• 検索結果がありません。

<30345F90BC96EC90E690B65F E706466>

N/A
N/A
Protected

Academic year: 2021

シェア "<30345F90BC96EC90E690B65F E706466>"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

in Liquid Bridge

Koichi NISHINO,

Department of Mechanical Engineering, Yokohama National University

1 ࡣࡌࡵ࡟ ࣐ࣛࣥࢦࢽᑐὶࡣẼᾮ⏺㠃ࡢ⾲㠃ᙇຊ໙㓄࡟ࡼࡗ ࡚㥑ືࡉࢀࡿὶࢀ࡛࠶ࡿ㸬⾲㠃ᙇຊ໙㓄ࡣ ᗘᕪ㸪 ⃰ᗘᕪ㸪㟁ሙ࡟ࡼࡗ࡚⏕ࡌ㸪 ᗘᕪ࡟ࡼࡿࡶࡢࡣ⇕ ẟ⟶ὶ㸦thermocapillary convection㸧࡜ࡶ࿧ࡤࢀࡿ㸬 Ẽᾮ⏺㠃࡟኱ࡁ࡞ ᗘᕪࡀⓎ⏕ࡍࡿ⁐⼥ᮦᩱ࡛ࡣ㸪 ⇕ẟ⟶ຊࡀ㔜せ࡞ᑐὶ㥑ືຊ࡜࡞ࡿ㸬୍⯡࡟㸪㏻ᖖ 㔜ຊ⎔ቃ࡛ࡣ㸪ᚤᑠࢫࢣ࣮ࣝࡢẼᾮ⏺㠃࡟࠾࠸࡚࣐ ࣛࣥࢦࢽᑐὶࡀ㢧ᅾ໬ࡍࡿ㸬౛࠼ࡤ㸪ᾮ⁲㸪ẼἻ㸪 ᾮ⭷࡛࠶ࡾ㸪ࡑࡇ࡛ࡣయ✚ຊ࡟ẚ࡭࡚⾲㠃ຊࡀ༟㉺ ࡍࡿ࠿ࡽ࡛࠶ࡿ㸬୍᪉㸪ᚤᑠ㔜ຊ⎔ቃ࡛ࡣᐦᗘᕪᑐ ὶࡀᾘኻࡍࡿࡓࡵ㸪ࢫࢣ࣮ࣝࡢ኱ᑠࢆၥࢃࡎ࣐ࣛࣥ ࢦࢽᑐὶࡀ㢧ᅾ໬ࡍࡿ㸬 ᮏ✏ࡢ㢟┠࡟࠶ࡿࠕᾮᰕࠖ࡜ࡣ㸪ᑐྥࡍࡿྠ㍈ࢹ ࢕ࢫࢡࡢ㛫࡟ᠱᯫࡉࢀࡓᾮయࢆᣦࡍ㸬Fig.1 ࡣᾮᰕ࣐ ࣛࣥࢦࢽᑐὶࡢᶍᘧᅗ࡛࠶ࡾ㸪ࢹ࢕ࢫࢡ㛫 ᗘᕪ'T ࡟ࡼࡿ⾲㠃ᙇຊ໙㓄ࡀᾮᰕഃ㠃࡟స⏝ࡍࡿ㸦'T =Th-Tc㸬ࡇࡇ࡛㸪Thࡣຍ⇕ࢹ࢕ࢫࢡ ᗘ㸪Tcࡣ෭༷ ࢹ࢕ࢫࢡ ᗘ㸧㸬ࡑࡢ⤖ᯝ㸪ᐃᖖ㍈ᑐ⛠࡞ࢺࣟ࢖ࢲࣝ ≧ࡢࣇ࣮ࣟࣃࢱ࣮ࣥࢆ♧ࡍ࣐ࣛࣥࢦࢽᑐὶࡀⓎ⏕ࡍ ࡿ㸬'T ࢆቑ኱ࡉࡏࡿ࡜㸪ὶ㏿ࡀቑ኱ࡋ㸪ࡸࡀ࡚㠀㍈ ᑐ⛠࡞᣺ືὶ࡬࡜㑄⛣ࡍࡿ㸬ࡑࡶࡑࡶᾮᰕࡣ㸪↓ᐜ ჾಖᣢࡢ༢⤖ᬗ⫱ᡂ᪉ἲ࡛࠶ࡿࣇ࣮ࣟࢸ࢕ࣥࢢࢰ࣮ ࣥἲ࡟࠾ࡅࡿ⁐⼥ᮦᩱࢆᶍᨃࡋࡓὶࢀሙ࡜ࡋ࡚╔┠ ࡉࢀࡓࡀ㸪⌧ᅾ࡛ࡣ࣐ࣛࣥࢦࢽᑐὶࡢ୙Ᏻᐃᛶࢆㄪ ࡭ࡿ඾ᆺⓗ࡞ὶࢀሙ࡜ぢ࡞ࡉࢀ࡚࠸ࡿ㸬  ㏻ᖖ㔜ຊ⎔ቃ࡛ࡣᾮᰕ㛗 H ࡣᩘ mm ௨ୗ࡟㝈ࡽࢀ ࡿࡢ࡟ᑐࡋ࡚㸪ᚤᑠ㔜ຊ⎔ቃ࡛ࡣ㸪ᙧ≧ࡀ┤෇ᰕ࡛ ࠶ࢀࡤ㸪Rayleigh 㝈⏺㸦H=SD㸪ࡇࡇ࡛ D ࡣᾮᰕ┤ ᚄ㸧ࡲ࡛ࡢ㛗኱࡞ᾮᰕࢆᙧᡂࡍࡿࡇ࡜ࡀ࡛ࡁࡿ㸬ࡇ ࡢࡇ࡜ࡣ㸪༢⤖ᬗ⫱ᡂࡢどⅬ࠿ࡽࡣ኱ᆺ࢖ࣥࢦࢵࢺ ࡀᚓࡽࢀࡿࡇ࡜ࢆព࿡ࡍࡿ㸬୍᪉㸪࣐ࣛࣥࢦࢽᑐὶ ୙Ᏻᐃᛶࡢ◊✲ࡢどⅬ࠿ࡽࡣ㸪ձ኱ࡁ࡞࣐ࣛࣥࢦࢽ ᩘ㸦ࡑࡢᐃ⩏ࡣᚋ㏙㸧ࡀᐇ⌧࡛ࡁࡿ㸪ղᐦᗘᕪᑐὶ ࡀᾘኻࡍࡿ㸪ճᾮᰕᙧ≧ࡀ㔜ຊኚᙧࢆཷࡅ࡞࠸࡜࠸ ࡗࡓ㸪㏻ᖖ㔜ຊ⎔ቃ࡛ࡣᚓࡽࢀ࡞࠸᮲௳ࡀᐇ⌧ࡉࢀ ࡿࡇ࡜ࢆព࿡ࡍࡿ㸬ࡑࡢࡼ࠺࡞ᚤᑠ㔜ຊ⎔ቃࡢ㨩ຊ ࡣከࡃࡢ◊✲⪅࡟ࡼࡗ࡚ㄆ㆑ࡉࢀ࡚ࡁࡓ㸬Fig. 2 ࡣ ࣐ࣛࣥࢦࢽᑐὶ࡟㛵ࡍࡿࡇࢀࡲ࡛ࡢᚤᑠ㔜ຊᐇ㦂ࢆ ᖺ௦㡰࡟♧ࡋࡓࡶࡢ࡛1)㸪㧗 ⁐⼥ᮦᩱ㸦ప Pr㸧࠶ ࡿ࠸ࡣప ㏱᫂ὶయ㸦㧗 Pr㸧ࢆ⏝࠸ࡓከᩘࡢᐇ㦂ࡀ ᐇ᪋ࡉࢀ࡚ࡁࡓ㸬 ᾮᰕ࣐ࣛࣥࢦࢽᑐὶࡢ୙Ᏻᐃᛶࢆࢸ࣮࣐࡜ࡋ࡚㸪 ᅜ㝿Ᏹᐂࢫࢸ࣮ࢩࣙࣥ㸦International Space Station: ISS㸧ࡢ᪥ᮏᐇ㦂Ჷࠕࡁࡰ࠺࡛ࠖᐇ᪋ࡉࢀࡿᚤᑠ㔜ຊ ᐇ㦂ࡀ Maragoni Experiment in Space (MEIS)࡛࠶ࡿ㸬 2012ᖺࡲ࡛ࡢணᐃ࡛㸪ィ 5 ࢩ࣮ࣜࢬࡢᐇ㦂ࡀィ⏬ࡉ ࢀ㸪ᐇ᪋ࡉࢀࡘࡘ࠶ࡿ㸬ᮏ✏࡛ࡣ㸪ࡑࢀࡒࢀ 2008

ࠛ240-8501 ᶓ὾ᕷಖᅵࣨ㇂༊ᖖ┙ྎ 79-5

͊E-mail: nish@ynu.ac.jp

Fig. 1 Schematic diagram of Marangoni convection in a liquid bridge

(2)

