www.i-csrs.org
Available free online at http://www.geman.in
Maximal Subgroups of the Semigroup B
X(D) Defined by Semilattices of the Class Ʃ
3(X, 8)Giuli Tavdgiridze
Faculty of Physics, Mathematics and Computer Sciences Department of Mathematics, Shota Rustaveli Batumi State University
35, Ninoshvili St., Batumi 6010, Georgia E-mail: [email protected] (Received: 19-12-14 / Accepted: 30-1-15)
Abstract By the symbol Ʃ3(X, 8)
we denote the class of all X- semilattices of unions whose every element is isomorphic to an X- semilattice of form D = {Z7, Z6, Z5, Z4, Z3, Z2, Z1, D}, where
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
{ }
7 5 3 1 7 6 4 2 7 5 4 1 7 5 4 2
7 6 4 1
, , , ,
,
\ , , 5,6 , 6,5 , 3,6 , 6,3 , 4,3 , 3, 4 , 2,3 , 3, 2 , 2,1 , 1, 2 .
i j
Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
Z Z Z Z D
Z Z i j
⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂
≠ ∅ ∈
⌣ ⌣ ⌣ ⌣
⌣
In the given paper we give a full description maximal subgroups of the complete semigroups of binary elations defined by semilattices of the class Ʃ3(X, 8)
. Keywords: Semilattice, Semigroup, Binary Relation, Idempotent Element.
1 Introduction
Let X be an arbitrary nonempty set, D be a X-semilattice of unions, i.e. a nonempty set of subsets of the set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbitrary mapping from X into D. To each such a mapping f there corresponds a binary relation αf on the set X that satisfies the condition f
( { } ( ) )
x X
x f x α
∈
=
∪
× . The set of all such αf (f : X→D) is denoted by BX (D). It is easy to prove that BX (D) is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by a X-semilattice of unions D (see [1, Item 2.1, p. 34]).By ∅ we denote an empty binary relation or empty subset of the set X. The condition
( )
x y, ∈α will be written in the form x yα . Further let x y X, ∈ , Y⊆X ,( )
BX D
α∈ , T∈D, ∅ ≠D′⊆D and
Y D
t D Y
∈
∈ =⌣
∪
. Then by symbols we denote the following sets:
{ } ( ) { }
{ } { } ( )
{ } { } ( ) ( )
| , , , | ,
| , | , { | }, 1.1
| , | , , \ .
y Y
t T
T T T
y x X y x Y y V D Y Y D
X T T X D Z D t Z Y x X x T D Z D T Z D Z D Z T l D T D D
α
α α α α α α
∈ α
∗
= ∈ = = ∈
′ ′ ′ ′
= ∅ ≠ ⊆ = ∈ ∈ = ∈ =
′= ′∈ ′ ⊆ ′ ɺɺ′ = ′∈ ′ ′⊆ ′ = ∪ ′ ′
∪
Under symbol ˄ (D, Dt) we mean an exact lower bound of the set Dt in the semilattice D.
