• 検索結果がありません。

Coupled Fixed-Point Theorems for Contractions in Partially Ordered Metric Spaces and Applications

N/A
N/A
Protected

Academic year: 2022

シェア "Coupled Fixed-Point Theorems for Contractions in Partially Ordered Metric Spaces and Applications"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Volume 2012, Article ID 150363,20pages doi:10.1155/2012/150363

Research Article

Coupled Fixed-Point Theorems for Contractions in Partially Ordered Metric Spaces and Applications

M. Eshaghi Gordji,

1

Y. J. Cho,

2

S. Ghods,

3

M. Ghods,

4

and M. Hadian Dehkordi

4

1Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran

2Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Republic of Korea

3Department of Mathematics, Islamic Azad University, Semnan Branch, Semnan, Iran

4Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

Correspondence should be addressed to M. Eshaghi Gordji,madjid.eshaghi@gmail.comand Y. J.

Cho,yjcho@gnu.ac.kr

Received 30 September 2011; Revised 20 December 2011; Accepted 24 December 2011 Academic Editor: Stefano Lenci

Copyrightq2012 M. Eshaghi Gordji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bhaskar and Lakshmikantham2006showed the existence of coupled coincidence points of a mappingFfromX×XintoXand a mappinggfromXintoXwith some applications. The aim of this paper is to extend the results of Bhaskar and Lakshmikantham and improve the recent fixed- point theorems due to Bessem Samet2010. Indeed, we introduce the definition of generalizedg- Meir-Keeler type contractions and prove some coupled fixed point theorems under a generalized g-Meir-Keeler-contractive condition. Also, some applications of the main results in this paper are given.

1. Introduction

The Banach contraction principle1is a classical and powerful tool in nonlinear analysis and has been generalized by many authorssee2–15and others.

Recently, Bhaskar and Lakshmikantham16introduced the notion of a coupled fixed- point of the given two variables mapping. More precisely, letX be a nonempty set andF : X×XXbe a given mapping. An elementx, y∈X×Xis called a coupled fixed-point of the mappingFif

F x, y

x, F y, x

y. 1.1

(2)

They also showed the uniqueness of a coupled fixed-point of the mapping F and applied their theorems to the problems of the existence and uniqueness of a solution for a periodic boundary value problem.

Theorem 1.1see Zeidler15. LetX,≤be a partially ordered set and suppose that there is a metric d onX such thatX, dis a complete metric space. LetF : X × XX be a continuous mapping having the mixed monotone property onX. Assume that there existsk∈0,1such that

d F

x, y

, Fu, v

k 2

dx, u d

y, v 1.2

for allxuandyv. Moreover, if there existx0, y0Xsuch that x0F

x0, y0

, y0F y0, x0

, 1.3

then there existx, yXsuch thatxFx, yandyFy, x.

Later, in17, Lakshmikantham and ´Ciri´c investigated some more coupled fixed-point theorems in partially ordered sets, and some others obtained many results on coupled fixed- point theorems in cone metric spaces, intuitionistic fuzzy normed spaces, ordered cone metric spaces and topological spacessee, e.g.,18–25.

In9, Meir and Keeler generalized the well-known Banach fixed-point theorem1as follows.

Theorem 1.2Meir and Keeler9. LetX, dbe a complete metric space andT :XX be a given mapping. Suppose that, for any >0, there existsδ>0 such that

d x, y

< δ d

Tx, T y

< 1.4

for allx, yX. Then T admits a unique fixed-pointx0Xand, for allxX, the sequence{Tnx}

converges tox0.

Proposition 1.3see17. LetX, dbe a partially ordered metric space andF : X ×XX be a given mapping. If the contraction 1.2 is satisfied, then F is a generalized Meir-Keeler type contraction.

Motivated by the results of Bhaskar and Lakshmikantham 16, Lakshmikantham and ´Ciri´c17, and Samet26, in this paper, we introduce the definition ofg-Meir-Keeler- contractive mappings and prove some coupled fixed-point theorems under a generalized g-Meir-Keeler contractive condition.

2. Main Results

LetXbe a nonempty set. We note that an elementx, y∈X×Xis called a coupled coincidence point of a mappingF : X×XX andg : XX ifFx, y gxandFy, x gy for all x, yX. Also, we say thatF andg are commutativeor commuting ifgFx, y Fgx, gyfor allx, yX.

We introduce the following two definitions.

