red the preimage by ζ of the negative real half axis and let black the preimage of the positive real half axis, then all the components of the preimage of the

proved that on any bounded symmetric domain (Hermitian symmetric space of non-compact type), for any compactly supported smooth functions f and g , the product of the Toeplitz

We study some properties of subclasses of of the Carath´ eodory class of functions, related to conic sections, and denoted by P(p k ).. Coefficients bounds, estimates of

This is the rst (or \conical&#34;) type of polar decomposition of x , and it generalizes the polar decomposition of matrices. This representation is the second type of