volume 4, issue 5, article 101, 2003.
Received 08 January, 2003;
accepted 07 August, 2003.
Communicated by:B.G. Pachpatte
Abstract Contents
JJ II
J I
Home Page Go Back
Close Quit
Journal of Inequalities in Pure and Applied Mathematics
OSTROWSKI-GRÜSS TYPE INEQUALITIES IN TWO DIMENSIONS
NENAD UJEVI ´C
Department of Mathematics University of Split
Teslina 12/III, 21000 Split CROATIA.
EMail:[email protected]
c
2000Victoria University ISSN (electronic): 1443-5756 003-03
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page2of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Abstract
A general Ostrowski-Grüss type inequality in two dimensions is established. A particular inequality of the same type is also given.
2000 Mathematics Subject Classification:26D10, 26D15.
Key words: Ostrowski’s inequality, 2-dimensional generalization, Ostrowski-Grüss inequality.
Contents
1 Introduction. . . 3 2 A General Ostrowski-Grüss Inequality. . . 4 3 A Particular Inequality . . . 18
References
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page3of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
1. Introduction
In 1938 A. Ostrowski proved the following integral inequality ([17] or [16, p.
468]).
Theorem 1.1. Let f : I → R, where I ⊂ R is an interval, be a mapping differentiable in the interiorInt I ofI, and leta, b∈ Int I, a < b. If|f0(t)| ≤ M,∀t ∈[a, b], then we have
(1.1)
f(x)− 1 b−a
Z b a
f(t)dt
≤
"
1
4+ (x−a+b2 )2 (b−a)2
#
(b−a)M, forx∈[a, b].
The first (direct) generalization of Ostrowski’s inequality was given by G.V.
Milovanovi´c and J. Peˇcari´c in [14]. In recent years a number of authors have written about generalizations of Ostrowski’s inequality. For example, this topic is considered in [2], [4], [6], [9] and [14]. In this way, some new types of in- equalities have been formed, such as inequalities of Ostrowski-Grüss type, in- equalities of Ostrowski-Chebyshev type, etc. The first inequality of Ostrowski- Grüss type was given by S.S. Dragomir and S. Wang in [6]. It was generalized and improved in [9]. X.L. Cheng gave a sharp version of the mentioned inequal- ity in [4]. The first multivariate version of Ostrowski’s inequality was given by G.V. Milovanovi´c in [12] (see also [13] and [16, p. 468]). Multivariate ver- sions of Ostrowski’s inequality were also considered in [3], [7] and [11]. In this paper we give a general two-dimensional Ostrowski-Grüss inequality. For that purpose, we introduce specially defined polynomials, which can be consid- ered as harmonic or Appell-like polynomials in two dimensions. In Section3 we use the mentioned general inequality to obtain a particular two-dimensional Ostrowski-Grüss type inequality.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page4of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
2. A General Ostrowski-Grüss Inequality
LetΩ = [a, b]×[a, b]and letf : Ω→Rbe a given function. Here we suppose thatf ∈C2n(Ω). LetPk(s)andQk(t)be harmonic or Appell-like polynomials, i.e.
(2.1) Pk0(s) =Pk−1(s)andQ0k(t) =Qk−1(t), k= 1,2, . . . , n+ 1, with
(2.2) P0(s) = Q0(t) = 1.
We also define
(2.3) Rk(s, t) =Pk(s)Qk(t), k = 0,1,2, . . . , n+ 1.
Lemma 2.1. LetRk(s, t)be defined by (2.3). Then we have
(2.4) ∂2Rk(s, t)
∂s∂t =Rk−1(s, t) fork = 1,2, . . . , n+ 1.
Proof. From (2.1) – (2.3) it follows that
∂2Rk(s, t)
∂s∂t = ∂
∂t
∂Rk(s, t)
∂s
= ∂
∂t(Pk0(s)Qk(t))
=Pk−1(s)Q0k(t)
=Pk−1(s)Qk−1(t) =Rk−1(s, t).