(3)

Definition 2.1. LetX,≤be a partially ordered set andF :X×XX andg :XX. We say thatFhas the mixed strictg-monotone property if, for anyx, yX,

x1, x2X, gx1< gx2F x1, y

< F x2, y

, y1, y2X, g

y1

< g y2

F x, y1

> F x, y2

. 2.1

Definition 2.2. LetX,≤be a partially ordered set anddbe a metric onX. LetF:X×XX and g : XX be two given mappings. We say thatF is a generalizedg-Meir-Keeler type contraction if, for all >0, there existsδ>0 such that, for allx, y, u, vXwithgx≤gu andgygv,

≤ 1 2

d

gx, gu d

g y

, gv

< δ d F

x, y

, Fu, v

< . 2.2

Lemma 2.3. LetX,≤be a partially ordered set anddbe a metric onX. LetF :X×XXand g : XX be two given mappings. IfF is a generalizedg-Meir-Keeler type contraction, then we have

d F

x, y

, Fu, v

< 1 2

d

gx, gu

d g

y

, gv 2.3

for allx, y, u, vwithgx< gu,gygvorgxgu,gy> gv.

Proof. Letx, y, u, vX such that gx < guandgygvorgxguandgy >

gv. Then dgx, gu dgy, gv > 0. SinceF is a generalized g-Meir-Keeler type contraction, for 1/2dgx, gu dgy, gv, there existsδ >0 such that, for allx0, y0, u0, v0Xwithgx0gu0andgy0gv0,

≤ 1 2

d

gx0, gu0 d

g y0

, gv0

< δ d F

x0, y0

, Fu0, v0

< . 2.4

Therefore, puttingx0x,y0y,u0uandv0v, we have

d F

x, y

, Fu, v

< 1 2

d

gx, gu

d g

y , gv

. 2.5

This completes the proof.

From now on, we suppose thatX,≤is a partially ordered set, and there exists a metric donXsuch thatX, dis a complete metric space.

(4)

Theorem 2.4. LetF:X×XXandg :XXbe such thatFX×XgX,gis continuous and commutative withF. Also, suppose that

aFhas the mixed strictg-monotone property;

bFis a generalizedg-Meir-keeler type contraction;

cthere existx0, y0Xsuch thatgx0< Fx0, y0andgy0> Fy0, x0.

Then there existx, yX such thatgx Fx, yandgy Fy, x; that is,F and g have a coupled coincidence inX×X.

Proof. Letx0, y0Xbe such thatgx0< Fx0, y0andgy0> Fy0, x0. SinceFX×XgX, we can choosex1, y1Xsuch thatgx1 Fx0, y0andgy1 Fy0, x0. Again, from FX×XgX, we can choosex2, y2Xsuch thatgx2 Fx1, y1andgy2 Fy1, x1. Continuing this process, we can construct the sequences{xn}and{yn}inXsuch that

gxn1 F xn, yn

, g yn1

F yn, xn

2.6

for alln≥0.

Now, we show that

gxn< gxn1, g yn

> g yn1

2.7

for alln≥0. Forn0, we have gx0< F

x0, y0

gx1, g y0

> F y0, x0

g y1

. 2.8

SinceFhas the mixed strictg-monotone property, then we have gx0< gx1F

x0, y1

< F x1, y1

,

g y0

> g y1

F x0, y0

< F x0, y1

. 2.9

It follows thatFx0, y0< Fx1, y1, that is,gx1< gx2. Similarly, we have

g y1

< g y0

F y1, x0

< F y0, x0

, gx1> gx0F

y1, x1

< F y1, x0

. 2.10

Thus it follows thatFy1, x1< Fy0, x0, that is,gy2< gy1. Again, we have

gx1< gx2F x1, y2

< F x2, y2

, g

y1

> g y2

F x1, y1

< F x1, y2

. 2.11

Thus it follows thatFx1, y1< Fx2, y2, that is,gx2< gx3.

(5)

Similarly, we have g

y2

< g y1

F y2, x1

< F y1, x1

, gx2> gx1F

y2, x2

< F y2, x1

. 2.12

Thus it follows thatFy2, x2< Fy1, x1, that is,gy3< gy2. Continuing this process for eachn≥1, we get the following:

gx0< gx1< gx2<· · ·< gxn< gxn1<· · ·, g

y0

> g y1

> g y2

>· · ·g yn

> g yn1

>· · ·. 2.13

Denote that

δn:d

gxn, gxn1 d

g yn

, g yn1

. 2.14

Sincegxn−1< gxnandgyn−1> gyn, it follows from2.6andLemma 2.3that d

gxn, gxn1 d

F

xn−1, yn−1 , F

xn, yn

< 1 2

d

gxn−1, gxn d

g yn−1

, g yn

.