Definition 1.1: Let ε∈BX
( )
D . If ε ε ε= or α ε α= for any α∈BX( )
D , then ε is called an idempotent element or called right unit of the semigroup BX (D) respectively (see [1], [2], [3]).Definition 1.2: We say that a complete X −semilattice of unions D is an
XI−semilattice of unions if it satisfies the following two conditions:
a) ∧
(
D D, t)
∈D for any t∈D⌣ ;b)
(
, t)
t Z
Z D D
∈
= ∧
∪
for any nonempty element Z of D(see [1, Definition 1.14.2], [2, Definition 1.14.2] or [6]).Definition 1.3: The one-to-one mapping ϕ between the complete X−semilattices of unions D′ and D′′is called a complete isomorphism if the condition
( ) ( )
1 1
T D
D T
ϕ ϕ
′∈
∪ =
∪
′ is fulfilled for each nonempty subset D1 of the semilattice D′(see [1, Definition 6.2.3], [2, Definition 6.2.3] or [5]).Definition 1.4: We say that a nonempty element T is a nonlimiting element of the set D′ if T l D T\
(
′,)
≠ ∅ and a nonempty element T is a limiting element of the set D′ if T l D T\(
′,)
= ∅(see [1, Definition 1.13.1 and 1.13.2] or [2, Definition 1.13.1 and 1.13.2]).Theorem 1.1: Let X be a finite set and D
( )
α be the set of all those elements T of the semilattice Q=V D(
,α) { }
\ ∅ which are nonlimiting elements of the set QɺɺT. A binary relation α having a quasinormal representation( )
( , ) T
T V D
Yα T
α
α
∈
=
∪
× is an idempotent element of this semigroup iffa) V D
(
,α)
is complete XI−semilattise of unions;b)
( )T T
T D
Yα T
α ′
′∈
⊇
∪
ɺɺ for any T∈D( )
α ;c) YTα∩ ≠ ∅T for any nonlimiting element of the set Dɺɺ
( )
α T (see [1, Theorem 6.3.9], [2, Theorem 6.3.9] or [5]).Theorem 1.2: Let D=
{
D Z Z⌣, 1, 2,...,Zm−1}
be some finite X-semilattice of unions and( ) {
0, 1, 2,..., m 1}
C D = P P P P− be the family of sets of pairwise nonintersecting subsets of the set X. If ϕ is a mapping of the semilattice D on the family of sets C(D) which satisfies the condition ϕ
( )
D⌣ =P0 and ϕ( )
Zi =Pi for any i=1, 2,...,m−1 and{ }
ˆZ \ |
D =D T∈D Z⊆T , then the following equalities are valid:
( )
0 1 2 1 0
ˆ
... , .
Zi
m i
T D
D P P P P− Z P ϕ T
∈
= ∪ ∪ ∪ ∪ = ∪
⌣
∪
(1.2)In the sequel these equalities will be called formal.
It is proved that if the elements of the semilattice D are represented in the form (1.2), then among the parameters Pi
(
i=0,1, 2,...,m−1)
there exist such parameters that cannot be empty sets. Such sets Pi(
0< ≤ −i m 1)
are called basis sources, whereas sets Pj(
0≤ ≤ −j m 1)
which can be empty sets too are called completeness sources.The number the basis sources we denote by symbol δ .
It is proved that under the mapping ϕ the number of covering elements of the pre- image of a basis source is always equal to one, while under the mapping ϕ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1, Item 11.4], [2, Item 11.4] or [3]).
Denote by the symbol G DX
( )
,ε a maximal subgroup of the semigroup BX (D) whose unit is an idempotent binary relationε
of the semigroup BX (D).Theorem 1.3: For any idempotent element ε ∈BX
( )
D , the group G DX( )
,ε is antiisomorphic to the group of all complete automorphism of the semilattice(
,)
V D ε (see [1, Theorem 7.4.2], [2, Theorem 7.4.2] or [4]).
2 Results
Let X and Σ3
( )
X,8 be respectively an any nonempty set and a class intreisomorphic X-semilattices of unions where every element is isomorphic to some X-semilattice of unions D={
Z7,Z6,Z5,Z4,Z3,Z2,Z D1, ⌣}
, that satisfying the conditions.
7 6 4 2 7 6 4 1
7 5 4 2 7 5 4 1
7 5 3 1
1 2 2 1 3 2 2 3
3 4 4 3 3 6 6 3
5 6 6 5
, ,
, ,
;
\ , \ , \ , \ ,
\ , \ , \ , \ ,
\ , \ ;
Z Z Z Z D Z Z Z Z D
Z Z Z Z D Z Z Z Z D
Z Z Z Z D
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z
⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
⊂ ⊂ ⊂ ⊂
≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅
≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅
≠ ∅ ≠ ∅
⌣ ⌣
⌣ ⌣
⌣
(2.1)
The semilattice satisfying the conditions (2.1) is shown in Figure 1.
