• 検索結果がありません。

Twisted first homology group of the automorphism group of a free group (Topological Transformation Groups and Related Topics)

N/A
N/A
Protected

Academic year: 2021

シェア "Twisted first homology group of the automorphism group of a free group (Topological Transformation Groups and Related Topics)"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

Twisted first

homology

group

of

the

automorphism

group

of

afree group

佐藤隆夫

(

東大数理

)

Takao

Satoh

(University

of

Tokyo)

1Introduction

Let

$\mathrm{F}_{n}$

be afree group of rank

$n$

with basis

$\mathrm{Y}=\{y_{1}, \ldots,y_{n}\}$

.

We denote

by

Aut

$\mathrm{F}_{n}$

and

Out

$\mathrm{F}_{n}$

the automorphism

group

and

outer

automorphism

group

of

$\mathrm{F}_{n}$

respectively.

In this

paper,

we

calculate the

twisted

first cohomology

groups

and

homology

groups

of

these groups

with

coefficients

in

$H_{1}(\mathrm{F}_{n}, \mathrm{Z})$

and

$H^{1}(\mathrm{F}_{n}, \mathrm{Z})$

.

The cohomology

groups

and

homology

groups of Aut

$\mathrm{F}_{n}$

and

Out

$\mathrm{F}_{n}$

are

not well known completely. In

the

case

where

the coefficients

are

triv-ial,

however, there

are

some

results. For

example,

S.M.Gersten

[3]

showed

$H_{2}$

(Aut

$\mathrm{F}_{n},$$\mathrm{Z}$

)

$=\mathrm{Z}/2\mathrm{Z}$

for

$n\geq 5$

and

A.Hatcher

and

K.Vogtmann

[4]

showed

$H_{4}(\mathrm{A}\mathrm{u}\mathrm{t}\mathrm{F}_{4}, \mathrm{Q})=\mathrm{Q}$

. On the

other hand,

the

twisted cohomology

groups

and

homology

groups

of

Aut

$\mathrm{F}_{n}$

and

Out

$\mathrm{F}_{n}$

are

much

more

unknown.

The

actions Out

$\mathrm{F}_{n}$

on

$H_{1}(\mathrm{F}_{n}, \mathrm{Z})$

and

$H^{1}(\mathrm{F}_{n}, \mathrm{Z})$

are

very similar to those

of

$\mathrm{M}_{\mathit{9}}$

on

$H_{1}(\Sigma_{g}, \mathrm{Z})$

and

$H^{1}(\Sigma_{g}, \mathrm{Z})$

.

Here,

$\Sigma_{g}$

is asmooth

oriented closed

surface of

genus

$g$

and

$\mathrm{M}_{g}$

is its mapping

class

group.

we

should remark

that

$H_{1}(\Sigma_{g}, \mathrm{Z})$

is

isomorphic

to

$H^{1}(\Sigma_{g}, \mathrm{Z})$

by Poincare’ duality.

S.Morita

[8]

calculated

$H^{1}(\mathrm{M}_{g}, H_{1}(\Sigma_{g}, \mathrm{Z}))=0$

and

$H_{1}(\mathrm{M}_{g}, H^{1}(\Sigma_{g}, \mathrm{Z}))=\mathrm{Z}/(2-2g)\mathrm{Z}$

for

$g\geq 2$

.

Our

calculation is similar to

his

calculation

in

several

respects.

2Notations

Let Inn

$\mathrm{F}_{n}$

be the inner

autontorphism

group of

$\mathrm{F}_{n}$

.

We

denote

by

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

and

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

the

special

and

special

outer

$\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}.\mathrm{p}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}\mathrm{m}$

group

of

$\mathrm{F}_{\mathrm{t}}$

.respec-tively. More

precisely,

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

and

$\mathrm{O}\iota 1\mathrm{t}^{+}\mathrm{F}_{n}$

are

defined

in

the

following

way.