2.15

Sincegyn< gyn−1andgxn> gxn−1, it follows from2.6andLemma 2.3that d

g yn1

, g yn

d F

yn, xn , F

yn−1, xn−1

< 1 2

d g

yn , g

yn−1 d

gxn, gxn−1 .

2.16

Thus it follows from2.14–2.16 thatδn < δn−1. This means that the sequence{δn/2} is monotone decreasing. Therefore, there existsδ≥0 such that limn→ ∞ δn/2 δ, that is,

nlim→ ∞

1 2

d

gxn, gxn1 d

g yn

, g yn1

δ. 2.17

Now, we show thatδ 0. Suppose thatδ > 0 hold. Letδ . Then there exists a positive integermsuch that

≤ 1 2

d

gxm, gxm1 d

g ym

, g

ym1

< δ. 2.18

Then, by using2.7and the conditionb, we have d

F

xm, ym , F

xm1, ym1

< , 2.19

(6)

and so, by2.6, we have

d

gxm1, gxm2

< . 2.20

On the other hand, by2.15, we have 1

2 d

gxm, gxm1 d

g ym

, g

ym1

< , 2.21

which is a contradiction with2.18. Thus we haveδ0, that is,

nlim→ ∞

1 2

d

gxn, gxn1 d

g yn

, g yn1

0, 2.22

that is,

nlim→ ∞δn0. 2.23

Now, we prove that{gxn}and{gyn}are Cauchy sequences inX. Suppose that at least one of{gxn} or{gyn}is not a Cauchy sequence. Then there exist > 0 and two subsequences{lk},{mk}of integers such thatmk> lkkand

d

gxlk, gxmk

2, d g

ylk

, g ymk

2 2.24

for allk≥1. Thus we have rkd

gxlk, gxmk d

g ylk

, g ymk

2.25

for allk≥1. Letmkbe the smallest number exceedinglksuch that2.25holds. Then we have d

gxlk, gxmk−1 d

g ylk

, g ymk−1

< . 2.26

Thus, from2.14,2.25,2.26and the triangle inequality, it follows that rk

d

gxlk, gxmk−1 d

gxmk−1, gxmk d

g ylk

, g ymk−1

d g

ymk−1 , g

ymk

< δmk−1

2.27

and so

≤ lim

k→ ∞rk≤ lim

k→ ∞δmk−1. 2.28

(7)

Hence, by2.23, we have

klim→ ∞rk. 2.29

It follows from2.6,2.14, and the triangle inequality that rkd

gxlk, gxmk d

g ylk

, g ymk

d

gxlk, gxlk1 d

gxlk1, gxmk1 d

gxmk1, gxmk d

g ylk

, g ylk1

d g

ylk1 , g

ymk1 d

g ymk1

, g ymk δlkδmkd

gxlk1, gxmk1 d

g ylk1

, g ymk1 δlkδmkd

F xlk, ylk

, F

xmk, ymk d

F ylk, xlk

, F

ymk, xmk .

2.30

Form2.13we havegxlk < gxmkandgylk > gymk. Now, it follows fromLemma 2.3 and2.30that

rk< δlkδmkd

gxlk, gxmk d

g ylk

, g ymk

, 2.31

that is,

rk< δlkδmkrk. 2.32

This is a contradiction. Therefore, {gxn} and {gyn} are Cauchy sequences. Since X is complete, there existx, yXsuch that

nlim→ ∞gxn x, lim

n→ ∞g yn

y. 2.33

Since{gxn}is monotone increasing and{gyn}is monotone decreasing, we have gxn< x, g

yn

> y 2.34

for alln≥1. Thus it follows from2.33and the continuity ofgthat

nlim→ ∞g gxn

gx, lim

n→ ∞g g

yn

g y

. 2.35

Thus, for allm≥1, there exists a positive integern0such that, for allnn0,

d g

gxn , gx

< 1

4m, d

g g

yn , g

y

< 1

4m. 2.36

(8)

Hence, from2.6, the commutativity ofFandgand the triangle inequality, we have d

F x, y

, gx

d F

x, y , g

gxn d

g gxn

, gx d

F x, y

, g F

xn−1, yn−1 d

g gxn

, gx d

F x, y

, F

gxn−1, g yn−1

d g

gxn , gx

.

