• 検索結果がありません。

Spinor Tech Summary

N/A
N/A
Protected

Academic year: 2021

シェア "Spinor Tech Summary"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Spinor Tech Summary

Kiyoshi Shiraishi June 15, 2014

Abstract

We summarize some definitions and identities on the spinorial tech- nique in writing the scattering amplitudes.

1 Two-spinors and Basic definitions

Here

k 2 k µ k µ η µν k µ k ν (k 0 ) 2 (k 1 ) 2 (k 2 ) 2 (k 3 ) 2 = 0 (1) k 0 = k 0 , k i = k i (i = 1, 2, 3) (2)

|j ± u ± (k j ) , j ± | ≡ u ± (k j ) (3) ij ≡ i |j + = u (k i )u + (k j ) (4) [ij] i + | j = u + (k i )u (k j ) (5) u + (k) = k +

k e

k

, u (k) = k e

k

k +

(6) where

e ±iφ

k

= k 1 ± ik 2

(k 1 ) 2 + (k 2 ) 2 = k 1 ± ik 2

k + k , k ± = k 0 ± k 3 (7) u + (k) = u + (k) =

k + ,

k e

k

, u (k) = u (k) =

k e

k

, k +

(8) ij =

k i− k j+ e

ki

k i+ k j− e

kj

(9)

[ij] =

k i+ k j e

kj

k i k j+ e −iφ

ki

(10) ij[ji] = 2k i · k j (11)

|ij| = |[ij]| =

2k i · k j (12)

(2)

ji = −ij , [ji] = −[ij] (13) especially,

ii = i |i + = u (k i )u + (k i ) = 0 (14) [ii] = i + | i = u + (k i )u (k i ) = 0 (15)

u + (k)u + (k) = k +

k e

k

k + ,

k e

k

=

k +

k + k e −iφ

k

k + k e

k

k

=

k 0 + k 3 k 1 ik 2 k 1 + ik 2 k 0 k 3

= k 0 σ 0 + k i σ i = k 0 σ 0 k i σ i (16)

u (k)u (k) = k e

k

k + k e

k

, k +

=

k

k + k e

k

k + k e

k

k +

=

k 0 k 3 k 1 + ik 2

k 1 ik 2 k 0 + k 3

= k 0 σ 0 k i σ i = k 0 σ 0 + k i σ i (17) where

σ 0 =

1 0 0 1

, σ 1 =

0 1 1 0

, σ 2 =

0 −i i 0

, σ 3 =

1 0 0 −1

(18) (k 0 σ 0 ± k i σ i )u ± (k) = 0 (‘Dirac equation ) (19) u (k) = 2 u + (k) , u (k) = u T + (k)( i)σ 2 (20) u (k i )u (k j ) = u T + (k i )(−i)σ 2 2 u + (k j ) = u T + (k i )u + (k j ) = u + (k j )u + (k i ) (21)

u (k ii u (k j ) = u T + (k i )(−i)σ 2 σ i 2 u + (k j ) = −u T + (k i )(σ i ) T u + (k j ) = −u + (k ji u + (k i ) (22)

Fierz identity

σ µ = (1, σ i ) (23)

(3)

µ ) abµ ) cd = δ ab δ cd i ) abi ) cd = −2(σ 2 ) ac2 ) bd (24) i + | σ µ | j + p + | σ µ | q + = u + (k iµ u + (k j )u + (k pµ u + (k q )

= 2u + (k i )u (k p )u (k j )u + (k q )

= −2jq[ip] (25)

Schouten identity

ab cd = δ ac δ bd δ ad δ bc (26) ac db = δ ad δ cb δ ab δ cd (27) ad bc = δ ab δ dc δ ac δ db (28) Thus

ab cd + ac db + ad bc = 0 (29) Then

ijk + ijk + ikj = 0 (30)

“eikonal” identity

k 1

i=j

i (i + 1)

iqq (i + 1) = jk

jqqk (31)

which can be proved by jk

jqqk + k (k + 1)

kqq (k + 1) = jk q (k + 1) jq k (k + 1) jqqkq (k + 1)

= kj q (k + 1) jq k (k + 1) jqqkq (k + 1)

= qkj (k + 1) jq qk q (k + 1)

= j (k + 1)

jq q (k + 1) (32)

where Schouten identity is used.