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page5of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
We now define (2.5) Jk =
Z b a
Rk(b, t)∂2k−1f(b, t)
∂sk−1∂tk −Rk(a, t)∂2k−1f(a, t)
∂sk−1∂tk
dt,
(2.6) uk−1(t) = ∂k−1f(b, t)
∂sk−1 , vk−1(t) = ∂k−1f(a, t)
∂sk−1 , fork = 1,2, . . . , n. We also define
(2.7) Jk,1 = Z b
a
Rk(b, t)∂2k−1f(b, t)
∂sk−1∂tk dt =Pk(b) Z b
a
Qk(t)u(k)k−1(t)dt and
(2.8) Jk,2 = Z b
a
Rk(a, t)∂2k−1f(a, t)
∂sk−1∂tk dt=Pk(a) Z b
a
Qk(t)vk−1(k) (t)dt such that
(2.9) Jk =Jk,1−Jk,2.
Lemma 2.2. LetJk,1be defined by (2.7). Then we have (2.10) Jk,1 =Pk(b)
k
X
j=1
(−1)k−jh
Qj(b)u(j−1)k−1 (b)−Qj(a)u(j−1)k−1 (a)i + (−1)kPk(b)
Z b a
uk−1(t)dt, fork = 1,2, . . . , n.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page6of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Proof. We introduce the notation
Uk(uk−1) = Z b
a
Qk(t)u(k)k−1(t)dt.
Then we have
(−1)kUk(uk−1) = (−1)k Z b
a
Qk(t)u(k)k−1(t)dt
= (−1)kh
Qk(b)u(k−1)k−1 (b)−Qk(a)u(k−1)k−1 (a)i + (−1)k−1
Z b a
Qk−1(t)u(k−1)k−1 (t)dt.
We can write the above relation in the form (−1)kUk(uk−1)
= (−1)kh
Qk(b)u(k−1)k−1 (b)−Qk(a)u(k−1)k−1 (a)i
+ (−1)k−1Uk−1(uk−1).
In a similar way we get
(−1)k−1Uk−1(uk−1) = (−1)k−1 Z b
a
Qk−1(t)u(k−1)k−1 (t)dt
= (−1)k−1h
Qk−1(b)u(k−2)k−1 (b)−Qk−1(a)u(k−2)k−1 (a)i + (−1)k−2
Z b a
Qk−2(t)u(k−2)k−1 (t)dt
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page7of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
or
(−1)k−1Uk−1(uk−1)
= (−1)k−1h
Qk−1(b)u(k−2)k−1 (b)−Qk−1(a)u(k−2)k−1 (a) i
+ (−1)k−2Uk−2(uk−1).
If we continue the above procedure then we obtain (−1)kUk(uk−1)
=
k
X
j=1
(−1)jh
Qj(b)u(j−1)k−1 (b)−Qj(a)u(j−1)k−1 (a)i
+U0(uk−1)
=
k
X
j=1
(−1)jh
Qj(b)u(j−1)k−1 (b)−Qj(a)u(j−1)k−1 (a)i +
Z b a
uk−1(t)dt.
Note now that
Jk,1 =Pk(b)Uk(uk−1) such that (2.10) holds.
Lemma 2.3. LetJk,2be defined by (2.8). Then we have (2.11) Jk,2 =Pk(a)
k
X
j=1
(−1)k−jh
Qj(b)v(j−1)k−1 (b)−Qj(a)v(j−1)k−1 (a) i
+ (−1)kPk(a) Z b
a
vk−1(t)dt,
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page8of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
fork = 1,2, . . . , n.
Proof. The proof is almost identical to that of Lemma2.2.
We now define (2.12) Kk =
Z b a
∂Rk(s, b)
∂s
∂2k−2f(s, b)
∂sk−1∂tk−1 − ∂Rk(s, a)
∂s
∂2k−2f(s, a)
∂sk−1∂tk−1
ds, fork = 2, . . . , n,
(2.13) xk−1(s) = ∂k−1f(s, b)
∂tk−1 , yk−1(s) = ∂k−1f(s, a)
∂tk−1 and
(2.14) K1 =Q1(b) Z b
a
x0(s)ds−Q1(a) Z b
a
y0(s)ds.