ᖺ 8 ᭶㹼10 ᭶࡜ 2009 ᖺ 7 ᭶㹼8 ᭶࡟ᐇ᪋ࡉࢀࡓ MEIS-1㸦◊✲௦⾲⪅㸸Ἑᮧὒ㸧࡜ MEIS-2㸦◊✲௦ ⾲⪅㸸➹⪅㸧ࡢᴫせ࡜ᐇ㦂ᡂᯝࢆ⤂௓ࡍࡿ㸬

2 ᐇ㦂⿦⨨࡜᪉ἲ

MEIS ࡣࠕࡁࡰ࠺ࠖ࡟ᦚ㍕ࡉࢀࡓὶయ≀⌮ᐇ㦂⿦ ⨨㸦Fluid Physics Experiment Facility: FPEF㸧࡛ᐇ᪋ࡉ ࢀࡿ㸬ࡇࡢ⿦⨨ࡢ୺せㅖඖࢆ Table 1 ࡟♧ࡍ㸬ᾮᰕ ࢹ࢕ࢫࢡ┤ᚄࡣ 30mm ࡜ 50mm㸦஺᥮ᘧ㸧࡛㸪ᾮᰕ 㛗࡜ࡋ࡚᭱኱ 62.5mm ࡀྍ⬟࡛࠶ࡿ㸬௜୚࡛ࡁࡿࢹ ࢕ࢫࢡ㛫 ᗘᕪࡢ᭱኱್ࡣ 90Υ࡛࠶ࡾ㸪ࢹ࢕ࢫࢡ㛫 ࡟ὀධࡍࡿᾮ㔞ࢆᚤㄪᩚࡍࡿᶵᵓࢆ᭷ࡍࡿ㸬ࡑࢀ࡟ ࡼ ࡾᾮᰕ య✚ ࢆṇ☜ ࡟タ ᐃࡍࡿ ࡇ࡜ ࡀ࡛ࡁ ࡿ㸬 MEIS-1࡜ 2 ࡛౑⏝ࡋࡓసືὶయࡣ 5cSt ࡢࢩࣜࢥ࣮ ࣥ࢜࢖࡛ࣝ࠶ࡿ㸬ࡑࡢ≀ᛶ್ࢆ Table 2 ࡟♧ࡍ㸬ࣉ ࣛࣥࢺࣝᩘࡣ 67 ࡛࠶ࡾ㸪Fig. 2 ࡢ㧗ࣉࣛࣥࢺࣝᩘᐇ 㦂࡟༊ศࡉࢀࡿ㸦ᅗ୰ࡢ Kawamura (2008)࡜ Nishino (2009)㸧㸬

Fig. 2 The history of the previous microgravity experiments on the Marangoni convection in liquid bridges (sounding rocket experiments: TEXUS, TR-1A, MAXUS, space shuttle experiments: SL, D2, SPACEHAB,

International Space Station experiments: KIBO)

Table 1 Primary specifications of FPEF

Functions Items and Methods Specifications

Argon gas 20 NL/min at 88.2 to 101.3 kPa Fluid supply

Cooling water 8.5 kg/h with Tinlet=16-23qC and Toutletd43 qC

Test fluid 5 cSt silicone oil

Tracers Metal-coated polymer particles 30 or 180µm in dia.

Disk diameter, D 30 and 50 mm

Liquid bridge formation

Length of LB, H up to 62.5 mm

Heated disk temp. maximum 90qC

Temperature control

Cooled disk temp. minimum 5qC

Imaging Three B/W CCD cameras with 768u494 pixels 3-D flow field observation

Illumination Strobe lighting at 60 Hz

Imaging One color CCD camera with 768u494 pixels Side-view observation

Illumination Strobe lighting at 60 Hz Surface temperature

measurement Infrared imager

Wavelength sensitivity of 8-14µm temperature range of 0-100qC Surface velocity

visualization Photochromic method

One color CCD camera 768u494 pixels N2-gas laser for excitation

(3)