(4)

2 Four-component spinors

gamma matrices

Bjorken-Drell rep.

γ 0 =

1 0 0 1

, γ i =

0 σ i

σ i 0

, γ 5 =

0 1 1 0

(33) µ , γ ν } = 2η µν , γ 5 γ µ + γ µ γ 5 = 0 ,5 ) 2 = 1 (34) four component spinor

U + (k) = 1

2

u + (k) u + (k)

, U (k) = 1

2

u (k)

u (k)

(35)

γ 5 U ± (k) = ±U ± (k) (36)

U + (k) = U + (k)γ 0 = 1

2 (u + (k) , −u + (k)) (37) U (k) = U (k)γ 0 = 1

2 (u (k) , u (k)) (38) U ± (k)γ 5 = ∓U ± (k) (39) U ± (k i0 U ± (k j ) = u ± (k i )u ± (k j ) (40) U ± (k ii U ± (k j ) = ±u ± (k ii u ± (k j ) (41) U (k iµ U ± (k j ) = ±U (k iµ γ 5 U ± (k j ) = ∓U (k i5 γ µ U ± (k j )

= −U (k iµ U ± (k j ) = 0 (42)

|j ± ≡ U ± (k j ) , j ± | ≡ U ± (k j ) N ote! the same notation as 2spinors (43) i ± | j ± = U ± (k i ) U ± (k j ) = 0 (44) i |j + = U (k i )U + (k j ) = ij , i + |j = U + (k i )U (k j ) = [ij] (45) i ± | γ µ | i ± = U ± (k iµ U ± (k i ) = 2k µ i (46) i µ |j = U (k iµ U (k j ) = U + (k jµ U + (k i ) = j + µ |i + (47) i µ |j ± = U (k iµ U ± (k j ) = 0 (48) Fierz identity

i µ |j p + µ |q + = j + µ |i + p + µ |q + = −2iq[jp] (49)

(5)

i µ |j γ µ = 2(|j i | + |i + j + |) (50) i + | γ µ | j + γ µ = 2( | j + i + | + | i j | ) (51)

‘Dirac equation’

k/ U ± (k) = k/ | k ± = 0 (52) Projector

U ± (k)U ± (k) = 1 2

u ± (k)u ± (k) ∓u ± (k)u ± (k)

±u ± (k)u ± (k) −u ± (k)u ± (k)

= 1

2 (1 ± γ 5 )k/ (53)

re-discover:

ij[ji] = i |j + j + |i = tr U (k i )U + (k j )U + (k j )U (k i )

= tr

1 γ 5 2 k/ i k/ j

= 2k i · k j (54)

(6)

3 QED (QCD) Examples (I)

First of all, remember that

s ij = (k i + k j ) 2 = 2k i · k j = ij [ji] (55)

3.1 e e + µ µ +

(Of course, the amplitude for e e + q q ¯ can be obtained similarly) A 4 = ie 2 A 4 δ(

i

k i ) (56)

3.1.1 e L (1)e + R (2) µ R (3)µ + L (4)

A 4 = 2 | γ µ | 1 3 + | γ µ | 4 + s 12

= −2 24 [13]

s 12

(57) here we used (49).

| A 4 | = 2 |s 13 |

s 12 1 cos θ (CMF ) (58) helicity suppressed as 1 3 or 2 4

A 4 = 2 24 [13]

s 12

= 2 24 [13] 13

12[21]13 = 2 24 [24] 24

12[24]43 = 2 24 2

1234 (59) here we used

4 j=1

ij [jk] = 0 (derived f rom (16)) , s 12 = s 34 , s 13 = s 24 (60) Exercise: Show

A 4 = −2 [13] 2

[12][34] (61)

3.1.2 e R (1)e + L (2) µ R (3)µ + L (4) Using (47), we obtain

A 4 = +2 14 2

1234 (62)

3.1.3 e L (1)e + R (2) µ L (3)µ + R (4)

A 4 = +2 23 2

12 34 (63)

(7)

3.1.4 e R (1)e + L (2) µ L (3)µ + R (4)