We also define
Kk,1 = Z b
a
∂Rk(s, b)
∂s
∂2k−2f(s, b)
∂sk−1∂tk−1 ds (2.15)
=Qk(b) Z b
a
Pk−1(s)x(k−1)k−1 (s)ds and
Kk,2 = Z b
a
∂Rk(s, a)
∂s
∂2k−2f(s, a)
∂sk−1∂tk−1 ds (2.16)
=Qk(a) Z b
a
Pk−1(s)yk−1(k−1)(s)ds
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page9of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
such that
(2.17) Kk =Kk,1−Kk,2,k = 1,2, . . . , n.
Lemma 2.4. LetKk,1be defined by (2.15). Then we have
(2.18) Kk,1 =Qk(b)
k
X
j=2
(−1)k−j+1h
Pj−1(b)x(j−2)k−1 (b)−Pj−1(a)x(j−2)k−1 (a) i
+ (−1)k−1Qk(b) Z b
a
xk−1(s)ds, fork = 2, . . . , n.
Proof. We introduce the notation
Uk−1(xk−1) = Z b
a
Pk−1(s)x(k−1)k−1 (s)ds.
Then we have
(−1)k−1Uk−1(xk−1) = (−1)k−1 Z b
a
Pk−1(s)x(k−1)k−1 (s)ds
= (−1)k−1h
Pk−1(b)x(k−2)k−1 (b)−Pk−1(a)x(k−2)k−1 (a)i + (−1)k−2
Z b a
Pk−2(s)x(k−2)k−1 (s)ds.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page10of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
We can write the above relation in the form (−1)k−1Uk−1(xk−1)
= (−1)k−1h
Pk−1(b)x(k−2)k−1 (b)−Pk−1(a)x(k−2)k−1 (a)i
+ (−1)k−2Uk−2(xk−1).
In a similar way we get
(−1)k−2Uk−2(xk−1) = (−1)k−2 Z b
a
Pk−2(s)x(k−2)k−1 (s)ds
= (−1)k−2h
Pk−2(b)x(k−3)k−1 (b)−Pk−2(a)x(k−3)k−1 (a)i + (−1)k−3
Z b a
Pk−3(s)x(k−3)k−1 (s)ds or
(−1)k−2Uk−2(xk−1)
= (−1)k−2h
Pk−2(b)x(k−3)k−1 (b)−Pk−2(a)x(k−3)k−1 (a)i
+ (−1)k−3Uk−3(xk−1).
If we continue the above procedure then we get (−1)k−1Uk−1(xk−1)
=
k
X
j=2
(−1)j−1h
Pj−1(b)x(j−2)k−1 (b)−Pj−1(a)x(j−2)k−1 (a)i
+U0(xk−1)
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page11of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
=
k
X
j=2
(−1)j−1h
Pj−1(b)x(j−2)k−1 (b)−Pj−1(a)x(j−2)k−1 (a)i +
Z b a
xk−1(t)dt.
Note now that
Kk,1 =Qk(b)Uk−1(xk−1) such that (2.18) holds.
Lemma 2.5. LetKk,2be defined by (2.16). Then we have (2.19) Kk,2 =Qk(a)
k
X
j=2
(−1)k−j+1h
Pj−1(b)yk−1(j−2)(b)−Pj−1(a)yk−1(j−2)(a)i + (−1)k−1Qk(a)
Z b a
yk−1(s)ds, fork = 2, . . . , n.
Proof. The proof is almost identical to that of Lemma2.4.