2.37

Thus, it follows from2.34,2.36, andLemma 2.3that d

F x, y

, gx

< 1 2

d g

gxn−1 , gx

d g

g yn−1

, g

y

d g

gxn , gx

< 1 8m 1

8m 1 4m 1

2m −→0

2.38

asm → ∞. Therefore, we haveFx, y gx. Similarly, we can show thatFy, x gy.

This means that F and g have a coupled coincidence point in X ×X. This completes the proof.

Corollary 2.5. LetF :X×XXbe a mapping satisfying the following conditions:

aFhas the mixed strict monotone property;

bFis a generalized Meir-Keeler type contraction;

cthere existsx0, y0Xsuch thatx0< Fx0, y0andy0> Fy0, x0. Then there existx, yXsuch thatxFx, yandyFy, x.

Proof. The conclusion follows fromTheorem 2.4by puttingg I: the identity mappingon X.

Now, we introduce the product spaceX×X with the following partial order: for all x, y,u, v∈X×X,

u, v≤ x, y

⇐⇒u < x, vy. 2.39

Theorem 2.6. Suppose that all the hypotheses of Theorem 2.4 hold and, further, for all x, y,x, yX ×X, there exists u, v ∈ X ×X such that Fu, v, Fv, uis comparable with Fx, y, Fy, xand Fx, y, Fy, x. Then F and g have a unique coupled common fixed-point, that is, there exists a uniquex, y∈X×Xsuch that

xgx F

x, y

, yg

y F

y, x

. 2.40

(9)

Proof. ByTheorem 2.4, the set of coupled coincidences of the mappingFandgis nonempty.

First, we show that, ifx, yand x, yare coupled coincidence points of F andg, that is, if

gx F x, y

, g

y F

y, x

, gx F

x, y

, g

y F

y, x ,

2.41

then we have

gx gx, g

y g

y

. 2.42

Putu0 u,v0 vand chooseu1, v1Xsuch thatgu1 Fu0, v0andgv1 Fv0, u0. Then, similarly as in the proof of Theorem 2.4, we can inductively define the sequences {gun}and{gvn}such that

gun1 Fun, vn, gvn1 Fvn, un 2.43

for alln ≥ 0. Also, if we setx0 x,y0 y,x0 x, andy0 y, then we can define the sequences{gxn},{gyn},{gxn}, and{gyn}as follows:

gxn1 F xn, yn

, g

yn1 F

yn, xn , g

xn1 F

xn, yn

, g

yn1 F

yn, xn 2.44

for alln≥0. Since F

x, y , F

y, x

gx1, g y1

gx, g y

, Fu, v, Fv, u

gu1, gv1 2.45

are comparable each other, then gx < gu1 and gygv1. It is easy to show that gx, gy, andgun, gvnare comparable each other, that is,gx < gunandgygvnfor alln≥1. Thus it follows fromLemma 2.3that

d

gx, gun1 d

g y

, gvn1 d

F x, y

, Fun, vn d

F y, x

, Fvn, un

< 1 2

d

gx, gun d

g y

, gvn 1

2 d

g y

, gvn d

gx, gun d

gx, gun d

g y

, gvn

2.46

and so 1 2

d

gx, gun1 d

g y

, gvn1

< 1 2n

d

gx, gu1 d

g y

, gv1

−→0 2.47

(10)

asn → ∞. Therefore, we have

nlim→ ∞d

gx, gun1

0, lim

n→ ∞d g

y

, gvn1

0. 2.48

Similarly, we can prove that

n→ ∞limd

gx, gun1

0, lim

n→ ∞d g

y

, gvn1

0. 2.49

Thus, by the triangle inequality,2.48and2.49, we have

d

gx, gx

d

gx, gun1 d

gx, gun1

−→0, d

g y

, g y

d g

y

, gvn1 d

g y

, gvn1

−→0 2.50

asn → ∞, which imply thatgx gxandgy gy.

Now, we prove thatgx xandgy y. Denote thatgx zandgx w. Since gx Fx, yandgy Fy, x, by the commutativity ofFandg, we have

gz g

gx

g F

x, y F

gx, g y

Fz, w, 2.51

gw g

g y

g F

y, x F

g y

, gx

Fw, z. 2.52

Thus,z,wis a coupled coincidence point ofFandg.

Puttingxzandywin2.52, it follows from2.42that

zgx gx gz, wg

y g

y

gw 2.53

and so, from2.51and2.52,

zgz Fz, w, wgw Fw, z. 2.54

Therefore,z, wis a coupled common fixed-point ofFandg.

Finally, to prove the uniqueness of the coupled common fixed-point ofFandg, assume thatp, qis another coupled common fixed-point ofF andg. Then, by2.42, we havep gp gz zandqgq gw w. This completes the proof.