A 4 = −2 13 2

1234 (64)

3.1.5 Unpolarized, helicity-summed cross sections

dσ(e

e

+

→µ

µ

+

)

d cos θ 1

2

helicity

|A 4 | 2 = 4 24 2 1234

2 + 14 2

1234 2

= 4 s 2 13 + s 2 14

s 2 12 (1 cos θ) 2 + (1 + cos θ) 2 1 + cos 2 θ(65) e e + µ µ +

s 12 = s, s 13 = t, s 14 = u dΩ = α 2

2s t 2 + u 2

s 2 (66)

(In the limit of t 0, dΩ α 2s

2

) e µ e µ

s 12 = t, s 13 = s, s 14 = u dΩ = α 2

2s

s 2 + u 2

t 2 (67)

(In the limit of t 0, dΩ α t

22

s )

3.2 e e , e e + scattering

e(1)e(2) e(3)e(4)

A + −− + = 3 µ |1 4 + µ |2 + s 13

= +2 23[14]

s 13

(68)

A + + = 4 µ |1 3 + µ |2 + s 14

= −2 24[13]

s 14

(note the sign f rom exchange 3 4) (69)

A ++−− = 3 | γ µ | 1 4 | γ µ | 2

s 13 4 | γ µ | 1 3 | γ µ | 2 s 14

= 2 34 [12]

1 s 13

+ 1 s 14

= +2 34 [12]

s 12 s 13 s 14

(70)

since s 12 + s 13 + s 14 = 0.

(8)

Unpolarized, helicity-summed cross sections

|A| 2 s 2 14 s 2 13 + s 2 13

s 2 14 + s 4 12

s 2 13 s 2 14 = s 4 12 + s 4 13 + s 4 14

s 2 13 s 2 14 (71) For e e e e or e + e + e + e + (Møller scattering),

s 12 = s, s 13 = t, s 14 = u

|A| 2 s 4 + t 4 + u 4

t 2 u 2 (72)

dΩ = α 2 2s

s 4 + t 4 + u 4

t 2 u 2 (73)

= α 2 2s

s 2 + u 2

t 2 + s 2 + t 2 u 2 + 2 s 2

ut

(74)

= α 2 4s

s u

t + s t u

2

(75) (In the limit of t 0, dΩ α t

22

s )

For e e + e e + (Bhabha scattering), s 13 = s, s 14 = t, s 12 = u

| A | 2 s 4 + t 4 + u 4

s 2 t 2 (76)

dΩ = α 2 2s

s 4 + t 4 + u 4

s 2 t 2 (77)

= α 2 2s

s 2 + u 2

t 2 + u 2 + t 2 s 2 + 2 u 2

st

(78)

= α 2 4s

s u

t + t u s

2

(79)

(In the limit of t 0, dΩ α t

22

s )

(9)

4 Spinor-helicity rep. for polarization

4.1 Polarization vectors

+ µ (k, q) = q µ |k

2qk , µ (k, q) = q + µ |k +

2[kq] (80)

where q · k does not vanish.

k · ± (k, q) = 0 (T ransverse) (f rom Dirac eq.) (81) + · = q µ |k q + µ |k +

2 qk [kq] = −2qk[kq]

2 qk [kq] = −1 (82) + · + = q µ |k q µ |k

2 qk 2 = q µ |k k + µ |q +

2 qk 2 = 0 (83) + µ ν + µ + ν = η µν + k µ q ν + k ν q µ

k · q (84)

where we used (47), (53), (46) and γ µ q/γ ν + γ ν q/γ µ = 2(q ν γ µ + q µ γ ν q/η µν ). It is easy to confirm k · + ν + k · + ν = q · + ν + q · + ν = 0.

