• 検索結果がありません。

ON FERMAT'S LAST THEOREM AND THE FIRST FACTOR OF THE CLASS NUMBER OF THE CYCLOTOMIC FIELD II

N/A
N/A
Protected

Academic year: 2021

シェア "ON FERMAT'S LAST THEOREM AND THE FIRST FACTOR OF THE CLASS NUMBER OF THE CYCLOTOMIC FIELD II"

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

TRU Mathematics 16’1 (1980〕

 ON FERMAIT t S LAST THEOREト1 AND THE

FIRST FA㎝)R OF THE CLASS NUMBER OF

      THE CYCI、C叩OMIC FIELD兀        Yoshikazu KARAMATSU       (Received May 30, 1980〕     1. IntroduCtion.     The author proved the fbllowing theorem [2].     、HE。剛.写みyZ.み。i.。。ti。fi。砺』。。。 。.・,; z,、.i・M。,。協θ oca pime Z。仇θη疏θ方rsカfactor o了theθZα合S numわθr oアtheσycZotomie fieZd た(・)〔ζ・・2T「i/Z〕i・砺・ibZ・ by ZIU ・x・・輌h・・Z・3,・47,・・4,・・3,・・1.      In this paper I intend to develop this result and prove that the fbllowing 〔a),〔b〕hold厄th some excepti㎝s

:;蕊爵:,:㍗:,罐1誌㌶・韮品、:1霊};1°f Z2・

     2.Ku皿ner Criteria and the Bernouユ1i Nun』ber.      Prof. T. Wbrishima [4] showed that if Z is an odd prime and

〔1)  みηz・みo 、     ’』

is sati・fied桓reati鋤1−integ号rS pr㎞e t・ea(in・ ・ther ・nd t・Z・. then fOr

n=2,3,…,(Z−1)/2 .      、        、

(・) @〔・2’・ 一・)b2n[裏.〔;:鋼・(・ )・.ゴ・・( 、)];・(・…2〕

where

..

E,(_{竪]。。。, ..

−t・b・ing・・ny・f the ratig・ ’

f3)  芸・÷・チる÷・÷

・・db。…ゐ、・一・/2,…,力劔一(一・)n−IBn。 b2n.、・・ar・血・・励・…f

Bemoulli. .     、      .    ..

23

(2)

24

Y.KARAMATSU

    For  η=2,3,4,5,6,7,8,9,10  and  Z>174611  we have        (・en−・〕b、。・f・ (・・dZ〕・ Hence, the relation (2) gi廿es       ・(、.2“)、.、・・、(。、.、)・・ 伽・・………〕〔・・d・2) that is

〔・〕 ・,_、[d(当號、1元・㌢〕L.。・・(・・d・2)

       (η∼=233..・.310;   Z>174611). ・ti・㎞・wn・h…(、.。、)、.、・・(md・2)f・・・・・・・・…〔・・匝・・㎜・f・[・D and for m=6,7 〔T. Mbrishima [4] and D. H. Lehmer [3]) and s i皿ilarly fbr m=8 (Y. Karamatsu [2]〕.     In the present paper, using 〔4〕,we shall extend these results.     we have, for m=2,3,…  ,8, 〔・〕

@ [d(2m−’舞ll評]v.。・[ヂ;i繋fθ判炉。≠・

and for涜=9,10       ・

(・〕 [’(等號、};・%L・[ヂ器…f判_・

       〔mod Z〕,

Where

田㌶㌶::莞:;;;蕊潔:ll:1蒜欝8・549t5

・6,382,798,925,47Stg・3,207,483,178,IS7tl°・782,115,518,299tll .85,383,238,549t・2・3,572,・85,255t13・4・,932,745み65,5・9t’5・t’6 (mod Z), 一P2n_ユ〔t)      2mLl 〔1−t〕

蹴㌶i畿;ll:;;:㌶:1鵠1鵬;㌶::!;91g°°t5

・・,865,385,657,780,650tg・1,865,385,657,780,650t’°・1,006,709,967,915,228t” .285,997,・743・7,…t・2・4・,457,344,748,・72t’3・2,575,・22,・97,6・・t14 .6・,4・3,3・3,…t・5・382,439,924t16 ・ 262,・2Sti7・t⊥d. 舟w1・t u・c…ider th・p・1)m・㎡・1 P。ω・f d・gree・−1砿th n・tura1・励e「 coefficieIlts, forヵ=17,19.     pn(x)i・divi・ib1・by苫(1−¢)・hence・鴨put       Pη〔x)=虚(1−x)Qn〔苫〕・