Corollary 2.7. Suppose that all the hypotheses ofCorollary 2.5hold and, further, for allx, yand x, yX×X, there existsu, v∈X×Xthat is comparable withx, yandx, y. Then there exists a uniquexXsuch thatxFx, x.

(11)

3. Applications

Now, we give some applications of the main results inSection 2.

Theorem 3.1. LetF :X × XX andg :XX be two given mappings. Assume that there exists a functionϕ:0,∞ → 0,∞satisfying the following conditions:

aϕ0 0 andϕt>0 for anyt >0;

bϕis nondecreasing and right continuous;

cfor any >0, there existsδ>0 such that, for allx, y, u, vXwithgxguand gygv,

ϕ 1

2 d

gx, gu

d g

y

, gv

< δ ϕ d

F x, y

, Fu, v

< . 3.1

ThenFis a generalizedg-Meir-Keeler type contraction.

Proof. For any >0, it follows fromathatϕ>0 and so there existsα >0 such that, for allu, v, u, vXwithgu≤guandgvgv,

ϕϕ

1 2

d

gu, gu d

gv, gv

< ϕ αϕdFu, v, Fu, v< ϕ.

3.2

From the right continuity ofϕ, there exists δ > 0 such that ϕδ < ϕ α. For any x, y, u, vXsuch thatgxgu,gygvand

≤ 1 2

d

gx, gu

d g

y , gv

< δ, 3.3

sinceϕis nondecreasing function, we get the following:

ϕϕ

1 2

d

gx, gu

d g

y

, gv

< ϕα< ϕ α. 3.4

By3.2, we haveϕdFx, y, Fu, v < ϕand sodFx, y, Fu, v < . Therefore, it follows thatFis a generalizedg-Meir-Keeler type contraction. This completes the proof.

Corollary 3.2see26, Theorem 3.1. LetF : X × XX be a given mapping. Assume that there exists a functionϕ:0,∞ → 0,∞satisfying the following conditions:

aϕ0 0 andϕt>0 for anyt >0;

bϕis nondecreasing and right continuous;

(12)

cfor any >0, there existsδ>0 such thatxu,yvand

ϕ 1

2

dx, u d y, v

< δ ϕ d

F x, y

, Fu, v

< . 3.5

ThenFis a generalized Meir-Keeler type contraction.

The following result is an immediate consequence of Theorems2.4and3.1.

Corollary 3.3. LetF:X×XXandg:XXbe two given mappings such thatFX×XgX,gis continuous and commutative withF. Also, suppose that

aFhas the mixed strictg-monotone property;

bfor any >0, there existsδ>0 such that, for allx, y, u, vXwithgxguand gygv,

1/2dgx,gudgy,gv

0

ϕtdt < δ

dFx,y,Fu,v

0

ϕtdt < , 3.6

where ϕ is a locally integrable function from0,∞into itself satisfying the following condition:

s

0

ϕtdt >0 3.7

for alls >0;

cthere existx0, y0Xsuch thatgx0< Fx0, y0andgy0> Fy0, x0.

Then there existsx, y∈X×X such thatgx Fx, yandgy Fy, x. Moreover, ifgx0 andgy0are comparable to each other, thenF andghave a unique coupled common fixed-point in X×X.

Corollary 3.4. LetF :X×XXbe a mapping satisfying the following conditions:

aFhas the mixed strict monotone property;

bfor any >0, there existsδ>0 such thatxu,yvand

1/2dx,udy,v

0

ϕtdt < δ

dFx,y,Fu,v

0

ϕtdt < , 3.8

(13)

whereϕis a locally integrable function from0,∞into itself satisfying s

0

ϕtdt >0 3.9

for alls >0;

cthere existx0, y0Xsuch thatx0< Fx0, y0andy0> Fy0, x0.

Then there existsx, y∈X×Xsuch thatxFx, yandyFy, x. Moreover, ifx0andy0are comparable to each other, thenFhas a unique coupled common fixed-point inX×X.

Corollary 3.5. LetF:X×XXandg:XXbe two given mappings such thatFX×XgX,gis continuous and commutes withF. Also, suppose that

aFhas the mixed strictg-monotone property;

bfor anyx, y, u, vXwithgxguandgygv,

dFx,y,Fu,v

0

ϕtdtk

1/2dgx,gudgy,gv

0

ϕtdt, 3.10

wherek∈0,1andϕis a locally integrable function from0,∞into itself satisfying s

0

ϕtdt >0 3.11

for alls >0;

cthere existx0, y0Xsuch thatgx0< Fx0, y0andgy0> Fy0, x0.

