• 検索結果がありません。

観測設定 送信周波数 送信周波数 送信電力 frequency of H frequency of V H Freq_H Hz float frequency of H Freq_V Hz float frequency of V Pt_H mw float H 1 もしくは MHz 単 位 1 も

N/A
N/A
Protected

Academic year: 2021

シェア "観測設定 送信周波数 送信周波数 送信電力 frequency of H frequency of V H Freq_H Hz float frequency of H Freq_V Hz float frequency of V Pt_H mw float H 1 もしくは MHz 単 位 1 も"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

レーダ観測パラメータ名

(案)

2010/12/20 尾上万里子 H・・・水平偏波, horizontally polarized wave

V・・・垂直偏波, vertically polarized wave

日本語名 英語名 変数名 単位 データ型 long name 次元 scale

factor offset 備考 レ ー ダ 情 報 レーダサイトの緯度 latitude of

the radar R_LAT degree N float latitude radar of 0 レーダサイトの経度 longitude of

the radar R_LON degree E float longitude radar of 0 レーダサイトの標高 altitude of

the radar R_LEV m float altitude radar of 0 磁気偏角 degree float magnetic

declination 0 地磁気の北と地軸の北の角度差 レーダサイト名(ID) radar name

(observation site)

Radar_Na me

char radar name 0 KIN/GIN の よ う に、可搬型はどう するか 観 測 情 報 観測年月日 observation

date DAY yyyymmdd sec char double observation date 0 観測時刻 observation

time TIME hhnnss sec char double observation time 0 走査モード scan mode Scan_Mod

e char scan mode 0 PPI/RHI/POS など スキャン開始方位 start

azimuth Start_Az degree float start azimuth 0 方位角(固定) fixed

azimuth Fixed_Az degree float fixed azimuth 0 RHI のみ 仰角(固定) fixed

(2)

送信周波数(H) transmitted frequency of H

Freq_H Hz float radar

frequency of H 0 1000000 もしくは MHz 単 位 観 測 設 定 送信周波数(V) transmitted frequency of V

Freq_V Hz float radar

frequency of V 0 1000000

もしくは MHz 単 位

送信電力(H) transmitted

power of H Pt_H mW float transmitted power of H 0 送信電力(V) transmitted

wave of V Pt_V mW float transmitted power of V 0 送信パルス幅(H, 長

パルス)

pulse width of H (long pulse)

PW_H_L μs float pulse width of H (long pulse) 0 送信パルス幅(H, 短 パルス) pulse width of H (short pulse)

PW_H_S μs float pulse width of H (short pulse) 0 送 信 パ ル ス 幅(V, 長 パルス) pulse width of V (long pulse)

PW_V_L μs float pulse width of V (long pulse) 0 送 信 パ ル ス 幅(V, 短 パルス) pulse width of V (short pulse)

PW_V_S μs float pulse width of V (short pulse)

0 アンテナ利得(H) antenna

gain of H Gain_H dB float antenna gain of H 0 アンテナ利得(V) antenna

gain of V Gain_V dB float antenna gain of V 0 水平ビーム幅(H) horizontal

width of H beam

BWhori_H dB float beam width (H, horizontal) 0 垂直ビーム幅(H) vertical width of H beam

BWvert_H dB float beam width (H, vertical) 0 水平ビーム幅(V) horizontal

width of H beam

BWhori_V dB float beam width (V, horizontal) 0

(3)

垂直ビーム幅(V) vertical width of V beam

BWvert_V dB float beam width (V, vertical) 0 送信系損失(H) power loss in

transmissio n (H)

LossTr_H dBm float power loss in transmission (H) 0 導波管ロスなど 送信系損失(V) power loss in transmissio n (V)

LossTr_V dBm float power loss in transmission (V) 0 導波管ロスなど 受信系損失(H) power loss in reception (H)

LossRe_H dBm float power loss in

reception (V) 0 導波管ロスなど 受信系損失(V) power loss in

reception (V) LossRe_V dBm float power loss in transmission (V) 0 導波管ロスなど 最 小 受 信 電 力(H, high PRF) minimum power of reception (H, high PRF) Noise_H_