Let (X,h·,·i) be a real inner product space and e ∈ X, kek = 1. Let γ, ϕ,Γ,Φbe real numbers andx, y ∈X such that the conditions
(2.20) hΦe−x, x−ϕei ≥0and hΓe−y, y−γei ≥0 hold. In [5] we can find the inequality
(2.21) |hx, yi − hx, ei hy, ei| ≤ 1
4|Φ−ϕ| |Γ−γ|.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page12of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
We also have
(2.22) |hx, yi − hx, ei hy, ei| ≤ kxk2− hx, ei212
kyk2− he, yi212 . LetX =L2(Ω)ande= 1/(b−a). If we define
(2.23) T(f, g) = 1 (b−a)2
Z b a
Z b a
f(t, s)g(t, s)dtds
− 1 (b−a)4
Z b a
Z b a
f(t, s)dtds Z b
a
Z b a
g(t, s)dtds, then from (2.20) and (2.21) we obtain the Grüss inequality inL2(Ω),
(2.24) |T(f, g)| ≤ 1
4(Γ−γ)(Φ−ϕ), if
γ ≤f(x, y)≤Γ, ϕ ≤g(x, y)≤Φ,(x, y)∈Ω.
From (2.22), we have the pre-Grüss inequality (2.25) T(f, g)2 ≤T(f, f)T(g, g).
We now define
(2.26) In=
Z b a
Z b a
Rn(s, t)∂2nf(s, t)
∂sn∂tn dsdt and
(2.27) Sn= 1
(b−a)2 Z b
a
Z b a
Rn(s, t)dsdt Z b
a
Z b a
∂2nf(s, t)
∂sn∂tn dsdt.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page13of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Lemma 2.6. LetInandSnbe defined by (2.26) and (2.27), respectively. Then we have the inequality
(2.28) |In−Sn| ≤ M2n−m2n
2 C(b−a)2, where
M2n= max
(s,t)∈Ω
∂2nf(s, t)
∂sn∂tn , m2n = min
(s,t)∈Ω
∂2nf(s, t)
∂sn∂tn and
(2.29) C =
1 (b−a)2
Z b a
Pn(s)2ds Z b
a
Qn(t)2dt
− 1 (b−a)4
Z b a
Pn(s)ds Z b
a
Qn(t)dt 2)12
. Proof. From (2.23), (2.26) and (2.27) we see that
In−Sn = (b−a)2T
Rn(s, t),∂2nf(s, t)
∂sn∂tn
. Then from (2.25) we get
|In−Sn| ≤(b−a)2T (Rn(s, t), Rn(s, t))12 T
∂2nf(s, t)
∂sn∂tn ,∂2nf(s, t)
∂sn∂tn 12
. From (2.24) we have
T
∂2nf(s, t)
∂sn∂tn ,∂2nf(s, t)
∂sn∂tn 12
≤ M2n−m2n
2 .
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page14of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
We also have
T (Rn(s, t), Rn(s, t)) = 1 (b−a)2
Z b a
Pn(s)2ds Z b
a
Qn(t)2dt
− 1 (b−a)4
Z b a
Pn(s)ds Z b
a
Qn(t)dt 2
. From the last three relations we see that (2.28) holds.
Theorem 2.7. LetΩ = [a, b]×[a, b]and letf : Ω→Rbe a given function such thatf ∈C2n(Ω). Let the conditions of Lemma2.6hold. IfJk,Kkare given by (2.9), (2.17), where Jk,1, Jk,2, Kk,1, Kk,2 are given by Lemmas2.2 –2.5, then we have the inequality
(2.30)
Z b a
Z b a
f(s, t)dsdt+
n
X
k=1
Jk−
n
X
k=1
Kk−Sn
≤ M2n−m2n
2 C(b−a)2, where
(2.31) Sn = 1
(b−a)2[Pn+1(b)−Pn+1(a)] [Qn+1(b)−Qn+1(a)]
×[v(b, b)−v(b, a)−v(a, b) +v(a, a)], andv(s, t) = ∂s∂2n−2n−1∂tt(s,t)n−1.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page15of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Proof. We have
In= Z b
a
Z b a
Rn(s, t)∂2nf(s, t)
∂sn∂tn dsdt (2.32)
= Z b
a
dt Z b
a
Rn(s, t) ∂
∂s
∂2n−1f(s, t)
∂sn−1∂tn
ds
= Z b
a
Rn(b, t)∂2n−1f(b, t)
∂sn−1∂tn −Rn(a, t)∂2n−1f(a, t)
∂sn−1∂tn
dt
− Z b
a
Z b a
∂Rn(s, t)
∂s
∂2n−1f(s, t)
∂sn−1∂tn dsdt
=Jn−Ln, where
Ln = Z b
a
Z b a
∂Rn(s, t)
∂s
∂2n−1f(s, t)
∂sn−1∂tn dsdt.