FPEF ࡢ≉ᚩࡣ」ᩘࡢほᐹ࣭ィ ⿦⨨ࢆᦚ㍕ࡋ࡚ ࠸ࡿࡇ࡜࡟࠶ࡿ㸬Fig. 3 ࡟♧ࡍ㏻ࡾ㸪3 ḟඖὶ㏿ィ  ⿦⨨㸪ഃ㠃ほᐹ⿦⨨㸪IR ࣓࢝ࣛ㸪⾲㠃ὶ㏿ほᐹ⿦⨨㸪 ᚤ⣽⇕㟁ᑐ ᗘィࡀᦚ㍕ࡉࢀ࡚࠾ࡾ㸪ᆅୖ⟶ไᐊ࠿ ࡽࡢ㐲㝸᧯సࡀྍ⬟࡛࠶ࡿ㸬ὶࢀࡢྍど໬ࡢࡓࡵ࡟㸪 እᚄ 30Pm㸦MEIS-1㸧࠶ࡿ࠸ࡣ 180Pm㸦MEIS-2㸧ࡢ 㔠㸫ࢽࢵࢣࣝ⿕そࣉࣛࢫࢳࢵࢡ⢏Ꮚࡀὶయ୰࡟ᠱ⃮ ࡉࢀ࡚࠸ࡿ㸬ࡲࡓ㸪MEIS-2 ࡛ࡢ⾲㠃ὶ㏿ィ ࡢࡓࡵ ࡟㸪ὶయ୰࡟ᚤ㔞ࡢࣇ࢛ࢺࢡ࣑ࣟࢵࢡᰁᩱ㸦TNSB㸪 0.01-0.05wt%㸧ࡀΰࡐࡽࢀ࡚࠸ࡿ㸬 ISS ࡟ࡣᏱᐂ㣕⾜ኈࡢάືࡸྛ✀⿦⨨ࡢ✌ാ࡟㉳ ᅉࡍࡿ୙つ๎࡞㔜ຊኚື㸦g-jitter㸧ࡀᏑᅾࡍࡿ㸬≉ ࡟Ᏹᐂ㣕⾜ኈࡢάື࡟㉳ᅉࡍࡿ 0.3Hz ௜㏆ࡢࡶࡢࡣ㸪 ࢩࣜࢥ࣮ࣥ࢜࢖ࣝᾮᰕࡢ኱ࡁ࡞ᦂືࢆᘬࡁ㉳ࡇࡍᜍ ࢀࡀ࠶ࡿ㸬Fig. 4ࡣࠕࡁࡰ࠺ࠖ⯪ෆ࡛ ᐃࡉࢀࡓ g-jitter ࡢ᫬㛫Ἴᙧ࡛࠶ࡿ㸬Ᏹᐂ㣕⾜ኈࡢᑵᐷ᫬้࡛࠶ࡿ 21:30GMT㸦ࢢࣜࢽࢵࢪᶆ‽᫬㛫㸧ࢆ㐣ࡂ࡚ࡶ኱ࡁ࡞ g-jitter ࡀᏑᅾࡋ㸪23:00 㡭࠿ࡽ཰ࡲࡿ㸬ࡑࡢࡓࡵ㸪 MEIS࡛ࡣ㛗࠸ᾮᰕࡢᙧᡂࢆ 23:00 ௨㝆࡟⾜࠸㸪Ᏹᐂ 㣕⾜ኈࡢ㉳ᗋ᫬㛫࡛࠶ࡿ 06:00 ࡲ࡛࡟ᾮᰕࢆヨᩱ࢝ ᐇ㦂࡛ࡣ㸪෭༷ࢹ࢕ࢫࢡ ᗘࡣ 20Υ࡟ಖࡓࢀ࡚࠸ࡿ㸬 ୍᪉㸪ຍ⇕ࢹ࢕ࢫࢡ ᗘࡣ 4Υ้ࡳ࡛ࢫࢸࢵࣉୖ᪼ ࡉࢀ㸪࣐ࣛࣥࢦࢽᑐὶࡢ୙Ᏻᐃᛶࡀฟ⌧ࡍࡿ࠿ྰ࠿ ࢆㄪ࡭ࡿ㸬඘ศ࡞⇕ᖹ⾮ࢆᚓࡿࡓࡵ㸪ྛ ᗘࢫࢸࢵ ࣉ࡟࠾ࡅࡿᚅࡕ᫬㛫࡜ࡋ࡚ 30 ศ௨ୖࡀྲྀࡽࢀ࡚࠸ ࡿ㸬 3 ᐇ㦂ᡂᯝࡢᴫせ ࢹ࢕ࢫࢡ┤ᚄ D=30mm㸪㛗ࡉ H=3㹼60mm ࡢᾮᰕ ࡟ࡘ࠸࡚᣺ືὶฟ⌧ࡢ⮫⏺ ᗘᕪ'Tcࢆ ᐃࡋࡓ㸬 ࡑࡢ⤖ᯝࢆ Fig. 6 ࡟♧ࡍ㸬ࡇࡇ࡛㸪ᶓ㍈ࡣᾮᰕ࢔ࢫ ࣌ࢡࢺẚ Ar=H/D ࡛࠶ࡿ㸬'Tcࡣᾮᰕᙧ≧㸦┤෇ᰕ࠿ ྰ࠿㸧࡟౫Ꮡࡍࡿࡓࡵ㸪MEIS ࡛ࡣ Vr=0.95 ࡟⤫୍ࡋ ࡓ㸬ࡇࡇ࡛㸪Vr=(ᾮᰕయ✚)/(SD2 H/4)࡛࠶ࡿ㸬MEIS ࡢ⤖ᯝࡣ㸪Ar ࡢቑຍ࡜࡜ࡶ࡟'Tcࡀῶᑡࡍࡿഴྥࢆ ♧ࡍ㸬MEIS-1 ࡜ MEIS-2 ࡣ 1 ᖺ㏆࠸㛫㝸ࡀ࠶ࡾ㸪స ືὶయࡶ␗࡞ࡿࡀ㸪୧⪅ࡢ⤖ᯝࡣⰋዲ࡞୍⮴ࢆ♧ࡋ ࡚࠸ࡿ㸬㏻ᖖ㔜ຊ⎔ቃ࡛ࡣ Ar=0.75 ⛬ᗘࡀୖ㝈࡛࠶ ࡾ㸪௒ᅇࡢ MEIS ࡟ࡼࡗ࡚ Art0.75 ࡢ⣔⤫ⓗ࡞ࢹ࣮ ࢱࡀึࡵ࡚ྲྀᚓࡉࢀࡓ㸬

