• 検索結果がありません。

Reconstruction of invariants of configuration spaces of hyperbolic curves from associated Lie algebras

N/A
N/A
Protected

Academic year: 2022

シェア "Reconstruction of invariants of configuration spaces of hyperbolic curves from associated Lie algebras"

Copied!
33
0
0

読み込み中.... (全文を見る)

全文

(1)

Reconstruction of invariants of configuration spaces of hyperbolic curves from associated Lie algebras

Koichiro Sawada

Research Institute for Mathematical Sciences, Kyoto University

Combinatorial Anabelian Geometry and Related Topics 2021/07/06

(2)

Table of contents

§1 Introduction

§2 Reconstruction algorithms

(3)

§ 1 Introduction

K: algebraically closed field of characteristic zero X: hyperbolic curve/K of type (g, r)

Xn:={(x1, . . . , xn) K· · ·×KX | xi ̸= xj (∀i ̸= j)} : n-th configuration space of X

ΠΣn := π1(Xn)Σ: maximal pro-Σ quotient of π1(Xn) (Σ = {l} for l or Σ: the set of all prime numbers) We shall refer to a profinite group isom to

ΠΣ1 (for some X) as a surface group.

(4)

Theorem A (Hoshi-Minamide-Mochizuki (preprint,2017)) ΠΣn recon.n, g, r,“generalized fiber subgroups”

if n 2

Theorem B (S. (preprint,2018))

Gr(Πln) recon.n, g, r,“generalized fiber ideals”

if n 2

(More precisely, there are algorithms of reconstructing these invariants from the abstract Lie algebra over Zl obtained by forgetting the grading of Gr(Πln).)

(5)

My research on Theorem B was motivated by [HMM].

Today, we will compare their algorithms to observe

similarities (i.e., what can be applied commonly to both) and differences.

(6)

Definition (generalized projection) p :Xn →Xm (0 m n)

is a generalized projection morphism def If (g, r) ∈ {/ (0,3),(1,1)}, then p : Xn →Xm: projection morphism If (g, r) = (0,3), then Xn = (M0,n+3)K

p : Xn (M0,n+3)K (M0,m+3)K Xm

If (g, r) = (1,1), then Xn = En+1/E (E := Xcpt) p : Xn En+1/E Em+1/E Xm

(7)

Definition (generalized fiber subgroup)

A generalized projection morphism induces ΠΣn ↠ ΠΣm. ker(ΠΣn ↠ΠΣm): generalized fiber subgroup

(of co-length m)

GFSmΣn): the set of gen. fiber subgps of co-length m

Note: N GFSmΣn) is isomorphic to “ΠΣnm” of a hyperbolic curve of type (g, r+m).

(8)

Definition (Lie algebra associated to Xn) Write Πln(1) := Πln(:= Π{nl}),

Πln(2):= ker(Πln ↠ (π1(Xcpt×K · · · ×K Xcpt)l)ab), Πln(m) := ln(m1),Πln(m2)] | m1 +m2 = m⟩ (m 3), Grmln) := Πln(m)/Πln(m + 1),

Gr(Πln) := ⊕

m1Grmln).

Then Gr(Πln): graded Lie algebra over Zl.

We shall refer to an abstract Lie algebra/Zl isomorphic to Gr(Πl1) as a surface algebra.

(9)

Definition (generalized fiber ideal)

A (generalized) projection morphism Xn Xm induces Gr(Πln) ↠Gr(Πlm).

ker(Gr(Πln) ↠Gr(Πlm)): (generalized) fiber ideal (of co-length m)

GFIm(Gr(Πln)): the set of gen. fib. ideals of co-length m

Note: i GFIm(Gr(Πln)) is isomorphic to “Gr(Πlnm)”

of a hyperbolic curve of type (g, r+m).