From (53),

U ± (p)U ± (p) = 1

2 (1 ± γ 5 )p / (85)

then for arbitrary p p · + (k, q) = q |p /|k

2qk = qp[pk]

2qk , p · (k, q) = q + |p /|k +

2[kq] = [qp]pk 2[kq] (86) Thus we find

q · ± = 0 (and rediscover k · ± = 0) (87) Exercise. Show

+ (k 1 , q) · + (k 2 , q) = (k 1 , q) · (k 2 , q) = 0 (88) + (k 1 , q) · (k 2 , k 1 ) = 0 (89) Actually, you must show

+ (k, q) · + (k , q ) = qq [kk ]

qk q k (90) + (k, q) · (k , q ) = qk [kq ]

qk [k q ] (91) Using (51), we find

/ + (k, q) =

2

qk (|k q | + |q + k + |) , / (k, q) =

2

[kq] (|k + q + | + |q k |) (92) Then

/ ± (k, q) | q ± = 0 , q | / ± (k, q) = 0 (93)

(10)

4.2 Significance of q

+ µ (k, q ) = q | γ µ | k

2 q k = q | γ µ | k k | q +

2 q k kq = q | γ µ k/ | q + 2 q k kq

= q |k/γ µ |q + 2q kkq +

2q q q k kq k µ

= + µ (k, q) +

2q q

q k kq k µ (94)

It’s a gauge degree of freedom!

(11)

5 QED (QCD) example (II)

5.1 two fermions and two photons

A +−λ

3

λ

4

= 2 | / λ

4

(k 4 , q 4 )(p / 1 + k/ 3 ) / λ

3

(k 3 , q 3 ) | 1 s 13

+ 2 | / λ

3

(k 3 , q 3 )(p / 1 + k/ 4 ) / λ

4

(k 4 , q 4 ) | 1 s 14

(95) For λ 3 = λ 4 = −, this vanishes if we take q 3 = q 4 = p 1 .

For λ 3 = λ 4 = +, this vanishes if we take q 3 = q 4 = p 2 .

A +−+− = 2 | / (k 4 , q 4 )(p / 1 + k/ 3 ) / + (k 3 , p 2 )|1 s 13

=

2

[4q 4 ] 24 q 4 + | (p / 1 + k/ 3 ) | 2 + [31]

2 23

1

s 13 (96)

The choice q 4 = k 3 leads to A + + =

2

[43] 24 3 + | p / 1 | 2 + [31]

2 23

1

s 13 = 2 24[31]12[31]

[43] 23 s 13

= 2 24 [31] 12 [31]

[43]2313[31] = 2 24 [34] 42

[34]2313 = 2 24 2

1323 (97) or

A + + = 2 24[31]12[31]

[43] 23 s 13 = −2 [13] 2 2412 23 [34]s 24

= +2 [13] 2 2412

21 [14] 24 [42] = 2 [13] 2

[14][24] (98)

By exchanging 3 4, we obtain

A +−−+ = 2 23 2

1424 (99)

Unpolarized, helicity-summed cross sections

|A| 2 |s 14 |

| s 13 | + |s 13 |

| s 14 | (100)

For e γ e γ or e + γ e + γ,

(12)

s 13 = s, s 12 = t, s 14 = u

|A| 2 s 2 + u 2

|su| (101)

For e e + γγ,

s 12 = s, s 13 = t, s 14 = u

| A | 2 t 2 + u 2

|tu| (102)

5.2 e e + qg¯ q

Using Fierz identity, we find A 5 = 25

s 12

1 + | (k/ 3 + k/ 4 )/ + (k 4 , q) | 3

2s 34 + [13]

s 12

2 | (k/ 4 + k/ 5 )/ + (k 4 , q) | 5 +

2s 45 (103)

Using (92), we can rewrite A 5 as A 5 = 25

s 12

1 + | (k/ 3 + k/ 4 ) | q + [43]

s 34 q4 + [13]

s 12

2 | (k/ 4 + k/ 5 ) | 4 q5

s 45 q4 (104)

Choosing q = k 5 , we remove the second term and get A 5 = 25

s 12

1 + | (k/ 3 + k/ 4 ) | 5 + [43]

s 34 45

= 25 1 + | (k/ 1 + k/ 2 + k/ 5 ) | 5 + [43]

12[21]34[43]45

= 25[12]25[43]

12 [21] 34 [43] 45

= 25 2

12 34 45 (105)

where we used 5

i=1 k i = 0, Dirac eqs. and (53).

Note that

25 2

123445 = 35 3445

25 2

1235 (106)

(13)

6 Gluon amplitudes

“Color” factors are separated (and ordered).

Gluon vertices include · .