Let

$\mathrm{F}_{n}^{ab}$

be

$\mathrm{F}_{n}/[\mathrm{F}_{n}, \mathrm{F}_{n}]$

the abelianization of

$\mathrm{F}_{n}$

, which is the

first homology

数理解析研究所講究録 1343 巻 2003 年 25-30

(2)

group of

$\mathrm{F}_{n}$

with

trivial

coefficients. Let

$\varphi$

be

the

natural epimorphism from

Aut

$\mathrm{F}_{n}$

onto Aut

$\mathrm{F}_{n}^{ab}$

induced

by

the abelianizer

$a$

:

$\mathrm{F}_{n}\prec \mathrm{F}_{n}^{ab}$

.

Since

$\mathrm{F}_{n}^{ab}$

is

naturally

isomorphic

to

$\mathrm{Z}^{n}$

with respect to the basis

$\mathrm{Y}=\{y_{1}, \ldots, y_{n}\}$

,

we can

identify

Aut

$\mathrm{F}_{n}^{ob}$

with

$\mathrm{G}\mathrm{L}(n, \mathrm{Z})$

.

Hence

we

get

the

epimorphism

from

Aut

$\mathrm{F}_{n}$

onto

$\mathrm{G}\mathrm{L}(n, \mathrm{Z})$

.

We

also

use

$\varphi$

to

denote this

epimorphism

$\varphi$

:

Aut

$\mathrm{F}_{n}arrow \mathrm{G}\mathrm{L}(n, \mathrm{Z})$

.

If

we

consider the determinant

homomorphism

$\mathrm{d}\mathrm{e}\mathrm{t}:\mathrm{G}\mathrm{L}(n, \mathrm{Z})arrow\{\pm 1\}$

,

and put

$\iota=\det\circ\varphi$

,

then

we

define

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

and

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

as

follows:

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}=\{\sigma\in \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{F}_{n}|\iota(\sigma)=1\}$

,

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}=\{[\sigma]\in \mathrm{O}\mathrm{u}\mathrm{t} \mathrm{F}_{n}|\iota(\sigma)=1\}$

,

where

$[\sigma]$

is

the equivalence class of

$\sigma$

in

Aut

$\mathrm{F}_{n}$

modulo

Inn

$\mathrm{F}_{n}$

.

The

group

Aut

$\mathrm{F}_{n}$

acts

on

$\mathrm{F}_{n}^{ab}$

by the epimorphism

$\varphi$

.

We denote

$\sigma\cdot x$

by

the action

of

$\sigma$

on

$x$

, where

$\sigma\in \mathrm{A}\mathrm{u}\mathrm{t}$ $\mathrm{F}_{n}$

and

$x\in \mathrm{Z}^{n}$

.

If

we

identify

$\mathrm{F}_{n}^{ab}$

with

$\mathrm{Z}^{n}$

in the

above

sense

and define

$\overline{\sigma}$

to be

$\varphi(\sigma)$

,

then the

action of

$\sigma$

on

$x\in \mathrm{F}_{n}^{ab}$

is considered

as

the matrix action of

$\overline{\sigma}$

on

$x\in \mathrm{Z}^{n}$

.

Since

Aut

$\mathrm{F}_{n}$

acts

on

$\mathrm{F}_{n}^{ab}$

,

the

group

Aut

$\mathrm{F}_{n}$

also acts

on

$\mathrm{F}_{n}^{ab}\otimes \mathrm{z}(\mathrm{Z}/q\mathrm{Z})$

and

$(\mathrm{F}_{n}^{ab})^{*}$

in

the

natural

way.

Here,

$(\mathrm{F}_{n}^{ab})^{*}$

is the

group

$\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Z}}(\mathrm{F}_{n}^{ab};\mathrm{Z})$

of all

homomorphisms

from

$\mathrm{F}_{n}^{ab}$

to

$\mathrm{Z}$

, which

is

the first

cohomorogy

group

of

$\mathrm{F}_{n}$

with trivial coefficients. If

we

identify

$\mathrm{F}_{n}^{ab}\otimes_{\mathrm{Z}}(\mathrm{Z}/q\mathrm{Z})$

with

$(\mathrm{Z}/q\mathrm{Z})^{n}$

, then the action of Aut

$\mathrm{F}_{n}$

on

$(\mathrm{Z}/q\mathrm{Z})^{n}$

is given by

$\sigma\cdot x=\sigma’(x)$

,

where

$\sigma\in \mathrm{A}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

and

$x\in(\mathrm{Z}/q\mathrm{Z})^{n}$

and

$\sigma’$

means

$\overline{\sigma}$

modulo

$q\mathrm{Z}$

.