(3)

ON FERMA¥T , S LAST THEOREM 25 th・n・fb・x(1−・〕≠0〔・・d Z)・P。ω‘i・divi・ib1・by Z・nly wh・n Qn〔司i・ divisible by Z.      『      On the other hand, from the assulqption  @,y,a,Z〕=1, we have,       l  z  z        =0      〔mod Z),        x+y+9≡x       +y       十9 therefbre, the s’iX values module Z of (3) aτe expTessed by the fOllowi皿g        一ち÷.一・・ち,i、,≒t,、…ピ The values

(・〕  ち÷,・一ち、≒,≒1,,喜、

are roots of the congruence 〔・〕  ・、(t)・t6−3・5・・…L−(・α一5)・3+αt2−3t・… 〔・・d・〕, wh。。e α.・一(・・3t・一 st3・・t5・t6〕.       t2(1..t〕2 H・nce・qn〔t〕・an b・w・itt・n・・ (9)   On〔t〕=o壬(t)9、〔t〕+R、〔t〕 wh・・e ai〔t)i・th・q・・ti・nt・      It is convenient to distinguish three cases as fbllows:      Case A. The six values in(7)are relatively different modulo Z.      Case B. The three values i皿 〔7〕 are co亘gruent to each other modulo Z.      Case C. The two values in 〔7〕 are congruent to each other modUlo Z.       First of a11, clearly        t≠0,・1  〔mod Z〕. 」Case A: In this case we have        t≠−1   (mod l). If%(t〕i・divi・ib1・by Z・th・n Rユ〔t〕皿・t b・diVi・ib1・by Z・        R、ぽ,〔・〕t5・へ〔・)t4・A,〔・)t3・A,〔・)t2・A、〔・〕・’・A。〔・〕, ’』・Ai(・〕(i・・,・,2,…,5), i・ap・・yn・mi…f・n・tur…umi)・r c・effi・i・n・・.      Hence, for all i        傷〔・〕≡0 〔i=0・1・2・…・5) 〔m・d Z)・ From these six congruences, we have three congruences        ㌧α+炉0〔i=1・2・3) 〔m・dZ)・ nh…hi ・nd ki ar・ s・m・ int・g・…

(4)

26

Y.KAUIAMATSU

U・ing・these r・1・tiq鵬“⑭e⑭n屹rsカユ・、 b2・suCh『伽t

孤dゐ2・0(ftpd・Z〕・肋・e・ver・鳩see d違t th・greatest・・㎜n輌i・・r・・f

th・int・9r・・カ、・・d b2 f・・17㎝d 19 are・・Spectivelγユ7〔Y・、 (H.・Wada [8D. The 6quation 〔1) is not satisfied fbr  Z=17      th・・efbre・w・ have P。(t)=t〔1一鰍〔カ〕≠0(mbd Z)fb・ Case B: ’Pollaczek 1[5] showed that this Case B never hapPens on both φn(t)Bl_7τ≡0  (lnod Z〕, π=3,5,・◆●,Z−2  and  φZ_1〔t)三〇  (血od Z),wheτe        z_1

φn(t)=Σ〔−1〕m−1mn−ltm    .・’

       ηFl and so it is(luite unnecessary to consider this case. Hbwever, we can show th・t Qn〔t)fO(modZ)fb・・=17・19・・fb11・幡・linqe・the c・n・liti・n・・f Case. B, the values of〔7)are roots of the congruence

〔・・)  9、(t)・t2・t・… 〔・・dZ)

砲ere tfO,1,−1,(modZ〕.

     we have        Qn〔t〕=%(t)92〔t)+Rfi〔カ)・ ・Where・Q;(t)i・th・q・・ti・㎡・. lf Qn〔t〕.i・di・i・ib1・by Z・then・RS(t)「「「ust be divisible by Z, alld we can、 see that 』       , Ri7=−5・515・342・166・891=−23’401’13・687’43・691≡0〔m°d Z〕fb「π=17・ Ri9=1・538・993・024・478・301=7’19’7691”8609’174・763≡0〔m°dt〕f°「 ・n=19・ 血e ・quati・n(1〕i…t・ati・fi・d fb・Z砲i・h』a・e th・p・㎞・.fa・t・r・。f Ri了        , since undet the asξumption of the Case I,〔1) is not satisfied fbrand R’      lg Z<253,749,889 〔D.H.1、ehmer [3D.