Since + (k 1 , q) · + (k 2 , q) = 0, A(+ + · · · +) = 0 can be shown.

Using (k 1 , q) · + (k 2 , k 1 ) = 0, A( + · · · +) = 0 is also shown.

6.1 4-point amplitude

6.1.1 an amplitude

Calculate A 4 (1 2 3 + 4 + ).

Choose q 1 = q 2 = k 3 , q 3 = q 4 = k 2 , only nonvanishing · is (k 1 , k 3 ) · + (k 4 , k 2 ) = 24 [31] 21 [43] .

only s 12 channel contributes

A 4 (1 2 3 + 4 + )

= i

2 2

[ 2k 1 · (k 2 , k 3 ) µ (k 1 , k 3 )] ig µν s 12

[2k 4 · + (k 3 , k 2 ) + ν (k 4 , k 2 )]

= 2i s 12

k 1 · (k 2 , k 3 ) k 4 · + (k 3 , k 2 ) (k 1 , k 3 ) · + (k 4 , k 2 )

= 2i s 12

[31] 12 2[23]

24 [43]

2 23

21 [43]

24 [31] = i 12 2 [34] 2 s 12 s 23

= i 12 4

12 23 34 41 (107)

Using cyclic symmetry, we get

A 4 (1 + 2 3 4 + ) = i 23 4

12233441 (108) 6.1.2 decoupling identity

We consider SU (N) gauge theory, not U (N) gauge theory. The vertices come

from the commutater in the field strength, thus if one of the generator T a is

replaced by unity, the amplitude (possibly thought as in U (N) theory) must

vanish.

(14)

The full amplitude looks like

A = g 2

noncyclic perms

Tr(T a

1

T a

2

T a

3

T a

4

)A(1234) (109) (which can be generalized to n-point amplitudes)

Noncyclic means that, roughly speaking, 1 is fixed (or permutation σ S n /Z n ), because of the cyclicity A(1234) = A(4123).

Turning to the discussion, the following holds:

0 = T r(T a

1

T a

2

T a

3

)[A(1234) + A(1243) + A(1423)]

+ T r(T a

1

T a

3

T a

2

)[A(1324) + A(1342) + A(1432)] (110) Therefore we find

A(1234) + A(1243) + A(1423) = A(1324) + A(1342) + A(1432) = 0 (111) and then

A(1 2 + 3 4 + ) = A(1 2 + 4 + 3 ) A(1 4 + 2 + 3 ) (112)

A(1 2 + 3 4 + ) = −A(1 2 + 4 + 3 ) A(1 4 + 2 + 3 )

= A(3 1 2 + 4 + ) A(3 1 4 + 2 + )

= i

31 4

31122443 + 31 4 31144223

= −i 13 3 24

1

12 34 + 1 14 23

= i 13 3 24

14 23 + 12 34 12233441

= i 13 3 24

13 42

12233441 = i 13 4

12233441 (113) where we used Schouten identity (30).

6.1.3 cross section

colors

|A| 2 = 2N 2 (N 2 1)g 4 (|A(1234)| 2 + |A(1342)| 2 + |A(1423)| 2 ) (114) because of (6.1.2) and the reflection symmetry 1 A(1234) = A(4321). Then

colors

|A| 2 (1 2 3 + 4 + ) = 2N 2 (N 2 1)g 4 s 4 1

s 2 u 2 + 1 t 2 s 2 + 1

u 2 t 2

(115)

1

A(12 · · · n) = ( 1)

n

A(n · · · 21) in general

(15)

and summing over helicities, we find

colors

helicities

|A| 2 = 4N 2 (N 2 1)g 4 (s 4 + t 4 + u 4 ) 1

s 2 u 2 + 1 t 2 s 2 + 1

u 2 t 2

(116)

(for averaging over the initial colors we divide this by 4(N 2 1) 2 ) Column

Fun with Mandelstam!

s + t + u = 0, okey?