Then there existsx, y∈X×X such thatgx Fx, yandgy Fy, x. Moreover, ifgx0 andgy0are comparable to each other, thenF andghave a unique coupled common fixed-point in X×X.

Proof. For any >0, if we takeδ 1/k−1and applyCorollary 3.3, then we can get the conclusion.

Corollary 3.6. Let F :X×XXbe a mapping satisfying the following conditions:

aFhas the mixed strict monotone property, bfor anyx, y, u, vXwithxuandyv,

dFx,y,Fu,v

0

ϕtdtk

1/2dx,udy,v

0

ϕtdt, 3.12

(14)

wherek∈0,1andϕis a locally integrable function from0,∞into itself satisfying s

0

ϕtdt >0 3.13

for alls >0;

cthere existx0, y0Xsuch thatx0< Fx0, y0andy0> Fy0, x0.

Then there exist x, yX such that x Fx, y and y Fy, x. Moreover, if x0 and y0 are comparable to each other, thenFhas a unique coupled common fixed-point inX×X.

Finally, by using the above results, we show the existence of solutions for the following integral equation:

xt, yt T

0

Gt, s

fs, xs λxs

f

s, ys

λys ds, T

0

Gt, s f

s, ys

λys

fs, xs λxs

ds

,

3.14

wherex, yCI,R : the set of continuous functions fromIintoR,T >0,f :I×R → Ris a continuous function and

Gt, s

⎧⎪

⎪⎪

⎪⎪

⎪⎩

eλTs−t

eλT−1 , if 0≤s < tT; eλs−t

eλT−1, if 0≤t < sT.

3.15

Definition 3.7. A lower solution for the integral equation3.14is an elementα, β∈C1I,R× C1I,Rsuch that

αt λβtft, αtf t, βt

, α0< αT, βt λαtf

t, βt

ft, αt, β0βT, 3.16

whereC1I,Rdenotes the set of differentiable functions fromIintoR.

Now, we prove the existence of solutions for the integral equation3.14by using the existence of a lower solution for the integral equation3.14.

Theorem 3.8. Let A be the class of the functionsϕ : 0,∞ → 0,∞satisfying the following conditions:

aϕis increasing;

bfor anyx0, there existsk∈0,1such thatϕx<k/2x.

(15)

In the integral equation3.14, suppose that there existsλ >0 such that, for allx, y∈Rwithy > x, 0< f

t, y

λy

ft, x λx

λϕ yx

, 3.17

whereϕ∈ A. If a lower solution of the integral equation3.14exists, then a solution of the integral equation3.14exists.

Proof. Define a mappingF:CI,CI,R → CI,Rby

F

xt, yt

T

0

Gt, s

fs, xs λxs

f

s, ys

λys

ds. 3.18

Note that, if xt, yt ∈ CI,R × CI,R is a coupled fixed-point of F, then xt, ytis a solution of the integral equation3.14.

Now, we check the hypotheses inCorollary 2.5as follows:

1X×XCI,CI,Ris a partially ordered set if we define the order relation in X×Xas follows:

ut, vt≤

xt, yt

iffut< xt, vtyt 3.19

for allxt, yt,ut, vt∈X×XandtI.

2 X, dis a complete metric space if we define a metricdas follows:

d

xt, yt sup

t∈I

xtyt:xt, ytX

. 3.20

3The mappingF has the mixed strict monotone property. In fact, by hypothesis, if x2> x1, then we have

ft, x2 λx2> ft, x1 λx1, 3.21

which implies that, for anytI, T

0

fs, x2s λx2s−f s, ys

λys

Gt, sds

>

T

0

fs, x1s λx1s−f s, ys

λys

Gt, sds,

3.22

that is,

F

x2t, yt

> F

x1t, yt

. 3.23

(16)

Similarly, ify1< y2, then we have

f t, y2

λy2> f t, y1

λy1, 3.24

which implies that, for anytI,

T

0

fs, xs λxsf

s, y2s

λy2s

Gt, sds

<

T

0

fs, xs λxsf

s, y1s

λy1s

Gt, sds,

3.25

that is,

F

xt, y2t

< F

xt, y1t

. 3.26

Now, we show thatFsatisfies1.2. In fact, letx, y≤u, vandtI. Then we have

d F

xt, yt

, Fut, vt supF

xt, yt

Fut, vt:tI sup

t∈I

T

0

Gt, s

fs, xs λxsf s, ys

λys ds

T

0

Gt, s

fs, us λusfs, vsλvs ds

≤sup

t∈I

T

0

Gt, sfs, xs λxsfs, usλus fs, vs λvsf

s, ys

λysds.