Fig. 3 Schematic of the measurement apparatuses installed in FPEF and a photo of the mission part of FPEF (upper right)

(4)

'Tc ࢆྵࡴ↓ḟඖᩘࡣ㸪ḟᘧ࡛ᐃ⩏ࡉࢀࡿ⮫⏺࣐ ࣛࣥࢦࢽᩘ Mac࡛࠶ࡿ㸬

c T c Ma V 'T H UQD (1) ࡇࡇ࡛㸪Q

^

Q( )Th Q( ) 2Tc

`

㸪Dࡣ⇕ᣑᩓಀᩘ࡛࠶ ࡿ㸬Fig. 7 ࡣ Macࢆ H ࡛ࣉࣟࢵࢺࡋ㸪ᚑ᮶ࡢ⤖ᯝ㸦㏻ ᖖ㔜ຊᐇ㦂࡜ᚤᑠ㔜ຊᐇ㦂㸧࡜ẚ㍑ࡋࡓࡶࡢ࡛࠶ࡿ㸬 ㏻ᖖ㔜ຊࡢᆅୖᐇ㦂ࢹ࣮ࢱ㸦H<6mm㸧ࡣ㸪Mac=6u103 㹼3u104 ࡢ⠊ᅖ࡟࠶ࡿ㸬୍᪉㸪㐣ཤࡢᚤᑠ㔜ຊᐇ㦂 ࡣ H ࡢቑ኱࡜࡜ࡶ࡟ Macࡀ㢧ⴭ࡟ቑ኱ࡍࡿഴྥࢆぢ ࡏ㸪≉࡟ࢫ࣮࣌ࢫࢩࣕࢺ࡛ࣝ㛗᫬㛫ᚤᑠ㔜ຊᐇ㦂ࢆ ⾜ࡗࡓ Monti ࡽࡢ⤖ᯝ㸦5cSt ࢩࣜࢥ࣮ࣥ࢜࢖ࣝ㸪D=30, 45, 60mm㸧2)ࡣᑐᩘࢢࣛࣇୖ࡛ Macࡢ┤⥺ⓗ࡞ቑ኱ ࢆ♧ࡍ㸬ࡇࢀ࡟ᑐࡋ࡚㸪MEIS ࡢ⤖ᯝࡣ H ࡟ᑐࡍࡿ ᙅ࠸౫Ꮡᛶࢆ♧ࡍࡶࡢࡢ Mac㸻 u104㹼5u104ࡢ⠊ᅖ ࡟࠶ࡾ㸪Monti ࡽࡢ⤖ᯝࡼࡾ୍᱆⛬ᗘᑠࡉ࠸㸬ࡇࢀ ࡲ࡛ࡢᚤᑠ㔜ຊᐇ㦂࠿ࡽࡣ㸪ᾮᰕᑍἲࡀቑ኱ࡍࡿ㸦 ࡀቑ኱ࡍࡿ㸧࡜ Macࡶቑ኱ࡍࡿࡇ࡜ࡀ♧ࡉࢀ࡚࠸ࡓ ࡀ㸪MEIS ࡢ⤖ᯝࡣࡑࢀࢆྰᐃࡋ㸪ᑠᾮᰕ࠿ࡽ኱ᾮ ᰕࡲ࡛ Macࡀྠ࣮࢜ࢲ࡜࡞ࡿࡇ࡜ࢆ♧ࡋࡓ㸬 Fig. 8ࡣ㸪ḟᘧࡢ↓ḟඖ᣺ື࿘Ἴᩘ F ࢆ Ar ࡟ᑐࡋ ࡚ࣉࣟࢵࢺࡋࡓࡶࡢ࡛࠶ࡿ㸬 2 2 F S fH Q (2) ࡇࡇ࡛㸪f ࡣ᣺ື࿘Ἴᩘ࡛࠶ࡿ㸬MEIS ࡢ⤖ᯝࡣ Ar=1.25௜㏆࡛ F ࡢ୙㐃⥆࡞ኚ໬ࢆ♧ࡋ㸪ࡑࡇ࡛୙ Ᏻᐃᛶࡢ࣮ࣔࢻࡀኚ໬ࡋࡓࡇ࡜ࢆ♧၀ࡍࡿ㸬ᅗ୰ࡢ Fig. 4 Time traces of g-jitter signals measured on KIBO