(10)

Gr(Πln) has a presentation with generators Xi(k), Yi(k) Gr1ln), Zj(k), Wh(k) Gr2ln) (1 ≤i ≤g, 1 j r, 1 k, h n)

and relations (R1–10):

g i=1

[Xi(k), Yi(k)] +

r j=1

Zj(k)+

n h=1

Wh(k) = 0, (R1)

Wk(k) = 0, (R2)

Wh(k) = Wk(h), (R3)

(11)

[Xi(k), Xi(k )] = [Yi(k), Yi(k )] = 0 (k ̸= k), (R4) [Xi(k), Yi(k )] = 0 (i ̸= i, k ̸= k), (R5) [Xi(k), Yi(k)] = Wk(k) (k ̸= k), (R6) [Xi(k), Zj(k)] = [Yi(k), Zj(k)] = 0 (k ̸= k), (R7) [Zj(k), Zj(k)] = 0 (j ̸= j, k ̸= k), (R8) [Xi(k), Wh(k)] = [Yi(k), Wh(k)] = [Zj(k), Wh(k)] = 0

(k /∈ {k, h}), (R9) [Wh(k), Wh(k)] = 0 ({k, h} ∩ {k, h} = ). (R10)

(12)

X1(1)· · · Xg(1)Y1(1)· · · Yg(1)Z1(1)· · · Zr(1) 0 W2(1)· · · Wn(1)

X1(2)· · · Xg(2)Y1(2)· · · Yg(2)Z1(2)· · · Zr(2)W1(2) 0 · · · Wn(2)

... ... ... ... ... ... ... ... ... ...

X1(n)· · · Xg(n)Y1(n)· · · Yg(n)Z1(n)· · · Zr(n)W1(n)W2(n)· · · 0

(13)

§ 2 Reconstruction algorithms

・ΠΣn recon.n

Proposition 1

Let H Πln: closed subgroup isom to Zl s. Then s n.

(Proof) n= 1: a property of pro-l surface groups n 2: consider 1 Πln/n1 Πln Πln1 1 (Πln/n1: surface group)

(14)

Theorem 2

H Πln: closed subgroup isom to Zl n.

(This follows from the existence of log-full points of the log configuration space of a suitable stable log curve.) Algorithm:

Take l: a prime number s.t.Σn)l ̸= {1} (⇔l Σ) Πln = (ΠΣn)l

n= max{s∈Z0|H: closed subgp of Πln s.t. H = Zl s}

(15)

・Gr(Πln) recon.n

Proposition 3

Let a Gr(Πln): abelian subalgebra/Zl isom to Zl s as a Zl-module. Then s ≤n.

(Lie alg. L is abelian def a, b L [a, b] = 0)

(Proof) n= 1: [a, b] = 0 a, b: linearly dependent n 2: consider

1 Gr(Πln/n1) Gr(Πln) Gr(Πln1) 1

(16)

Theorem 4

a Gr(Πln): abelian subalg. isom to Zl n. (Proof)

If g > 0, then [X1(h), X1(k)] = 0 for 1 ≤h < k n.

If r > 0, then write A(k) := Zr(k)+

k1

h=1

Wh(k). Then [A(h), A(k)] = 0 for 1 ≤h < k ≤n.

Algorithm:

n = max{s Z0|a : abelian subalg. of Gr(Πln) s.t. a = Zs}

(17)

・ΠΣn recon.⇝ GFS1Σn)

Theorem 5

Let H ΠΣn: normal closed subgroup such that ΠΣn/H is isom to a surface group which is not free of rank 2.

Then N GFS1Σn) s.t. N H.

In particular, (g, r) ∈ {/ (0,3),(1,1)} ⇔ H as above.

(18)

Proposition 6

Πl,abn : free Zl-module,

rankZlΠl,abn =







n(r 1) +n(n−1)/2 (g = 0)

2gn (r = 0)

n(2g+r 1) (g, r >0).

In particular, (g, r) = (1,1) rankZlΠl,abn = 2n.