On

the

other

hand,

the

action of Aut

$\mathrm{F}_{n}$

on

$(\mathrm{F}_{n}^{ab})^{*}$

is

also

given by

$(\sigma\cdot f)(x)=f(\overline{\sigma}(1x))$

,

where

$\sigma\in \mathrm{A}\mathrm{u}\mathrm{t}$ $\mathrm{F}_{n},$

$f\in(\mathrm{F}_{n}^{ab})^{*}$

alld

$x\in \mathrm{Z}^{n}$

.

The

group Out

$\mathrm{F}_{n}$

acts

on

$\mathrm{F}_{n}^{ab},$ $\mathrm{F}_{n}^{ab}\otimes_{\mathrm{Z}}(\mathrm{Z}/q\mathrm{Z})$

and

$(\mathrm{F}_{n}^{ab})^{*}$

in the

same

way.

In fact,

these actions

are

given by

$[\sigma]\cdot x=\overline{\sigma}(x),$

$x\in \mathrm{Z}^{n}$

,

$[\sigma]\cdot x=\sigma’(x),$

$x\in(\mathrm{Z}/q\mathrm{Z})^{n}$

,

$([\sigma]\cdot f)(x)=\varphi(\overline{\sigma}(1x)),$

$f\in(\mathrm{F}_{n}^{ab})^{*},$

$x\in \mathrm{Z}^{n}$

.

(3)

These

$\mathrm{a}\downarrow \mathrm{b}\mathrm{o}\mathrm{v}\mathrm{e}$

three actions

are

well-defined because Inn

$\mathrm{F}_{n}$

acts

on

$\mathrm{F}_{n}^{ab}$

triv-ially.

We

should remark

that

all

maps in

our

calculation

are

composed

right

to

left.

Namely,

the

composition

of

two maps

f

and g is

defined

by

$(f\mathrm{o}g)(x)=f(g(x))$

.

Furthermore

we

also define

an

expansion

of

commutator

$[x, y]$

by

$[x,y]=y^{-1}x^{-1}yx$

.

3Main results

We calculate the

first

cohomology and homology

groups

of

Aut

$\mathrm{F}_{n},$ $\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

,

Out

$\mathrm{F}_{n}$

and

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

with

coefficients

in

$\mathrm{F}_{n}^{ab},$ $\mathrm{F}_{n}^{ab}\otimes_{\mathrm{Z}}(\mathrm{Z}/q\mathrm{Z})$

and

$(\mathrm{F}_{n}^{ab})^{*}$

with

respect

to the above actions. The following statements

are

our

main

results.

Theorem 1For

any

$n\geq 2$

,

the

first

cohomology group

of

$\Gamma$

with

coefficients

in

$\mathrm{H}=\mathrm{F}^{a_{l}b}$

,is

given

by

$H^{1}(\Gamma, \mathrm{H})=\{$

$\mathrm{Z}$

if

$\Gamma=\mathrm{A}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

or

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

,

0if

$\Gamma=\mathrm{O}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

or

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

.

Theorem 2Let

$q$

be

a

positive

integer

greater than

1and

$e$

be

a

positive

inte-ger.

The

first

cohomology

group

of

$\Gamma$

with

coefficients

in

$\mathrm{A}_{q}^{n}=\mathrm{F}_{n}^{ab}\otimes_{\mathrm{Z}}(\mathrm{Z}/q\mathrm{Z})$

is

grven

by

(1)

$\Gamma=\mathrm{A}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

or

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

for

$n\geq 2$

$H^{1}(\Gamma, \mathrm{A}_{q}^{n})=\{$

$\mathrm{Z}/q\mathrm{Z}$

if

$n\geq 4$

,

$\mathrm{Z}/q\mathrm{Z}$

if

$n=2,3$

ancl

$(q, 2)=1$

,

$\mathrm{Z}/q\mathrm{Z}\oplus \mathrm{Z}/2\mathrm{Z}$

if

$n=2,3$

and

$q=2^{e}$

,

(2)