Fig. 1
Lemma 2.1: Let D∈Σ3(X,8). Then the following sets exhaust all subsemilattices of the semilattice D=
{
Z Z Z Z Z Z Z D7, 6, 5, 4, 3, 2, 1,⌣}
.){ } { } { } { } { } { } { }
Z7 , Z6 , Z5 , Z4 , Z3 , Z2 , Z1 ,{ }
D .1 ⌣
(see diagram 1 of the figure 2);
){ } { } { } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { }
7 1 7 2 7 3 7 4 7 5 7 6 7
6 4 6 2 6 1 6 5 4 5 3 5 2
5 1 5 4 2 4 1 4 3 1 3
2 1
2 , , , , , , , , , , , , , ,
, , , , , , , , , , , , , ,
, , , , , , , , , , , , , ,
, , , .
Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z Z D Z Z Z Z Z D Z Z Z D Z D Z D
⌣
⌣
⌣ ⌣ ⌣
⌣ ⌣
(see diagram 2 of the figure 2);
D
⌣
Z1 Z2 Z3 Z4
Z5
Z6
Z7
) { } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }
7 6 4 7 5 2 7 6 1 7 6 7 5 4
7 5 3 7 5 2 7 5 1 7 5 7 4 2
7 4 1 7 4 7 3 1 7 3 7 2
7 1 6 4 2 6 4 1 6 4 6 2
3 , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z D Z Z Z Z Z D Z Z D Z Z D Z Z Z Z Z Z Z Z D Z Z D
⌣
⌣
⌣ ⌣ ⌣
⌣ ⌣ ⌣
{ } { } { } { } { }
{ } { } { } { } { }
{ }
6 1 5 4 2 5 4 1 5 4 5 3 1
5 3 5 2 5 1 4 2 4 1
3 1
, , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
, , .
Z Z D Z Z Z Z Z Z Z Z D Z Z Z Z Z D Z Z D Z Z D Z Z D Z Z D Z Z D
⌣ ⌣
⌣ ⌣ ⌣ ⌣ ⌣
⌣
(see diagram 3 of the figure 2);
) { } { } { } { }
{ } { } { } { }
{ } { } { } { }
{ } { } { }
7 6 4 2 7 6 4 1 7 6 4 7 6 2
7 6 1 7 5 4 2 7 5 4 1 7 5 4
7 5 3 1 7 5 3 7 5 2 7 5 1
7 4 2 7 4 1 7 3 1
4 , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , ,
, , , , , , , , , , , ,
Z Z Z Z Z Z Z Z Z Z Z D Z Z Z D Z Z Z D Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
⌣ ⌣
⌣ ⌣
⌣ ⌣ ⌣
⌣ ⌣ ⌣
{ }
{ } { } { } { }
5 4 2
5 3 1 5 4 1 6 4 2 6 4 1
, , , ,
, , , , , , , , , , , , , , , .
Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D
⌣
⌣ ⌣ ⌣ ⌣
(see diagram 4 of the figure 2);
) { } { } { } { }
{
77 65 43 12}
7 6 4 1 7 5 4 1 7 5 4 25 , , , , , , , , , , , , , , , , , , , ,
, , , , .
Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
⌣ ⌣ ⌣ ⌣
⌣
(see diagram 5 of the figure 2);
) { } { } { } { }
{
76 42 13 1} {
77 62 31 1} {
77 36 52 4} {
54 32 21}
6 , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , .
Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z D Z Z Z Z Z Z Z D Z Z Z D
⌣ ⌣
⌣ ⌣ ⌣
(see diagram 6 of the figure 2);
) { } { } { }
{ } { } { }
{ }
7 6 2 1 7 5 4 3 1 7 5 3 2
7 5 2 1 7 4 2 1 6 4 2 1
5 4 2 1
7 , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
, , , , .