We also have Ln =
Z b a
ds Z b
a
∂Rn(s, t)
∂s
∂
∂t
∂2n−2f(s, t)
∂sn−1∂tn−1
dt
= Z b
a
∂Rn(s, b)
∂s
∂2n−2f(s, b)
∂sn−1∂tn−1 −∂Rn(s, a)
∂s
∂2n−2f(s, a)
∂sn−1∂tn−1
ds
− Z b
a
Z b a
Rn−1(s, t)∂2n−2f(s, t)
∂sn−1∂tn−1dsdt
=Kn−In−1.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page16of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Hence, we have
In=Jn−Kn+In−1. In a similar way we obtain
In−1 =Jn−1−Kn−1+In−2. If we continue this procedure then we get
(2.33) In =
n
X
k=1
Jk−
n
X
k=1
Kk+I0, where
(2.34) I0 =
Z b a
Z b a
f(s, t)dsdt.
We now consider the term
(2.35) Sn = 1
(b−a)2 Z b
a
Z b a
Rn(s, t)dsdt Z b
a
Z b a
∂2nf(s, t)
∂sn∂tn dsdt.
We have Z b
a
Z b a
Rn(s, t)dsdt= Z b
a
Pn(s)ds Z b
a
Qn(t)dt
= [Pn+1(b)−Pn+1(a)] [Qn+1(b)−Qn+1(a)]
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page17of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
and Z b
a
Z b a
∂2nf(s, t)
∂sn∂tn dsdt
= Z b
a
dt Z b
a
∂
∂s
∂2n−1f(s, t)
∂sn−1∂tn
ds
= Z b
a
∂2n−1f(b, t)
∂sn−1∂tn − ∂2n−1f(a, t)
∂sn−1∂tn
dt
= ∂2n−2f(b, b)
∂sn−1∂tn−1 − ∂2n−2f(b, a)
∂sn−1∂tn−1 − ∂2n−1f(a, b)
∂sn−1∂tn−1 +∂2n−1f(a, a)
∂sn−1∂tn−1
= [v(b, b)−v(b, a)−v(a, b) +v(a, a)], Thus (2.31) holds. From (2.33) – (2.35) we see that
In−Sn= Z b
a
Z b a
f(s, t)dsdt+
n
X
k=1
Jk−
n
X
k=1
Kk−Sn. Then from Lemma2.6we conclude that (2.30) holds.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page18of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
3. A Particular Inequality
Here we use the notations introduced in Section2. In Theorem2.7 we proved a general inequality of Ostrowski-Grüss type. Many particular inequalities can be obtained if we choose specific harmonic or Appell-like polynomials Pk(s), Qk(t)in (2.30). For example, in [8] we can find the following harmonic poly- nomials
Pk(s) = 1
k!(s−a)k, Pk(s) = 1
k!
s− a+b 2
k
, Pk(s) = (b−a)k
k! Bk
s−a b−a
, Pk(s) = (b−a)k
k! Ek
s−a b−a
,
whereBk(s)andEk(s)are Bernoulli and Euler polynomials, respectively. We shall not consider all possible combinations of these polynomials. Here we choose the following combination
Pk(s) = (b−a)k k! Bk
s−a b−a
(3.1) ,
Qk(t) = (b−a)k k! Bk
t−a b−a
.