$\Gamma=\mathrm{O}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

or

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

for

$n\geq 4$

$H^{1}(\Gamma, \mathrm{A}_{q}^{n})=\{$

0if

$(q, n-1)=1$

,

$\mathrm{Z}/q\mathrm{Z}$

if

$q|(n-1)$

,

$\mathrm{Z}/(n-1)\mathrm{Z}$

if

$(n-1)|q$,

(4)

(3)

$\Gamma=\mathrm{O}\mathrm{u}\mathrm{t}$$\mathrm{F}_{2}$

or

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{2}$

$H^{1}(\Gamma, \mathrm{A}_{q}^{2})=\{$

0if

$(q, 2)=1$

,

$\mathrm{Z}/2\mathrm{Z}$

if

$q=2^{e}$

,

(4)

$\Gamma=\mathrm{O}\mathrm{u}\mathrm{t}$

F3

or

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{3}$

$H^{1}(\Gamma, \mathrm{A}_{q}^{3})=\{$

0if

$(q, 2)=1$

,

$\mathrm{Z}/2\mathrm{Z}\oplus \mathrm{Z}/2\mathrm{Z}$

if

$q=2^{\mathrm{e}}$

.

Theorem

3For any

$n\geq 2$

,

the homology

group

of

$\Gamma$

with

coefficients

in

$\mathrm{H}^{*}=(\mathrm{F}_{n}^{ab})^{*}$

is given by

(1)

$\Gamma=\mathrm{A}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

or

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

$H_{1}(\Gamma, \mathrm{H}^{*})=\{$

$\mathrm{Z}$

if

$n\geq 4$

,

$\mathrm{Z}\oplus \mathrm{Z}/2\mathrm{Z}$

if

$n=2,3$

,

(2)

$\Gamma=\mathrm{O}\mathrm{u}\mathrm{t}$$\mathrm{F}_{n}$

or

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

$H_{1}(\Gamma, \mathrm{H}^{*})=\{$

$\mathrm{Z}/(n-1)\mathrm{Z}$

if

$n\geq 4$

,

$\mathrm{Z}/2\mathrm{Z}$

if

$n=2$

,

$\mathrm{Z}/2\mathrm{Z}\oplus \mathrm{Z}/2\mathrm{Z}$

if

$n=3$

.

In

order

to calculate the

cohomology

groups,

we

will

use

presentations

for

Aut

$\mathrm{F}_{n},$ $\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

,

Out

$\mathrm{F}_{n}$

and

$\mathrm{O}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

.

We determine the condition which

a

crossed

homomorphism

must satisfy

by

using these presentations.

Historically,

the first

finite

presentation

for

Aut

$\mathrm{F}_{n}$

was

obtained

by

Nielsen

in

1924

and to show

it,

he used hyperbolic geometry.

However,

it

is well

known

that

his presentation is

too

complicated

to handle. In

1974,

McCool

[6]

gave

the simplified finite presentation using

Whitehead

automorphisms.

In 1984, Gersten

[3] improved

McCool’s

presentation.

He

expressed

the

Mc-Cool’s

relations,

which

are

represented

by

Whitehead

automorphisms,

in

terms

of Nielsen’s

automorphisms.

In

our

calculation,

we

improve

axid

use

the

Gersten’s finite

presentation

Finally,

we

give

an

interpretation

of

the

generator of

$H^{1}(\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n},\mathrm{H})=\mathrm{Z}$

.

In

general, it

is well known

that

there

is

ahomomorphism

$r:\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}arrow \mathrm{G}\mathrm{L}(n, \mathrm{Z}[\mathrm{F}_{n}])$

,

(5)

which

is called

Magnus

representation

of

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

(see

[1]).

Let

$\alpha$

:

$\mathrm{G}\mathrm{L}(n, \mathrm{Z}[\mathrm{F}_{n}])arrow \mathrm{G}\mathrm{L}(n, \mathrm{Z}[\mathrm{H}])$

be ahomomorphism induced

by

an

abelianizer a

:

$\mathrm{F}_{n}arrow \mathrm{H}$

and

$\det$

:

$\mathrm{G}\mathrm{L}(n, \mathrm{Z}[\mathrm{H}])arrow \mathrm{Z}[\mathrm{H}]$

be

the

determinant

map.