3.27

Since the functionϕxis increasing andx, y≤u, v, we have

ϕxsusϕdxs, us, ϕ

vsys

ϕ d

vs, ys

, 3.28

(17)

we obtain the following:

d F

xt, yt

, Fut, vt

≤sup

t∈I

T

0

Gt, sλϕxsus λϕ

vsysds

λsup

t∈I

T

0

Gt, sϕdxs, us ϕ d

vs, ysds λ

ϕdxs, us ϕ

d

vs, ys

·sup

t∈I

T

0

Gt, sds

λ

ϕdxs, us ϕ

d

vs, ys

·sup

t∈I

1 eλT−1

1

λeλTs−t t

0

1

λeλs−t T

t

λ

ϕdxs, us ϕ

d

vs, ys

· 1 λeλT−1

eλT−1

ϕdxs, us ϕ

d

vs, ys

< k 2

dxs, us d

vs, ys

k

2sup{|xt−ut|:tI} k

2supvtyt:tI k

2

dxt, ut d

yt, vt

.

3.29 Then, byProposition 1.3,Fis a generalized Meir-Keeler type contraction.

Finally, letαt, βt∈C1I,R×C1I,Rbe a lower solution for the integral equation 3.14. Then we show that

α < F α, β

, βF β, α

. 3.30

Indeed, we haveαt λβtft, αtft, βtfor anytIand so αt λαtft, αt−f

t, βt

λαtλβt 3.31

for anytI. Multiplying byeλtin3.31, we get the following:

αteλt

ft, αt λαt

f

t, βt

λβt

eλt 3.32

for anytI, which implies that

αteλtα0 t

0

fs, αs λαs

f s, βs

λβs

eλsds 3.33

(18)

for anytI. This implies that

α0eλt< αTeλTα0 T

0

fs, αs λαsf s, βs

λβs

eλsds 3.34

and so

α0<

T

0

eλs eλT−1

fs, αs λαsf s, βs

λβs

ds. 3.35

Thus it follows from3.35and3.33that

αteλt<

T

t

eλs eλT−1

fs, αs λαsf s, βs

λβs ds

t

0

eλTs eλT−1

fs, αs λαsf s, βs

λβs ds,

3.36

and so

αt<

t

0

eλTs−t eλT−1

fs, αs λαsf s, βs

λβs ds

T

t

eλs−t eλT−1

fs, αs λαsf s, βs

λβs ds.

3.37

Hence we have

αt<

T

0

Gt, s

fs, αs λαsf s, βs

λβs

dsF

αt, βt 3.38

for anytI.

Similarly, we haveβtFβt, αt. Therefore, by Corollary 2.5,F has a coupled fixed-point.

Example 3.9. In the integral equation3.14, we putλ1.5,fu, v uvfor allu, v∈I×R andT 0.5. Thenfis a continuous function, and we have

xt, yt

0.5

0

Gt, s

0.5xs−0.5ys ds,

0.5

0

Gt, s

0.5ys−0.5xs ds

,

3.39

(19)

wherex, yCI,R, and

Gt, s

⎧⎪

⎪⎪

⎪⎪

⎪⎩

e1.50.5s−t

e0.75−1 , if 0≤s < t≤0.5, e1.5s−t

e0.75−1, if 0≤t < s≤0.5.

3.40

Also,αt, βt −2e−0.5t,3e−0.5tis a lower solution of3.39. Moreover, if we defineϕx x/3 for allx∈0,∞, thenϕis increasing and, for anyx > 0, there existsk 1/1.1∈ 0,1 such thatϕx x/3<k/2xx/2.2. For allx, y∈Rwithy > x, we have

0< f t, y

λy

ft, x λx 0.5

yx

λϕ yx

1.5yx 3 0.5

yx .

3.41

Therefore, all the conditions ofTheorem 3.8hold, and a solution of3.39exists.

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea NRF funded by the Ministry of Education, Science and TechnologyGrant no. 2011.0021821.

References

1 S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.

2 R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, 2001.

3 R. P. Agarwal, M. A. El-Gebeily, and D. O’Regan, “Generalized contractions in partially ordered metric spaces,” Applicable Analysis, vol. 87, no. 1, pp. 109–116, 2008.

