• 検索結果がありません。

A NOTE ON IMMERSED MANIFOLDS IN A EUCLIDEAN SPACE

N/A
N/A
Protected

Academic year: 2021

シェア "A NOTE ON IMMERSED MANIFOLDS IN A EUCLIDEAN SPACE"

Copied!
3
0
0

読み込み中.... (全文を見る)

全文

(1)

ANOTE ON IMMERSED MANIFOLr)S

       .IN’A−EUCLIDEAN SPACE

      BY        SEIIcHI YAMAGUCHI   L馳lntro己uction. S. S. Chem, R. K. Lashof, T. Otsuki, I B. Y. Chell and o01ers. have investigated the Lipschitz−Kming curvature k(P,e)of an oriented,◎ompaぱL manifold Mn immersed桓an.(陀ト1V十d麺卯sionq1 Euclidean space E”’N and obtained many beauU∩Ul results.   The purPose of t1亘s paper is fo『generalize B. Y. Chen・s theorem in[2]‘t6証hざ case of higher codimension.       .    .... ..、『   2.Prdimina口es. Letルfs be an〃−d㎞CnsiOnal oriented, compact manifold*)and x:Mn→E佛be an iMmersion of Mカ・馳ihto a EUclidean’space E堺 of d垣1ension−〃1. 1£tF(Mりand F(Eりbe the bundles of orthonormal frames of M”alld E楊, respeσ tively. Letβthe set of elements b=(P,el,“°,β楊)such that(ρ,θ1,…, en)∈F(M”) and(x(ク), e1,…,θ那)∈F(EづwhoSe’orientation“is』Coh6rellt with the o皿e ofk Ein, identifying ei w紅h.dx(θ,)(i,±, k,…=1,2,…, n).’. Then ・: B→M籏may be.◎onside鵬d,・ as a pmbcipal b㎜(ile‘with五bre Oω×SO(m−n)∬and X:β→F(Eりis natUra皿y−・ defined by x(b)=(x(ρ), el, e2,… ,θ楊). Let By be the bundle of unit normal v㏄tor of x(Mりso that a point ofβ“is『apair(ク,θ)where e、is a unit normal v㏄tor at x(P).   The structure equations of E況are given by    ‘      .    dx=ΣθAε且, deA=ΣθABeB,θ旭+θ斑=0, dθ.=Σθβ八θ以, dθ.B=Σθ.c∧θcβ.         五     β      β  .一  ’  .c       (∠1,B, … ==1,2, … ,〃1)        ぺ      L     .’㌧t whoseθA andθ佃are differential 1−fbrms oll F(Eあ). LetωA and toAB by−the map二−’ ph19 X. Then We have      . 』『  “        =     1 ’      一’       ω’=0,tO,i一ΣAri,妨,塩∫=んヵ  (r,ぷ,’,…=n+1, n+2,…,〃2).   『        フ Tbe symmetric matriX(んξ5)is called the’secOnd fundamental fbrm at(ρ, er).パ暁. de丘ne the k−tl mean curvature Kk(ク,er)at(ρ,θア)∈βッby w

       …(・i・+’旬一1+¥㈲KKp・…)t・’一 …”

  The volume element of Mカcan be written as dV=ω1∧...∧ω泥.−The(〃21一π一1> f・rm d・−q・・.−Gt・A・・述ω͡一・(・・tn b・・Tggard・・ap(m−〃−1)−f・・m・n.β・su・h・th・t it・       .      、’  .. 〆 .「. .’.こ  *)Manifolds, m砲pings, metrics,...,etc. are assumed to be.diiferentiable and of     class C−.       ‘1学 [19]

(2)

20

S.YAMAGUCHI

restriction to a丘bre Spm−n−1, then the(m−1)−fbrm do八dV’can be regarded as the volumew element of莇.   In[5], we㎞ow that

(1)  T(・・)≡!。。1頂・・の14γ∧da≧鴫β鍋

where Kl〔ρ,θ)denotes the Lipschitz−Killi㎎㏄Tvature, Cm_1 the volume of the unit (〃−1)dilnensional sphere andβ‘(ハのthe就h Betti number of M・. If the equality sign of(1)holds, then the immersion x:バグ絡→E餌is caned a minhnal㎞be(1ding.   B.Y. Chen[3,4]has proved the fbllowings:   TH厚OR巳M A・ Let x:∼ぼカ→・E郁加q4元〃mprsion oゾα〃orピη絃Z(ごρmρααηκzπが0∼d

ハ4パ脚E拐,乃¢ηw加ツβ

      T(・)≡1。“故…)〃M・=・ Cm−・⑭, where X(∼の吻0’θぷthe Eular chqrac’eアistic・∫、」t4ne   THEOREM B. Under sa〃leα∬umptionρ∫Thθore〃2/1,’乃θLipぷc乃ノ’z肩KZ〃切g curva− ture K(ρ,θ)ぷaガsfies’he j〃eq〃ality