Composing

these

maps,

we

obtain the map

$f$

:

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}arrow \mathrm{Z}[\mathrm{H}]$

.

By

an

easy

calculation,

we can

show

that

the

images

of all generators of

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

are

contained

in

H.

Hence, the image

of

$f$

is contained in H.

More-over,

$f$

is acrossed homomorphism and the cohomology class

$[f]$

of

$f$

gener-ates

$H^{1}(\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}, \mathrm{H})$

.

The

same

argumaent holds in the

case

$H^{1}(\mathrm{M}_{g},, {}_{1}H_{1}(\Sigma_{g,1}, \mathrm{Z}))$

(see

[9]).

Here,

$\Sigma_{g,1}$

is asmooth oriented closed surface of

genus

$g$

with

one

fixed

bound-ary

component and

$\mathrm{M}_{g,1}$

is

its

mapping class

group. S.Morita

[8] also

calcu-lated that

$H^{1}(\mathrm{M}_{\mathit{9}},, {}_{1}H_{1}(\Sigma_{g,1}, \mathrm{Z}))=\mathrm{Z}$

.

The

generator of

$H^{1}(\mathrm{M}_{g},, {}_{1}H_{1}(\Sigma_{g,1}, \mathrm{Z}))$

is

constructed

by using

aMagnus

representation of

$\mathrm{M}_{g,1}$

.

4Acknowledgements

The author would like

to express

his gratitude

to Prof. N.Kawazumi

and

Prof.

S.Morita

for their sincere encouragements and helpful suggestions.

References

[1]

J.S.Birman; Braids,

Links,

and Mapping

Class

Groups,

Ann.

of

Math.

Stud. 82, Princeton Univ.

Press, Princeton,

1974

[2]

$\mathrm{K}.\mathrm{S}.\mathrm{B}_{\mathrm{I}}\cdot \mathrm{o}\mathrm{w}\mathrm{n}$

;

Cohomology of

groups,

Graduate Texts

in

Math.

129

Springer Verlag,

1982

[3]

S.M.Gersten; Apresentation for

the special automorphism

group of

a

free

group, J. Pure

and Applied

Algebra

33

(1984),

269-279

[4]

A.Hatcher and K.Vogtmann; btional homology of

$\mathrm{A}\mathrm{u}\mathrm{t}^{+}\mathrm{F}_{n}$

,

Math.

${\rm Res}$

.

Lett.

5(1998),

no.

6,

759-780.

[5]

R.C.Lyndon and

P.E.Schupp; Combinatorial Group

Theory,

Springer

Verlag,

1977

[6] J.McCool; Apresentation for the

automorphism

group of

afree

group

of finite

rank,

J. London Math.

Soc.

8(1974),

259-266

(6)

[7]

tV.Magnus; AKarrass and D.Solitar, Combinatorial Group Theory,

In-terscience

Publ.,

New

York,

1966

[8] S.Morita;

Families of

Jacobian

manifolds and characteristic classes of

surface bundles

I,

Ann.

Inst. Fourier

39

(1989),

777-810

[9] S.Morita;

Abelian

quotients

of subgroups of the mapping class

group

of

surfaces,

Duke Math. J.

70

(1993),

699-726

参照

関連したドキュメント

In this section we describe the structure of fixed subgroups of exponential au- tomorphisms where the fixed subgroup has rank one less than the ambient free group.. In order to do

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol- ogy cylinders by considering its action on the acyclic closure, which was defined by Levine in [12]

Abstract The classical abelian invariants of a knot are the Alexander module, which is the first homology group of the the unique infinite cyclic covering space of S 3 − K ,

Given a principal fibre bundle with structure group S, and a fibre transitive Lie group G of automorphisms thereon, Wang’s theorem identifies the invariant connections with

Thus no maximal subgroup of G/P has index co-prime to q and since G/P is supersolvable, this gives, by using a well known result of Huppert, that every maximal subgroup of G/P is

Isaacs generalized Andr´e’s theory to the notion of a su- percharacter theory for arbitrary finite groups, where irreducible characters are replaced by supercharacters and