Z Z Z Z D Z Z Z Z Z Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
⌣ ⌣
⌣ ⌣ ⌣
⌣
(see diagram 7 of the figure 2);
) {
7 6 4 2 1} {
7 5 4 2 1}
8 Z Z Z Z Z D, , , , ,⌣ ; Z Z Z Z Z D, , , , , ⌣ .
(see diagram 8 of the figure 2);
) {
7 5 4 3 1}
9 Z Z Z Z Z D, , , , , .
⌣ (see diagram 9 of the figure 2);
) { } { } { }
{
77 66 35 14} {
2 57 46 35 1 4} {
1 7 74 63 51 4}
10 , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , ,
Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z D Z Z Z Z D Z Z Z Z D
⌣
⌣ ⌣ ⌣
(see diagram 10 of the figure 2);
) {
7 6 5 4 2} {
7 6 5 4 1}
11 Z Z Z Z Z D, , , , ,⌣ , Z Z Z Z Z D, , , , , ⌣ .
(see diagram 11 of the figure 2);
) {
7 6 5 4 3 1} {
7 6 3 2 1} {
7 4 3 2 1} {
5 4 3 2 1}
12 Z Z Z Z Z Z, , , , , , Z Z Z Z Z D, , , , , ⌣ , Z Z Z Z Z D, , , , ,⌣ , Z Z Z Z Z D, , , , ,⌣ . (see diagram 12 of the figure 2);
13)
{
Z Z Z Z Z Z D7, 5, 4, 3, 2, 1,⌣}
.(see diagram 13 of the figure 2);
14)
{
Z Z Z Z Z Z D7, 6, 5, 4, 3, 1,}
,⌣ (see diagram 14 of the figure 2);
15)
{
Z Z Z Z Z Z D7, 6, 5, 4, 2, 1,⌣}
,(see diagram 15 of the figure 2);
16)
{
Z Z Z Z Z Z Z D7, 6, 5, 4, 3, 2, 1, ⌣}
.(see diagram 16 of the figure 2);
17)
{
Z Z D3, 2, ⌣} {
, Z Z D2, 1, ⌣}
.{
Z Z Z6, 5, 4} {
, Z Z Z6, 3, 1} {
, Z Z Z4, 3, 1}
.(see diagram 17 of the figure 2);
{ } { } { } { }
{
66 53 14}
6 5 4 2 6 5 4 1 4 3 118) , , , , , , , , , , , , , , , ,
, , , .
Z Z Z D Z Z Z Z Z Z Z Z Z Z Z D Z Z Z D
⌣ ⌣
⌣
(see diagram 18 of the figure 2);
{
3 2 1} {
6 4 3 1}
19) Z Z Z D, , , ⌣ , Z Z Z Z, , , .
(see diagram 19 of the figure 2);
20)
{
Z Z Z Z D6, 5, 4, 2, ⌣} {
, Z Z Z Z D6, 5, 4, 1, ⌣}
, (see diagram 20 of the figure 2);21)
{
Z Z Z Z D6, 4, 3, 1, ⌣}
, (see diagram 21 of the figure 2);
{
7 6 4 3 1} {
5 3 2 1} {
7 3 2 1}
22) Z Z Z Z Z, , , , , Z Z Z Z D, , , ,⌣ , Z Z Z Z D, , , , ⌣ , (see diagram 22 of the figure 2);
{
6 5 4 3 1} {
6 3 2 1} {
4 3 2 1}
23) Z Z Z Z Z, , , , , Z Z Z Z D, , , , , Z Z Z Z D, , , , ,
⌣ ⌣
(see diagram 23 of the figure 2);
24)
{
Z Z Z Z Z D6, 5, 4, 3, 1, ⌣}
,(see diagram 24 of the figure 2);
25)
{
Z Z Z Z Z D6, 5, 4, 2, 1,⌣}
,(see diagram 25 of the figure 2);
26)
{
Z Z Z Z Z D6, 4, 3, 2, 1,⌣}
,(see diagram 26 of the figure 2);
27)
{
Z Z Z Z Z D7, 5, 3, 2, 1,}
;⌣ (see diagram 27 of the figure 2);
28)
{
Z Z Z Z Z D7, 6, 4, 3, 1,⌣}
,(see diagram 28 of the figure 2);
{
6 5 4 3 2 1}
29) Z Z Z Z Z Z D, , , , , ,⌣ ,
(see diagram 29 of the figure 2);
30)
{
Z Z Z Z Z Z D7, 6, 4, 3, 2, 1,⌣}
,(see diagram 30 of the figure 2);
Proof: It is ease to see that, the sets
{ } { } { } { } { } { } { }
Z7 , Z6 , Z5 , Z4 , Z3 , Z2 , Z1 ,{ }
D⌣ aresubsemilattices of the semilattice D.