Fig. 5 Typical procedures for each experimental run in MEIS

Fig. 6 Critical temperature difference plotted as a function Ar

2

(5)

+༳ࡣ⥺ᙧᏳᐃᛶゎᯒࡢ⤖ᯝ3)࡛࠶ࡿ㸬MEIS ࡜㢮ఝ ࡋࡓ↓ḟඖ᣺ື࿘Ἴᩘࡢࢪࣕࣥࣉࡀண ࡉࢀ࡚࠸ࡿ㸬 ࡋ࠿ࡋ㸪ྠࡌ⥺ᙧᏳᐃᛶゎᯒࡢ Macࡣ MEIS ࡢ⤖ᯝ

ࡇࡢࡼ࠺࡞ m ࡢኚ໬ࢆ Ar ࡟ᑐࡋ࡚ࣉࣟࢵࢺࡋࡓࡶ ࡢࡀ Fig. 10 ࡛࠶ࡿ㸬Ar=0.1㹼0.5 ࡢ⠊ᅖ࡛ࡣ㸪Ar ࡢ ቑຍ࡟ᑐࡋ࡚ m ࡣ୙㐃⥆࡟ῶᑡࡋ㸪Art0.5 ࡛ࡣ m=1 ୍࡛ᐃ࡜࡞ࡿ㸬ࡇࢀࡲ࡛ࡢ㏻ᖖ㔜ຊ⎔ቃࡢᐇ㦂⤖ᯝ ࠿ࡽ Arum㹼1 ࡢᡂ❧ࡀㄆ㆑ࡉࢀࡁࡓࡀ㸪MEIS ࡟ࡼ ࡗ࡚ᚤᑠ㔜ຊ⎔ቃ࡛ࡣ Arum<1 ࡜࡞ࡿࡇ࡜ࡀ♧ࡉࢀ ࡓ㸬 ୖ㏙ࡋࡓࡼ࠺࡟㸪Ar=1.25 ࡛↓ḟඖ᣺ື࿘Ἴᩘࡀ ୙㐃⥆࡟ῶᑡࡍࡿࡇ࡜㸪ࡋ࠿ࡋ࿘᪉ྥ࣮ࣔࢻᩘࡣ୍ ᐃ㸦m=1㸧࡛࠶ࡿࡇ࡜ࡣ㸪㛗࠸ᾮᰕࢆ⏝࠸ࡓ MEIS ࡛Ⓨぢࡉࢀࡓ᪂ࡋ࠸▱ぢ࡛࠶ࡿ㸬ࡑࡢࡼ࠺࡞᣺ືࣔ ࣮ࢻᵓ㐀ࡢኚ໬ࡢ≉ᚩࢆ᫂ࡽ࠿࡟ࡍࡿࡓࡵ㸪Ar=1.5 Fig. 7 Comparison of Mac with previous studies

Fig. 10 Relation between azimuthal mode number of oscillation and Ar

Fig. 9 Visualization of azimuthal mode number in oscillatory state

0.5 1.0 1.5 2.0 2.5 10 20 30 40 0 Ermakov MEIS-1 MEIS-2 Ar F

Fig. 8 Non-dimensional oscillation frequency plotted as function of Ara

(6)