0 = (s + t + u) 2 = s 2 + t 2 + u 2 + 2(st + tu + us)

(s 2 + t 2 + u 2 ) 2 = s 4 + t 4 + u 4 + 2(s 2 t 2 + t 2 u 2 + u 2 s 2 ) = 4(s 2 t 2 + t 2 u 2 + u 2 s 2 ) + 8(s 2 tu + t 2 us + u 2 st) = 4(s 2 t 2 + t 2 u 2 + u 2 s 2 ) (s 4 + t 4 + u 4 )(s 2 + t 2 + u 2 ) = 4(st + tu + us)(s 2 t 2 + t 2 u 2 + u 2 s 2 ) =

−4(st +tu+us)(s 2 t 2 +t 2 u 2 +u 2 s 2 −(s 2 tu+t 2 us+u 2 st)) = −4(s 3 t 3 + t 3 u 3 + u 3 s 3 3s 2 t 2 u 2 )

then

(s 4 + t 4 + u 4 ) 1

s

2

u

2

+ t

2

1 s

2

+ u

2

1 t

2

= 4

3 tu s

2

us t

2

u st

2

(16)

7 Five-parton amplitude

Calculate A 5 (1 q ¯ 2 + q 3 4 + 5 + )

Use (k 3 , k 2 ), + (k 4 , k 1 ), + (k 5 , k 1 ) to apply (93)

A 5 (1 q ¯ 2 + q 3 4 + 5 + ) = A (a) + A (b) (117) A (a) = i

2

2 + | (k/ 3 k/ 4 k/ 5 ) | 1 + s 12 s 45 × [ (k 3 , k 2 ) · + (k 5 , k 1 ) + (k 4 , k 1 ) · k 5

(k 3 , k 2 ) · + (k 4 , k 1 ) + (k 5 , k 1 ) · k 4 ] (118)

A (b) = i

2s 12 s 34

{2 + |(k/ 3 + k/ 4 k/ 5 )|1 + × [ 1

2 (k 3 , k 2 ) · + (k 4 , k 1 ) + (k 5 , k 1 ) · (k 3 k 4 )

(k 3 , k 2 ) · + (k 5 , k 1 ) + (k 4 , k 1 ) · k 3 ]

2 + | (k/ 3 k/ 4 ) | 1 + (k 3 , k 2 ) · + (k 4 , k 1 ) + (k 5 , k 1 ) · (k 3 + k 4 ) (119) }

A (a) = −i [23]31 s 12 s 45

[25]13 [23]15

15[54]

14 + [24]13 [23]14

14[45]

15

= i [23] 13 2 [45]

s 12 s 45 [23] 14 15 [ 15 [52] 14 [42]]

= i [23] 13 3 [45]

s 12 s 45 1415 = i [23] 13 3

s 12 141545 (120) A (b) = i [25] 13 3 [34]

s 12 s 34 1415 = i [25] 13 3

s 12 141534 (exercise!) (121) A 5 (1 ¯ q 2 + q 3 4 + 5 + ) = A (a) + A (b)

= −i 13 3 (−[23]34 − [25]54) s 12 14 15 34 45

= i 13 3 [21]14 s 12 14 15 34 45

= i 13 3 23

1223344551 (122)

Here we used momentum conservation, (86) and (91).

(17)

8 General gluon amplitudes

8.1 Recursive relations

Berends-Giele current J µ (1 · · · n) J µ (1 · · · n) = i

K 1,n 2 [

n−1

j=1

V 3 µνλ (K 1,j , K j+1,n )J ν (1, . . . , j)J λ (j + 1, . . . , n)

+

n−2

j=1 n−1

!=j+1

V 4 µνλρ J ν (1, . . . , j)

× J λ (j + 1, . . . , )J ρ ( + 1, . . . , n)] (123) where V are the color-ordered gluon self-interactions

V 3 µνλ (P, Q) = i

2 [η νλ (P Q) µ + 2η λµ Q ν µν Q λ ] (124) V 4 µνλρ = i

2 [2η µλ η νρ η µν η λρ η µρ η νλ ] (125) and

K i,j k i + k i+1 + · · · + k j (126)

decoupling identity

J µ (123 · · · n) + J µ (213 · · · n) + · · · + J µ (23 · · · n1) = 0

reflection identity

J µ (123 · · · n) = (−1) n+1 J µ (n · · · 321)

conservation K 1,n µ J µ (12 · · · n) = 0

8.2 example: J µ (+ · · · +)

By explicit calculation, one can get

J µ (1 + 2 + 3 + 4 + ) = q | γ µ K / 1,4 | q +

2 q1 1 · · · 4 4q (127) where 1 · · · n ≡ 1223 · · · (n 1) n.