(・)  ∫。⑭〃∧da≧曝、,(吻 ・

’(3) 1。⑭醐吻≦−Cm.冒β、ト、(働

w擁4−{(ク,e)∈β〃;丞(ρ,・)≧o}卿4β一{(?,・)∈β・;K(〃,のくo}.職β卿晦 ぷξ8馨ρ〆(2)qnd(3)holdsぴρ〃40nり∼ぴ’カβカηmぴぷψ∼I X麺〃鉱掘∼斑『.  ・   揚

 3・Theorem, Now, we put

       8‘(P,θ)一疏(P,e)#li−K(ρ,θ), where n/i is positive even integer. Then we.can prove the    .   THEOREM. Let x:Mカ→E楊be an伽膨ζぷio〃〈)f anρrien’ed・co〃ψαc’微π〃bぼM江

in E”wれカθゾb〃bwingクroperty ;       .

  (P)    {(ρ,の∈β〃:岳(P;θ)≧0}⊇{(ク,の∈β“:K(ク,θ)>0}. Then we』wθ’he follo吻9 inequaliり・

(・) ∫譜(b,‘・脚M・≧Cm一藁β・・(吻

W乃ε’θ〃/i is poぷ肋θεγθπ’〃’eger. The eqtiatityぷなn holdsぴand・O吻ぴ’舵加㎝θr一

ぷ迦xξぷa〃吻’施1imbedding.

PROOF. We set

       S+={(P,e)∈3・:岳(ρ,e)≧0} and &{(P,ε)∈3“:9;(ク, e)<旬. Then the set Sr is empty. In血ct, if(ρ,の∈β夕belong to&, by de丘nition       ’  Ki(ρ, e)”/L瓦(ρ,θ)<0.

(3)

A N.OTII ON IMMERSED MANIFOLDS IN A EUCLIDEAN SPACE

As Ki(P, e)nli≧0, Henoe we get (5) 21 it holds that K(p, e)>0. But this◎ontradrcts th6 property(P). !。.9i(P・・eldV∧d・ 一!。.9i(P・・e)dV∧d・       一!.。臨卿八d・−1、.K(…e)・VA・・        ≧0. By v加ue of(2), we have       [旦2]       ∼       私(ρ,のカ’idV∧吻≧Cm−1Σβ2輌(Mカ).        β〃       き=O Now suppose that the equaHty sign of(4)holds, then by(5)it fb皿ows that

(・)  1。砲・͡一場燗.‘・..

On the other hand, making use of(2), we get

(・)  !.K(P,・)一一一場ぷX

      カ and consequently,(6)一・and(7)meanτ(.4x)一(7,。_、Σβ,. The convetse of this is       ‘=1 垣vial.  The author wishes to express his sincere thanks to Prof. B. Y. Chen who gave advices. [1] [2] −1=]

34

[[

[5] [6] [7]       REFERENCES B.Y. Chen:Some integral fbrmulas of the Gurss−Kronecker curvrture, K6dai Math.  Sem. Repり20(1968),410−413. −      . B.Y. Chen:On an inequaUty of TJ. W∬1more, Proc. Amer. Math. S㏄.,26(197の,  473−479.

B.Y. Chen:On the Lip輌一㎜ng c田vat田e of㎞e□anifold,皿pub臨h劇.

B.Y. Chen:G−total curvature of㎞ersed manifolds,」. Di窟. Geometry,7(1972),  371−391. S.S. Chem孤d R. K. Lashof:On the total c肛vature of immersed manifolds, Amer.  」.Math.,79(1957),306−318;H, Michigan Math. J.,5(1958),5−12. T.Otsuki:On the tota1 curvature of surfaces in Euolidean spaces, Japanese J. Math.,  35(1966),6i−71. S.Yamaguchi:Remarks on the scalar curvature of immefsed mqnifolds, to appear.        DEPARTMENT OF MATHEMATICS        SC】ENCE UNWERSITY OF TOKYO       TOKYO, JAPAN

参照

関連したドキュメント

In this paper, we establish the following result: Let M be an n-dimensional complete totally real minimal submanifold immersed in CP n with Ricci curvature bound- ed from

Actually a similar property shall be first de- rived for a general class of first order systems including the transport equation and Schr¨odinger equations.. Then we shall consider

We investigated a financial system that describes the development of interest rate, investment demand and price index. By performing computations on focus quantities using the

In Section 5, we study the contact of a 1-lightlike surface with an anti de Sitter 3-sphere as an application of the theory of Legendrian singularities and discuss the

For example, if we restrict to the class of closed, irreducible 3-manifolds, then as said above, each manifold has a bounded number of incompressible surfaces, but clearly there is

We consider a non-linear 4-th order parabolic equation derived from bending energy of wires in the 3 -dimensional Euclidean space.. On consid` ere une ´ equation parabolique du 4

(By an immersed graph we mean a graph in X which locally looks like an embedded graph or like a transversal crossing of two embedded arcs in IntX .) The immersed graphs lead to the

[1] Feireisl E., Petzeltov´ a H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations 10 (1997), 181–196..