࡟࠾ࡅࡿὶࢀሙࡢ 3 ḟඖゎᯒࢆ⾜ࡗࡓ㸬Fig. 11 ࡣ Ar=1.5㸪'T=11.2qC㸦=3.7'Tc㸧࡟࠾ࡅࡿ⢏Ꮚ㌶㊧ࡢ 3 ḟඖィ ⤖ᯝ࡛࠶ࡿ㸬᣺ື࿘ᮇࡣ 30s ࡛࠶ࡾ㸪࿘ᮇ ๓༙࡜ᚋ༙ࡢ 15s 㛫ࡢ㌶㊧ࡀᥥ࠿ࢀ࡚࠸ࡿ㸬⢏Ꮚ㌶ ㊧ࡣከᩘࡢᑠࡉ࡞ ࢆ᭷ࡍࡿ」㞧࡞ᣲືࢆ♧ࡍࡀ㸪 ➃㠃ᅗ㸦Fig. 11(b))ࢆぢࡿ࡜᣺ື᪉ྥࡣ༢୍㸦ࡇࡢᅗ ࡛ࡣỈᖹ᪉ྥ㸧࡛࠶ࡿࡇ࡜ࡀศ࠿ࡿ㸬Fig. 12 ࡣ㸪Fig. 11࡜ྠࡌᾮᰕ᮲௳࡟࠾ࡅࡿ⢏Ꮚ㌶㊧࡜⾲㠃 ᗘ㸦IR ⏬ീ㸧࡛࠶ࡿ㸬ᾮᰕᕥഃ࡟஧ࡘࡢྠ᪉ྥ࡟ᅇ㌿ࡍࡿ  ࡀᏑᅾࡋ㸪ᾮᰕྑഃࡢ୍ࡘࡢ ࡜஺஫ࡢ㓄⨨ࢆྲྀ ࡿ㸬IR ⏬ീ࡛ࡣ㸪ᾮᰕ㍈࡟ᑐࡋ࡚ഴᩳࡋࡓ⾲㠃 ᗘ Ἴࡀ㧗 ࢹ࢕ࢫࢡ࠿ࡽప ࢹ࢕ࢫࢡ࡟ྥ࠿ࡗ࡚ఏ᧛ ࡍࡿ㸬⾲㠃 ᗘἼࡢప Ἴ㠃㸦ᅗ୰ࡢ㯮࠸ᖏ㸧ࡣᾮ ᰕᕥྑࡢ ࡢඛ➃ࢆ⤖ࡪ⥺࡜୍⮴ࡍࡿ㸬ࡇࡢࡼ࠺࡞ ᾮᰕ㍈᪉ྥ࡟஧ࡘࡢ ࡀ୪ࡪᵓ㐀㸦Fig. 12 ࡛ࡣᾮᰕ ᕥഃࡢࡑࢀࡽ㸧ࡣ㸪▷࠸ᾮᰕ࡛ࡣほᐹࡉࢀࡎ㸪㛗࠸ ᾮᰕࡢ≉ᚩ࡛࠶ࡿࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓ㸬ࡲࡓ㸪⾲ 㠃 ᗘἼࡀ㧗 ࢹ࢕ࢫࢡ࠿ࡽప ࢹ࢕ࢫࢡ࡟ྥ࠿࠺ ࡇ࡜ࡶ᫂ࡽ࠿࡟࡞ࡾ㸪㐣ཤࡢࣟࢣࢵࢺᐇ㦂ࡢ⤖ᯝ㸦㧗  ࢹ࢕ࢫࢡ࡟ྥ࠿࠺㸧4)࡜⥺ᙧᏳᐃᛶゎᯒࡢ⤖ᯝ㸦ప  ࢹ࢕ࢫࢡ࡟ྥ࠿࠺㸧5)࡜ࡀ㣗࠸㐪ࡗ࡚࠸ࡓၥ㢟ࢆ ゎỴࡋࡓ㸬 4 ࡲ࡜ࡵ ᅜ㝿Ᏹᐂࢫࢸ࣮ࢩࣙࣥ᪥ᮏᐇ㦂Ჷࠕࡁࡰ࠺ࠖࢆ฼ ⏝ࡋࡓᾮᰕ࣐ࣛࣥࢦࢽᑐὶࡢ୙Ᏻᐃᛶ࡟㛵ࡍࡿᏱᐂ ᐇ㦂㸦MEIS㸧ࡢᴫせ࡜ᐇ㦂ᡂᯝࡢ୍㒊ࢆ⤂௓ࡋࡓ㸬 MEISࡣ 2012 ᖺࡲ࡛࡟ィ 5 ࢩ࣮ࣜࢬࡀᐇ᪋ࡉࢀࡿண ᐃ࡛࠶ࡾ㸪ᚤᑠ㔜ຊ⎔ቃ࡟࠾࠸࡚ࡢࡳᙧᡂ࡛ࡁࡿ኱ ᆺᾮᰕ㸦┤ᚄ 30 ࡜ 50mm㸪᭱኱㛗ࡉ 62.5mm㸪సື ὶయࡣࢩࣜࢥ࣮ࣥ࢜࢖ࣝ㸧ࢆ⏝࠸࡚㸪 ᗘᕪ㥑ືࡢ ࣐ࣛࣥࢦࢽᑐὶࡢ୙Ᏻᐃᛶࢆ᫂ࡽ࠿࡟ࡍࡿணᐃ࡛࠶ ࡿ㸬  ㅰ㎡ ᮏ✏࡛⤂௓ࡋࡓ MEIS ࡣ㸪Ἑᮧὒ༤ኈ㸦ㄶゼᮾி ⌮⛉኱Ꮫ㸧ࡀ◊✲௦⾲⪅࡜ࡋ࡚ᥦ᱌ࡋ㸪ୖ㔝୍㑻༤ ኈ㸦ᮾி⌮⛉኱Ꮫ㸧㸪኱す඘༤ኈ㸪ᯇᮏ⪽༤ኈ㸪ᱜ஭ ㄔே༤ኈ㸦௨ୖ㸪JAXA㸧࡜➹⪅ࡀཧຍ࣭༠ຊࡋ࡚ ᐇ᪋ࡉࢀࡓࡶࡢ࡛࠶ࡿ㸬౫⏣┾୍༤ኈ㸦JAXA)㸪ᮌ ᬽ࿴⨾༤ኈ㸦᪥ᮏᏱᐂࣇ࢛࣮࣒ࣛ)㸪ᴮᡞ୍඾Ặ㸪Ἑ ྜ⏤⣖Ặ㸦௨ୖ㸪᭷ேᏱᐂࢩࢫࢸ࣒㸧㸪⩚⏕ဴஓẶ㸦୕ ⳻⥲ྜ◊✲ᡤ㸧ࡢ㛗ᖺࡢࡈ༠ຊࢆᚓࡓ㸬MEIS ᐇ᪋ ࡜ࢹ࣮ࢱゎᯒ࡟࠶ࡓࡾ⛉Ꮫ◊✲㈝⿵ຓ㔠㸦ᇶ┙◊✲ (B)㸪21360101㸧ࡢ⿵ຓࢆཷࡅࡓ㸬グࡋ࡚ㅰពࢆ⾲ࡍ ࡿ㸬 ᘬ⏝ᩥ⊩