We now substitute the above polynomials in (2.10), (2.11), (2.18), (2.19) to obtain
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page19of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Jk,1 = ¯Jk,1 (3.2)
= (b−a)k k! Bk(1)
k
X
j=1
(−1)k−j(b−a)j j!
×h
Bj(1)u(j−1)k−1 (b)−Bj(0)u(j−1)k−1 (a) i
+ (−1)kBk(1)(b−a)k k!
Z b a
uk−1(t)dt, Jk,2 = ¯Jk,2
(3.3)
= (b−a)k k! Bk(0)
k
X
j=1
(−1)k−j(b−a)j j!
×h
Bj(1)vk−1(j−1)(b)−Bj(0)vk−1(j−1)(a) i
+ (−1)kBk(0)(b−a)k k!
Z b a
vk−1(t)dt, Kk,1 = ¯Kk,1
(3.4)
= (b−a)k k! Bk(1)
k
X
j=2
(−1)k−j+1(b−a)j−1 (j−1)!
×h
Bj−1(1)x(j−2)k−1 (b)−Bj−1(0)x(j−2)k−1 (a)i + (−1)k−1(b−a)k
k! Bk(1) Z b
a
xk−1(s)ds,
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page20of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
and
Kk,2 = ¯Kk,2 (3.5)
= (b−a)k k! Bk(0)
k
X
j=2
(−1)k−j+1(b−a)j−1 (j −1)!
×h
Bj−1(1)y(j−2)k−1 (b)−Bj−1(0)yk−1(j−2)(a)i + (−1)k−1(b−a)k
k! Bk(0) Z b
a
yk−1(s)ds.
We have
(3.6) Jk = ¯Jk = ¯Jk,1−J¯k,2,k = 1,2, . . . , n,
(3.7) Kk = ¯Kk= ¯Kk,1−K¯k,2, k = 2, . . . , n and
(3.8) K¯1 = b−a 2
Z b a
x0(s)ds+ Z b
a
y0(s)ds
,
whereJ¯k,1,J¯k,2,K¯k,1,K¯k,2are defined by (3.2) – (3.5), respectively.
Basic properties of Bernoulli polynomials can be found in [1]. Here we emphasize the following properties:
(3.9)
Z 1 0
Bk(s)ds = 0, k = 1,2, . . .
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page21of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
and (3.10)
Z 1 0
Bk(s)Bj(s)ds = (−1)k−1 k!j!
(k+j)!Bk+j, k, j = 1,2, . . . , where
(3.11) Bk=Bk(0),k = 0,1,2, . . . are Bernoulli numbers. We also have
(3.12) B2i+1 = 0,i= 1,2, . . . ,
(3.13) Bk(0) =Bk(1) =Bk,k= 0,2,3,4, . . . , and, in particular,
(3.14) B1(0) =−1
2, B1(1) = 1 2. From (3.2) – (3.8) and (3.12) we see that
(3.15) J¯2i+1 = ¯K2i+1 = 0, i= 1,2, . . . , n.
Note also that sums in (3.2) – (3.5) have only even-indexed terms and the term forj = 1 (j = 2)is non-zero.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page22of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
Theorem 3.1. Under the assumptions of Theorem2.7we have
(3.16)
Z b a
Z b a
f(s, t)dsdt+
n
X
k=1
J¯k−
n
X
k=1
K¯k
≤ M2n−m2n
2 ·|B2n|
(2n)!(b−a)2n+2, where Bk are Bernoulli numbers and J¯k, K¯k are given by (3.6), (3.7), respec- tively.
Proof. The proof follows from the proof of Theorem2.7, since the following is valid. LetPnandQnbe defined by (3.1), fork=n.
Firstly, we have Sn = 1
(b−a)2 Z b
a
Z b a
Rn(s, t)dsdt Z b
a
Z b a
∂2nf(s, t)
∂sn∂tn dsdt= 0, since
Z b a
Z b an
(s, t)dsdt= Z b
a
Pn(s)ds Z b
a
Qn(t)dt
= Z b
a
Pn(s)ds 2
=
(b−a)n+1 n!