Hi dBm float noise level of H (high PRF) 0 最小受信電力(H, low PRF) minimum power of reception (H, low PRF) Noise_H_L

o dBm float noise level of H (low PRF) 0

最小受信電力(V, high PRF) minimum power of reception (V, high PRF) Noise_V_H

i dBm float noise level of H (high PRF) 0 最小受信電力(V, low PRF) minimum power of reception (V, low PRF) Noise_V_L

o dBm float noise level of H (low PRF) 0 パルス繰り返し周波 数(high) pulse repetition period (high frequency)

PRF_Hi pps int pulse repetition period (high)

0 short でもいいか も

(4)

パルス繰り返し周波 数(low) pulse repetition period (low frequency)

PRF_Lo pps int pulse repetition period (low)

0 short でもいいか も

レイ数 number of

ray Rays int ray number ビン数(レイ毎) number of

bin Bins int bin number

方位角 azimuth Azimuth degree float azimuth 1(Rays) 仰角 elevation Elevation degree float elevation 1(Rays) スキャン時刻 scan time Scan_Time sec from

1900 double scan from… time 1(Rays) パルス繰り返し周波 数 pulse repetition period PRF pps int pulse repetition period 1(Rays) short でもいいか も

パルス幅 pulse width PW μs float pulse width 1(Rays) 観 測 パ ラ メ ー タ 受信強度(H) received

power (H) Pr_H dBm short received power (H) 2(Rays, Bins) 0.01 0.0 受信強度(V) received

power (V) Pr_V dBm short received power (V) 2(Rays, Bins) 0.01 0.0 レーダ反射強度(H) radar reflectivity (H) ZH dBZ short radar reflectivity (H) 2(Rays, Bins) 0.01 0.0 レーダ反射強度(V) radar reflectivity (V) ZV dBZ short radar

reflectivity (V) 2(Rays, Bins) 0.01 0.0 レーダ反射因子差 differential

reflectivity ZDR dB short differential reflectivity 2(Rays, Bins) 0.01 0.0 レーダ反射因子比 difference

reflectivity ZDP dBZ short difference reflectivity 2(Rays, Bins) 0.01 0.0 直線偏波抑圧比 linear depolarizati on ratio LDRHV dB short linear depolarization ratio 2(Rays, Bins) 0.01 0.0

(5)

偏波間位相差 differential

phase PHIDP degree short differential phase 2(Rays, Bins) 0.01 180.0 偏波間位相差変化率 specific differential phase KDP degree km-1 short specific differential phase 2(Rays, Bins) 0.01 0.0 偏波間相関係数 correlation coefficient between H and V

RHOHV short correlation coefficient between H and V 2(Rays, Bins) 0.0001 0.0 ドップラー速度 Doppler velocity VR m s -1 short Doppler

velocity 2(Rays, Bins) 0.01 0.0 速度幅 velocity

width WV m s

-1 short velocity width 2(Rays,

参照

関連したドキュメント

A key step in the earlier papers is the use of a global conformal capacity es- timate (the so-called Loewner estimate ) to prove that all quasiconformal images of a uniform

In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diff h,σ

As a special case of that general result, we obtain new fractional inequalities involving fractional integrals and derivatives of Riemann-Liouville type1. Consequently, we get

(1) 送信機本体 ZS-630P 1)

this to the reader. Now, we come back to the proof of Step 2. Assume by contradiction that V is not empty.. Let u be the minimal solution with the given boundary values and let P be

操作は前章と同じです。但し中継子機の ACSH は、親機では無く中継器が送信する電波を受信します。本機を 前章①の操作で

Amount of Remuneration, etc. The Company does not pay to Directors who concurrently serve as Executive Officer the remuneration paid to Directors. Therefore, “Number of Persons”

The device accepts fundamental mode parallel resonant crystal or a single ended (LVCMOS/LVTTL) reference clock as input.. The output signals can be modulated using the spread