・廠efb・・eh〔t)≠0〔・・17・19〕(・・d Z)・

Case C・・f…ド2,÷〔・・d・),・h㎝(・)・・{・,−2,一÷}・

H・n・eQn〔’1)三〇〔mdZ){b・・=17・19飢d

       Qn〔−2〕E −Qn(÷)(md Z〕・ Mbreover, we can get:        Qユ7〔−2)=5・17’20・845・704・635・211≡0 〔m・dZ)       . a、g〔−2〕=7・19・916・933’9・253・728・769三〇 (m°dZ〕 Therefbre we have fbr m=9, 10

       ドー11器三θ%L。≠・ (・…)

except when  Z=20,845,704,635,211; Z=9,253,728,769. bl・.三〇〔・。dZ〕 Karamatsu) and 19 and Z=19.  n=17, 19.

(5)

ON FEiRMItT , S LAST THEORHM 27      From above results A, B and C we have the follow血g Le㎜a; LEWA 1・ヱアZisαn・・ld pri〃θαncl〔1)is sαtisfied in・αse 1, then forθα・h n∼=2,3,4,5,6}7,8,9 an〈牙 10 〔11〕 @        D(2η・−1)Z− [ d(肋;…1嘉;ユ 1−eVt〕 ] ∂=010    〔mod Z〕 exeePt tuhen Z α㌘θ the ゴ:b ZZoτ励η≦7 thTee pnimes 3,547,114,323,481; 20,845,704,635,221; 9,253,728,769, ∼Dhe?e−t heingαny oアthe eeαtios in (3〕.      Now applying this Lemma to(4〕,we easily obtain the following theor㎝.

mEO剛1・写Zis an・dd P”ime and(1〕is sαti$fied in伽・1.カ』f・P eαeh

m=2,3,4,5,6,7,8,9,10

〔・2)  b(Z.n)、.、・・  (・・d Z2)

hoZds forαZZ Z3 hut pespeetivily for m=8,9,10 exoeρt Z whieh ave three        エ ・・im・・ment・・n・d・i・・L・tnm…wh・・e・ユー一・/…、i−(一・)¢+’Bi. b、i.、一・. t・・, B. α㌘θ Bθヱη2(フulZi nz〃ibθ?8.      3.The first factor of the class number of the cyclotomic field.      By H. S. Vandiner’s result [6]we have (・3)

@今1妻已顯咽〔妻ザZ8一ユ

where

      d。三一α/z  〔・・d・)        0≦dα<n     〔nJZ〕=1・ H・nce fd・i−(1−2m) zc・1,・・0, 〔・4〕

@t−・ g¥1・’・橿巨αα垣 (m・d・・〕

On the other hand, it is㎞om that

〔・5) ÷封。・・b、 (m。d・・)

      α=1 where  z<3.

(6)

28

Y.KARAMATSU

Hence

〔16)

For c=1

≒・b、・Si’ ・。・i−・       α=1 and 19, this yields    n(Z_2m)z+・.1       わ 〔Z−2m)Z+1 (z−en)Zl9+1

n

(mod Z2). (17〕 (Z−2m〕119・1

ぽ、.、・

ワ・。・・(z−2m)z

_1

    カ(z.en)z・9+、 (mod Z2) 、S1、.d(・−an)z19        a   α;1 〔mod Z2). Hence we have       。(z−・・)z。α(z−・・)z19  〔。。dZ2).

Accordingly

〔・8)・

=G≒・・(_)、.、・・i惑;i}1・(・.・・)・・9+・ (・・d Z2〕・ For each  η∼=2,3,4,5,6,7,8,9,10, we have       。(・一・・)・19+・担  ’(。。d、〕,    ・ 油ence, fl℃皿 (18) and 〔12),we have

〔・9〕 b(Z−、m)、・.ユ・・ 圃・2)

       伽=2,3,…,10).      F・㎝H.S.迦div・…rg・ult[7]・・nceming th・fi・・t fact・・hl・f th・       2TTt class nuniber of k〔ζ), ζ=e τ ,we also have

〔・・〕 h、・Z碁き…19+1 ⑭’g)

血ere μ=〔Z−1〕/2  and s=1,3,・.・,Z−2.      Therefbre we obtain fr㎝ (19) and (20〕,       h、・・  〔・・dZ19〕・ Hence we have the following theorem.