The number all subsets of the semilattise D, every set of which contains two elements, is equal to C82=28. In this case X- subsemilattices of the semilattice D are the following sets:
{ } { } { } { } { } { } { } { } { } { } { }
{ } { }
Z ZZ D76,, 1,,Z DZ Z37,, 2,{
,Z ZZ Z5,7,4} {
3,,Z ZZ Z5,7,3} {
4,,Z Z5Z Z,7,2} {
5,,Z ZZ Z5,7,1} {
6,,Z Z4Z D,7,2} {
,,Z ZZ D45,,1}
,,{ }
Z DZ Z46,, 4,{
,Z ZZ Z3,6,1}
2,{ } { }
,Z D2Z Z,6, 1, ,Z D1,⌣ ⌣
⌣ ⌣ ⌣ ⌣ ⌣
Remainder 5 subsets of the semilattice D, whose every element contains two elements is not an X-subsemilattice.
The number all subsets of the semilattise D, every set of which contains three elements, is equal to C83=56. In this case X-subsemilattices of the semilattice D are the following sets:
{ } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { }
{ } { } { } { } { } { }
7 6 4 7 5 2 7 6 1 7 6 7 5 4 7 5 3 7 5 2 7 5 1
7 5 7 4 2 7 4 1 7 4 7 3 1 7 3 7 2 7 1
6 5 4 6 4 2 6 4 1 6 4 6 3 1 6 2 6
, , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , ,
Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z D Z Z Z Z Z D Z Z D Z Z D Z Z Z Z Z Z Z Z Z Z Z D Z Z Z Z Z D Z
⌣
⌣ ⌣ ⌣ ⌣ ⌣
⌣ ⌣
{ } { }
{ } { } { } { } { } { } { } { }
{ } { } { } { }
1 5 4 2
5 4 1 5 4 5 3 1 5 3 5 2 5 1 4 3 1 4 2
4 1 3 2 3 1 2 1
, , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , ,
Z D Z Z Z Z Z Z Z Z D Z Z Z Z Z D Z Z D Z Z D Z Z Z Z Z D Z Z D Z Z D Z Z D Z Z D
⌣
⌣ ⌣ ⌣ ⌣ ⌣
⌣ ⌣ ⌣ ⌣
Remainder 20 subsets of the semilattice D, whose every element contains three elements is not an X- subsemilattice.
The number all subsets of the semilattise D, every set of which contains four elements, is equal toC84 =70. In this case X- subsemilattices of the semilattice D are the following sets:
{ } { } { } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { }
7 6 5 4 7 6 4 2 7 6 4 1 7 5 4 2 7 6 4 7 6 3 7 6 3 1
7 5 3 1 7 6 2 7 6 1 7 5 4 1 7 5 4 7 5 3 7 5 2
7 5 1 7 4 3 1 7 4 2
, , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , ,
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z D Z Z Z Z Z Z Z Z Z Z Z D Z Z Z D Z Z Z Z Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z Z Z Z Z
⌣ ⌣
⌣ ⌣ ⌣ ⌣ ⌣
⌣
{ } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { } { } { } { }
7 4 1 7 3 2 7 3 1 7 2 1
6 2 1 5 4 3 1 5 4 2 6 5 4 2 6 5 4 6 5 4 1 6 4 3 1
6 5 3 1 6 4 2 6 4 1 6 3 1 4 3 1 4
, , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , ,
D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z Z Z Z Z Z D Z Z Z Z Z Z Z D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z D Z Z Z D Z Z Z D Z Z Z D Z Z
⌣ ⌣ ⌣ ⌣ ⌣
⌣ ⌣ ⌣
⌣ ⌣ ⌣ ⌣
{ } { }
{
Z Z Z D5, 4, 1,} {
, Z Z Z D5, 3, 1,}
, 2,Z D1, , Z Z Z D5, 3, 2, ,⌣ ⌣
⌣ ⌣
Remainder 33 subsets of the semilattice D, whose every element contains four elements is not an X- subsemilattice.