(19)

Algorithm:

S := {H cl. ΠΣn|ΠΣn/H : surf. gp, not free of rank 2} If S ̸= ((g, r) ∈ {/ (0,3),(1,1)}), then

GFS1Σn): minimal elements of S.

S = · · · we omit the details

((g, r) = (1,1) rankZlΠl,abn = 2n,

construct Lie alg. isom to Gr(Πln) (= Grlcsln)), consider ΠΣn Πl,abn Zl Ql,. . .)

(20)

・Gr(Πln) recon.⇝ GFI1(Gr(Πln)) Theorem 7

We can classify all (not necessarily graded) surjective homomorphisms/Zl from Gr(Πln) to a surface

algebra/Zl.

(Proof: direct calculation)

(21)

Corollary 8

Let i Gr(Πln): an ideal/Zl (not necessarily graded).

Then i GFI1(Gr(Πln)) Gr(Πln)/i = Gr(Πl1).

Corollary 9

Gr(Πl1): unique surface algebra s (up to isom) s.t.

Gr(Πln) ↠ s,

for any surface alg. h, if Gr(Πln) ↠ h, then s ↠ h.

(22)

Algorithm:

(isom class of) Gr(Πl1):

(unique) surface algebra s satisfying

Gr(Πln) ↠ s,

for any surface alg. h, if Gr(Πln) ↠ h, then s ↠ h.

GFI1(Gr(Πln)) = {i

ideal/Zl

Gr(Πln)|Gr(Πln)/i= Gr(Πl1)}

(23)

・ΠΣn recon.⇝ GFSmΣn), Gr(Πln) recon.⇝ GFIm(Gr(Πln))

Algorithm:

GFSmΣn) = ∪

HGFSm1Σn)

GFS1(H)

GFIm(Gr(Πln)) = ∪

iGFIm1(Gr(Πln))

GFI1(i)

(We set GFS1({1}) := ∅, GFI1({0}) := .)

(24)

Remark

・We do not use “n” for Gr(Πln) recon.⇝ GFIm(Gr(Πln)).

So we can obtain other algorithms for Gr(Πln) recon.n.

For example, n: unique nonnegative integer m s.t.

GFIm(Gr(Πln)) = { {0}}

.

・We can reconstruct GFS1Σn) from ΠΣn in a similar manner to Gr(Πln) recon.⇝ GFI1(Gr(Πln)).

(25)

・ΠΣn recon.⇝ (g, r) (if n≥ 2) Proposition 10

・rankZlΠl,ab1 = 2g + max{r 1,0}

・Πl1: free r > 0

Theorem 11 ([CbTpI] Lemma 1.3(iv)) Suppose: r > 0.

Consider the natural action Πl1 Aut(Πl,ab2/1) determined by 1 Πl2/1 Πl2 Πl1 1.

Then ker(Πl1 Aut(Πl,ab2/1)) = ker(Πl1π1(Xcpt)l,ab).

(26)

Algorithm(1/2): (Suppose: n 2.) Take H GFSn2ln), N GFS1(H).

l2 = Πln/H, Πl1 = H/N)

If H/N: not free ( r = 0), then g = 1

2rankZl(H/N)ab, r = 0.

(27)

Algorithm(2/2):

If H/N: free, then, since

ker(Πl1π1(Xcpt)l,ab) = ker(H/N Aut(Nab)), ker(Πl,ab1π1(Xcpt)l,ab)

= Im(ker(H/N Aut(Nab)) (H/N)ab).

r = rankZl(ker(Πl,ab1π1(Xcpt)l,ab)) + 1 g = 1

2(rankZl(H/N)ab −r + 1)

(28)

・Gr(Πln) recon.⇝ (g, r) Write Gr(Πln)(2) := ⊕

m2

Grmln),

Gr(Πln)[1] := Gr(Πln),

Gr(Πln)[m] := [Gr(Πln),Gr(Πln)[m 1]].

Theorem 12

Suppose: n 2 and g > 0.