皿・剛2.ffみみみO i。。。ti。fied in vatiouaZ integ…x,y,・輌・

t・・ca・P・・ilm・Z. th・n th・ fi?・t fa・t・㌘・μん・・ZαSS nw・b・r・f仇・・y・Z・古・屹 fi。Zd・k〔ζ)。ζ・。2πi/Z. i。 di・i・ibZ・ by zl9・騨鋤・n Z…伽θ輌・・

(7)

﹂ ()NFERMttT , S LAST THEOREM

29

mθntioned in Lmm 1.       tt  REFEREN(田S

[1】E・E・K・㎜…E血ig・S5t・e施erdiea田d・n恥・・e1・nd・rG1・i・麺9。λ・1

    gebildeten C(卿1exen zahlen, fUr       den Fall dass die Klassenzahl durd1λ     theilber ist, nebst Anwe!idu【1g derselben auf einen weiteren BeweiS des     letzten Fermat l’schen Lehrsatzes. Abh. KOnig. Akad. Wiss. Berlin,     (1857), 41−74.・     ・      1 [2]Y.Karamatsu and S. Abe: On Fermat・s last theor㎝and the first factor     of the class number of the cyclotomic field. TRU Mathe醍ti(is,4(1968〕,     1−9.       ・’ [3]D.H. Lehmer:     38〔1932), [4]T.Mbrishima:     Acad. Japan, [5]F.Pollaczek: Anote on Fennat’s last theorem. 723−724. Wiss. Wi㎝. Math−nature K1. Bu11. Amer. Math. Soc.、  −や Uber.die Fermatsdhe Vernmtung, VI.1. 8(1932), 63へ66.

Ober d㎝gross㎝Fe㎜t・sCh㎝Satz.

       ,Abt. IIa,126 〔1917)., Proc. IiT彗)eria1 Sitzugsber, Akad.「 45−59. [6]        Sy㎜etric i nction fonned. bアsystems of elements.of     afinite algebra and their connecti(m with Fer nat’s quotient and     Bernouulli ’ s numbers. Ann. of Math. r 〔2〕, 18 (1917), 105−114. [7]H・S・Vandiver: On the First Factor of the Class Nmni)er of a dyclotomic     field.       Bul1−. Amer. Math. Soc., 25 (1919),458−−461.. [8] H・ Wada:  The e㎎)irical N㎝ber theory 〔iIl Japanese〕. ResearCh InstitUte fbr       Scien. Kyoto Univ., Dec(mber (1979), 98−105.     Math. Department of Mathematics

Utsm㎝iya U垣versity

Utsunouiiya, Minenachi 350 Japan 321

(8)

参照

関連したドキュメント

The only thing left to observe that (−) ∨ is a functor from the ordinary category of cartesian (respectively, cocartesian) fibrations to the ordinary category of cocartesian

An easy-to-use procedure is presented for improving the ε-constraint method for computing the efficient frontier of the portfolio selection problem endowed with additional cardinality

If condition (2) holds then no line intersects all the segments AB, BC, DE, EA (if such line exists then it also intersects the segment CD by condition (2) which is impossible due

For example, a maximal embedded collection of tori in an irreducible manifold is complete as each of the component manifolds is indecomposable (any additional surface would have to

Now it makes sense to ask if the curve x(s) has a tangent at the limit point x 0 ; this is exactly the formulation of the gradient conjecture in the Riemannian case.. By the

Splitting homotopies : Another View of the Lyubeznik Resolution There are systematic ways to find smaller resolutions of a given resolution which are actually subresolutions.. This is

The proof uses a set up of Seiberg Witten theory that replaces generic metrics by the construction of a localised Euler class of an infinite dimensional bundle with a Fredholm

We study the classical invariant theory of the B´ ezoutiant R(A, B) of a pair of binary forms A, B.. We also describe a ‘generic reduc- tion formula’ which recovers B from R(A, B)