1
Z
0
Bn(s)ds
2
= 0,
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page23of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
because of (3.9).
Secondly, we have C =
1 (b−a)2
Z b a
Pn(s)2ds Z b
a
Qn(t)2dt
− 1 (b−a)4
Z b a
Pn(s)ds Z b
a
Qn(t)dt 2)12
= 1
(b−a)2 Z b
a
Pn(s)2ds Z b
a
Qn(t)2dt 12
= 1
b−a Z b
a
Pn(s)2ds
= 1
b−a ·(b−a)2n+1 (n!)2
Z 1 0
Bn(s)2ds
= (b−a)2n (n!)2
(n!)2
(2n)!|B2n|= |B2n|
(2n)!(b−a)2n, since (3.10) holds.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page24of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
References
[1] M. ABRAMOWITZ ANDI.A. STEGUN (Eds), Handbook of Mathemati- cal Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Wash- ington, 1965
[2] G.A. ANASTASSIOU, Multivariate Ostrowski type inequalities, Acta Math. Hungar., 76 (1997), 267–278.
[3] G.A. ANASTASSIOU, Ostrowski type inequalities, Proc. Amer. Math.
Soc., 123(12) (1995), 3775–3781.
[4] X.L. CHENG, Improvement of some Ostrowski-Grüss type inequalities, Comput. Math. Appl., 42 (2001), 109–114.
[5] S.S. DRAGOMIR, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74–82.
[6] S.S. DRAGOMIRANDS. WANG, An inequality of Ostrowski–Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33(11) (1997), 16–20.
[7] G. HANNA, P. CERONE AND J. ROUMELIOTIS, An Ostrowski type inequality in two dimensions using the three point rule, ANZIAM J., 42(E) (2000), 671–689.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page25of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
[8] M. MATI ´C, J. PE ˇCARI ´C AND N. UJEVI ´C, On new estimation of the remainder in generalized Taylor’s formula, Math. Inequal. Appl., 2(3), (1999), 343–361.
[9] M. MATI ´C, J. PE ˇCARI ´CANDN. UJEVI ´C, Improvement and further gen- eralization of some inequalities of Ostrowski-Grüss type, Comput. Math.
Appl., 39 (2000), 161–175.
[10] M. MATI ´C, J. PE ˇCARI ´C AND N. UJEVI ´C, Generalizations of weighted version of Ostrowski’s inequality and some related results, J. Inequal.
Appl., 5 (2000), 639–666.
[11] M. MATI ´C, J. PE ˇCARI ´CANDN. UJEVI ´C, Weighted version of multivari- ate Ostrowski type inequalities, Rocky Mountain J. Math, 31(2) (2001), 511–538.
[12] G.V. MILOVANOVI ´C, On some integral inequalities, Univ. Beograd Publ.
Elektrotehn. Fak. Ser. Mat. Fiz., No 498-541, (1975), 119–124.
[13] G.V. MILOVANOVI ´C, O nekim funkcionalnim nejednakostima, Univ.
Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No 599, (1977), 1–59.
[14] G.V. MILOVANOVI ´C AND J.E. PE ˇCARI ´C, On generalization of the in- equality of A. Ostrowski and some related applications, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No 544-576, (1976), 155-158.
[15] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
Ostrowski-Grüss type Inequalities in Two Dimensions
Nenad Ujevi´c
Title Page Contents
JJ II
J I
Go Back Close
Quit Page26of26
J. Ineq. Pure and Appl. Math. 4(5) Art. 101, 2003
http://jipam.vu.edu.au
[16] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities Involv- ing Functions and Their Integrals and Derivatives, Kluwer Acad. Publ., Dordrecht, Boston/London, 1991.
[17] A. OSTROWSKI, Über die Absolutabweichung einer Differentiebaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
[18] B.G. PACHPATTE, On multidimensional Grüss type inequalities, J. In- equal. Pure Appl. Math., 3(2) (2002), Article 27. [ONLINE http://
jipam.vu.edu.au/v3n2/063_01.html].