Ansatz

J µ (1 + · · · n + ) = q µ K / 1,n |q +

2q11 · · · nnq (128)

(Reflection and Conservation are trivially satisfied; ?Decoupling?)

(18)

· Note that

J µ (1 + ) = q | γ µ k/ 1 | q +

2 q1 1q = q | γ µ | 1

2 q1 = (k 1 , q) (129)

In the right-hand side of (123), only the second and third term in V 3 con- tribute.

J µ (1 + 2 + · · · n + ) = 1

2K 1,n 2 q11 · · · nnq

n 1

j=1

j (j + 1) jq q (j + 1)

×(q µ K / j+1,n |q + K j+1,n ν q ν K / 1,j |q +

−q µ K / 1,j |q + K 1,j ν q ν K / j+1,n |q + ) (130) Note that

q µ γ ν |q + = −q ν γ µ |q + + 2η µν q |q + = −q ν γ µ |q + , (131) and K 1,j + K j+1,n = K 1,n .

We find

J µ (1 + 2 + · · · n + ) = q µ K / 1,n |q + 2K 1,n 2 q11 · · · nnq

×

n 1

j=1

j (j + 1)

jqq (j + 1) q |K / j+1,n K / 1,j |q +

= q µ K / 1,n |q + 2K 1,n 2 q11 · · · nnq

×

n 1 j=1

j (j + 1)

jqq (j + 1) q |K / j+1,n K / 1,n |q +

= q µ K / 1,n |q + 2K 1,n 2 q11 · · · nnq

×

n 1 j=1

j (j + 1)

jqq (j + 1) q |K / 1,j K / 1,n |q + (132) for

q |K /K / |q + = K 2 q |q + = 0 . (133)

(19)

To proceed, we use

n 1 j=1

j (j + 1)

jqq (j + 1) q |K / 1,j =

n 1 j=1

j

!=1

j (j + 1)

jqq (j + 1) q |k/ !

= n

!=1 n 1

j=!

j (j + 1)

jqq (j + 1) q |k/ ! = n

!=1

n

qq n q |k/ !

= n

!=1

1

q n n |k/ ! = 1

q n n |K / 1,n (134)

where “eikonal” identity (31), (‘open’) Schouten identity

nq | + qn | + nq | = 0 (135)

and Dirac equations |k/ ! = 0 are used.

Then (128) is shown.

Show A(+ · · · +) = A(− + · · · +) = 0 by using J (+ · · · +).

8.3 J µ (− + · · · +) and MHV amplitude

J µ (1 2 + · · · n + ) = 1 µ K / 2,n |1 + 21 · · · nn1

n m=3

1 |k/ m K / 1,m |1 +

K 1,m− 2 1 K 1,m 2 (136) where q 1 = k 2 , q 2 = · · · = q n = k 1 . Show this!!

A(1 2 + · · · n + (n+1) ) = i n + | γ µ | (n + 1) + 2[n (n + 1)]

1 | γ µ K / 1,n | 1 +

2 1 · · · n n1

1 | k/ n K / 1,n | 1 + K 1,n−1 2

(137) where we choose q n+1 = k n , and note that K / 2,n | 1 + = K / 1,n | 1 + . Moreover we note that k n+1 = K 1,n is null.

Fierz identity leads to

n + | γ µ | (n + 1) + 1 | γ µ K / 1,n | 1 + = 2 1 (n + 1) n + | K / 1,n | 1 + (138) while

n + |K / 1,n |1 + = −n + |k/ n+1 |1 + = −[n (n + 1)](n + 1) 1 (139) and

1 |k/ n K / 1,n |1 + = −1 |k/ n k/ n+1 |1 + = −1n[n (n + 1)](n + 1) 1 (140) Therefore

A(1 2 + · · · n + (n + 1) ) = i 1 (n + 1) [n (n + 1)] (n + 1) 1 (n + 1) 1 1 · · · n s n,n+1

= i 1 (n + 1) 4

1 · · · (n + 1) (n + 1) 1 (141)

(20)

9 ‘Supersymmetry’

9.1 ‘susy’ generator

Q(η) = ¯ η α Q α is bosonic.