4 D. W. Boyd and J. S. W. Wong, “On nonlinear contractions,” Proceedings of the American Mathematical Society, vol. 20, pp. 458–464, 1969.

5 A. Branciari, “A fixed point theorem for mappings satisfying a general contractive condition of integral type,” International Journal of Mathematics and Mathematical Sciences, vol. 29, no. 9, pp. 531–

536, 2002.

6 L. B. ´Ciri´c, “A generalization of Banach’s contraction principle,” Proceedings of the American Mathemat- ical Society, vol. 45, pp. 267–273, 1974.

7 J. Dugundji and A. Granas, Fixed Point Theory, Springer, New York, NY, USA, 2003.

8 D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, Mass, USA, 1988.

9 A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, pp. 326–329, 1969.

10 J. J. Nieto and R. Rodr´ıguez-L ´opez, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.

11 B. E. Rhoades, “A comparison of various definitions of contractive mappings,” Transactions of the American Mathematical Society, vol. 226, pp. 257–290, 1977.

12 D. R. Smart, Fixed Point Theorems, Cambridge University Press, London, UK, 1974.

13 T. Suzuki, “Meir-Keeler contractions of integral type are still Meir-Keeler contractions,” International Journal of Mathematics and Mathematical Sciences, Article ID 39281, 6 pages, 2007.

(20)

14 T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,”

Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1861–1869, 2008.

15 E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer, Berlin, Germany, 1986.

16 T. Gnana Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications,” Nonlinear Analysis, vol. 65, no. 7, pp. 1379–1393, 2006.

17 V. Lakshmikantham and L. ´Ciri´c, “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces,” Nonlinear Analysis, vol. 70, no. 12, pp. 4341–4349, 2009.

18 M. Abbas, Y. J. Cho, and T. Nazir, “Common fixed point theorems for four mappings in TVS-valued cone metric spaces,” Journal of Mathematical Inequalities, vol. 5, no. 2, pp. 287–299, 2011.

19 Y. J. Cho, G. He, and N.-J. Huang, “The existence results of coupled quasi-solutions for a class of operator equations,” Bulletin of the Korean Mathematical Society, vol. 47, no. 3, pp. 455–465, 2010.

20 Y. J. Cho, R. Saadati, and S. Wang, “Common fixed point theorems on generalized distance in ordered cone metric spaces,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1254–1260, 2011.

21 Y. J. Cho, M. H. Shah, and N. Hussain, “Coupled fixed points of weakly F-contractive mappings in topological spaces,” Applied Mathematics Letters, vol. 24, no. 7, pp. 1185–1190, 2011.

22 M. E. Gordji, Y. J. Cho, and H. Baghani, “Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces,” Mathematical and Computer Modelling, vol. 54, pp. 1897–1906, 2011.

23 E. Graily, S. M. Vaezpour, R. Saadati, and Y. J. Cho, “Generalization of fixed point theorems in ordered metric spaces concerning generalized distance,” Fixed Point Theory and Applications, vol. 2011, article 30, 2011.

24 W. Sintunavarat, Y. J. Cho, and P. Kumam, “Common fixed point theorems for c in ordered cone metric spaces,” Computers & Mathematics with Applications, vol. 62, pp. 1969–1978, 2011.

25 W. Sintunavarat, Y. J. Cho, and P. Kumam, “Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces,” Fixed Point Theory and Applications, vol. 2011, article 81, 2011.

26 B. Samet, “Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces,” Nonlinear Analysis, vol. 72, no. 12, pp. 4508–4517, 2010.

(21)

Submit your manuscripts at http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations

International Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Optimization

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

The Scientific World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Stochastic Analysis

International Journal of

参照

関連したドキュメント

In this paper, we prove some coupled fixed point theorems for O- compatible mappings in partially ordered generalized metric spaces un- der certain conditions to extend and

Emami, “A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations,” Nonlinear Analysis: Theory, Methods

Samet, “Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially or- dered metric spaces,” Nonlinear Analysis: Theory, Methods &amp; Applications,

Shatanawi, Common fixed points of almost generalized (ψ, ϕ) s -contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages. Sklar,

Shatanawi, Common fixed points of almost generalized (ψ, ϕ) s -contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages. Radenovi´ c, Fixed

Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Petrusel, Mutivalued fractals in b-metric

In this paper, some hybrid fixed point theorems for the right monotone increasing multi-valued mappings in ordered Banach spaces are proved via measure of noncompactness and they

Both families of spaces seen to be different in nature: on the one hand, Branciari’s spaces are endowed with a rectangular inequality and their metrics are finite valued, but they