Let i,j: distinct elements of GFIn1(Gr(Πln)).

Then iGr(Πln)(2) = {a i|b j [a, b]Gr(Πln)[3]}.

(29)

(Proof: if j ̸= j and k ̸= k,

[Zj(k), Xi(k)] = [Zj(k), Yi(k)] = [Zj(k), Zj(k )] = 0, [Zj(k), Wh(k)] = [Zj(k),[X1(h), Y1(k)]] Gr(Πln)[3], [Zj(k), Zj(k)] = [Zj(k), Wk(k)] Gr(Πln)[3].)

Proposition 13

・rankZl(Gr(Πl1)/Gr(Πl1)[2]) = 2g+ max{r 1,0}

・Gr(Πl1): free r > 0

(30)

It suffices to determine whether g = 0 or not.

Idea: If g = 0, there are many homomorphisms determined as follows:

X ,→ Y: of type (0,3),

p :Yn Y: a gen. proj. which is not a proj., Gr(Πln) ↠Gr(π1(Y)l): determined by Xn ,→Yn

p Y. (exceptional mor.)

(31)

Theorem 14

Write E := {i ideal/Zl Gr(Πln)|Gr(Πln)/i : free of rank 2,

j GFI1(Gr(Πln)) j ̸⊂ i}.

Then ♯E =







 (r

2

)·(n

2

)+r ·(n

3

)+ (n

4

) (g = 0, r ̸= 3) (n

2

) (g = 1, r ̸= 1)

0 (else),

GFI1(Gr(Πln)) =







 (n+3

4

) ((g, r) = (0,3)) (n+1

2

) ((g, r) = (1,1)) n (else).

(32)

Algorithm(1/2): (Suppose: n 2.) Write E := {i

ideal/Zl

Gr(Πln)|Gr(Πln)/i : free of rank 2,

j GFI1(Gr(Πln)) j ̸⊂ i}. (Since free Lie algebra/Zl of rank 2 is a surface algebra, we can reconstruct E by Theorem 7.)

If ♯E (n

2

) and GFI1(Gr(Πln)) < (n+3

4

) (⇔g > 0),

then take i,j: distinct elements of GFIn1(Gr(Πln)).

iGr(Πln)(2) = {a i|b j [a, b]Gr(Πln)[3]} g = 1

2rankZl(i/iGr(Πln)(2))

(33)

Algorithm(2/2):

If ♯E > (n

2

) or GFI1(Gr(Πln)) = (n+3

4

), then g = 0.

If Gr(Πl1): free ( r > 0), then

r = rankZl(Gr(Πl1)/Gr(Πl1)[2]) + 12g.

If Gr(Πl1): not free, then r = 0.

参照

関連したドキュメント

This includes, in particular, hyperbolic curves “of strictly Belyi type”, i.e., affine hyperbolic curves over a nonarchimedean [mixed- characteristic] local field which are defined

We use this fact in order to obtain some differential 1-forms defined along the curvature lines (considered as curves in n-space) which are preserved by conformal maps (Theorems 1,

Theorem 4.1 Two flocks of a hyperbolic quadric in PG ( 3 , K ) constructed as in Section 3 are isomorphic if and only if there is an isomorphism of the corresponding translation

Now it follows from a similar argument to the argument used in the proof of [7], Theorem 4.1, that the images in Π X (r+1) of the geometrically pro-l log fundamental groups of

It is perhaps not a priori clear that the implied flows are given directly by FM vectorfields along such curves (or that the flows are even PDE’s on the curve level). In any event,

Keywords and Phrases: spheres, ordered configuration spaces, sub- space arrangements, integral cohomology algebra, fibration, Serre spectral sequence..

If g is a nilpotent Lie algebra provided with a complete affine structure then the corresponding representation is nilpotent.. We describe noncomplete affine structures on the filiform

These bases, as well as weight bases for the fundamental representations of sp(2n , C) and the irreducible “one-dimensional weight space” representations of any semisimple Lie