[Q(η), G ± (k)] = ± Γ ± (k, η)Λ ± (k) , [Q(η), Λ ± (k)] = Γ (k, η)G ± (k) (142) where Γ(k, η) is linear in η and fermionic.

The Jacobi identity

0 = [[Q(η), Q(ζ)], Φ(k)] + [[Q(ζ), Φ(k)], Q(η)] + [[Φ(k), Q(η)], Q(ζ)] (143) leads to a possible choice Γ + (k, q) = θ[qk] and Γ (k, q) = θqk where θ is a fermionic parameter (¯ η(q) θU + (q)).

9.2 ‘Supersymmetry’ Ward identity

0 = 0|[Q, Φ 1 Φ 2 · · · Φ n ]|0 = n

i=1

0|Φ 1 · · · [Q, Φ i ] · · · Φ n |0 (144)

9.2.1 all helicities positive 0 = 0 | [Q(η(q)), Λ + 1 G + 2 · · · G + n ] | 0

= −Γ (k 1 , q)A n (G + 1 , G + 2 , · · · , G + n ) + Γ + (k 2 , q)A n+ 1 , Λ + 2 , G + 3 , · · · , G + n ) + · · · + Γ + (k n , q)A n+ 1 , G + 2 , · · · , Λ + n ) (145) Helicity conservation of ‘gluino’ implies that the fermionic amplitudes vanish, thus A n (G + 1 , G + 2 , · · · , G + n ) = 0.

9.2.2 only one negative helicity 0 = 0 | [Q(η(q)), Λ + 1 G 2 G + 3 · · · G + n ] | 0

= −Γ (k 1 , q)A n (G + 1 , G 2 , G + 3 , · · · , G + n ) Γ (k 2 , q)A n+ 1 , Λ 2 , G + 3 , · · · , G + n )

+0 + · · · + 0 (146)

If we choose q = k 1 , we get A n+ 1 , Λ 2 , G + 3 , · · · , G + n ) = 0. If we choose

q = k 2 , we get A n (G + 1 , G 2 , G + 3 , · · · , G + n ) = 0.

(21)

9.2.3 two negative helicity

0 = 0 | [Q(η(q)), G 1 G 2 Λ + 3 G + 4 · · · G + n ] | 0

= Γ (k 1 , q)A n 1 , G 2 , Λ + 3 , · · · , G + n ) + Γ (k 2 , q)A n (G 1 , Λ 2 , Λ + 3 , · · · , G + n )

Γ (k 3 , q)A n (G 1 , G 2 , G + 3 , · · · , G + n ) (147) If we choose q = k 1 , we get

A n (G 1 , G 2 , G + 3 , · · · , G + n ) = 12

13 A n (G 1 , Λ 2 , Λ + 3 , G + 4 , · · · , G + n ) (148)

References

[1] L. Dixon, hep-ph/9601359, and his recent talks which can be found in various conferences.

[2] M. Mangano and S. Parke, Phys. Rep. 200 (1991) 301. The preprint of this can be obtained from Parke’s page.

[3] D. A. Kosower, “N=4 Supersymmetric Gauge Theory, Twistor Space, and

Dualities”, Saclay Lectures (Fall 2004).

参照

関連したドキュメント

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo,

In Section 13, we discuss flagged Schur polynomials, vexillary and dominant permutations, and give a simple formula for the polynomials D w , for 312-avoiding permutations.. In

Analogs of this theorem were proved by Roitberg for nonregular elliptic boundary- value problems and for general elliptic systems of differential equations, the mod- ified scale of

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid

Correspondingly, the limiting sequence of metric spaces has a surpris- ingly simple description as a collection of random real trees (given below) in which certain pairs of

We study the classical invariant theory of the B´ ezoutiant R(A, B) of a pair of binary forms A, B.. We also describe a ‘generic reduc- tion formula’ which recovers B from R(A, B)

Since we need information about the D-th derivative of f it will be convenient for us that an asymptotic formula for an analytic function in the form of a sum of analytic