1) Kawamura, H., Nishino, K., Matsumoto, S. & Ueno, I.: Space experiment of Marangoni convection, keynote paper of the 14th International Heat Transfer Conference (IHTC14), August 8-13, 2010, Washington, DC, USA, IHTC14-23346.

2) Carotenuto, L., Castagnolo, D., Albanese, C. & Monti, R.: Instability of thermocapillary convection in liquid bridges, Phy. Fluids, 10-3 (1998), 555-565.

3) Ermakov, M., private communication (2010).

4) Schwabe, D.: Hydrothermal waves in a liquid bridge with aspect ratio near the Rayleigh limit under microgravity, Phys. Fluids, 17 (2005), 112104.

5) Xu, J-J. & Davis, S. H.: Convective thermocapillary instabilities in liquid bridges, Phys. Fluids, 27-5 (1984), 1102-1107.

Fig. 11 Particle traces for Ar=1.5 and 'T=11.2 qC

Fig. 12 Particle trajectories and surface temperature: (a) side-view observation, (b) 3-D measurement, and (c) IR image

参照

関連したドキュメント

Hilbert’s 12th problem conjectures that one might be able to generate all abelian extensions of a given algebraic number field in a way that would generalize the so-called theorem

At Geneva, he protested that those who had criticized the theory of collectives for excluding some sequences were now criticizing it because it did not exclude enough sequences

An easy-to-use procedure is presented for improving the ε-constraint method for computing the efficient frontier of the portfolio selection problem endowed with additional cardinality

The main idea of computing approximate, rational Krylov subspaces without inversion is to start with a large Krylov subspace and then apply special similarity transformations to H

Later, in [1], the research proceeded with the asymptotic behavior of solutions of the incompressible 2D Euler equations on a bounded domain with a finite num- ber of holes,

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

Section 4 contains the main results of this paper summarized in Theorem 4.1 that establishes the existence, uniqueness, and continuous dependence on initial and boundary data of a

In Section 3, the comparative experiments of the proposed approach with Hu moment invariance, Chong’s method is conducted in terms of image retrieval efficiency, different