• 検索結果がありません。

On The Borsuk-Ulam Theorem and Bordism (New transformation groups and its related topics)

N/A
N/A
Protected

Academic year: 2021

シェア "On The Borsuk-Ulam Theorem and Bordism (New transformation groups and its related topics)"

Copied!
3
0
0

読み込み中.... (全文を見る)

全文

(1)175. 数理解析研究所講究録 第2016巻 2017年 175-177. On The Borsuk‐Ulam Theorem and Bordism Seiji Nagami Introduction. 1. [1], Crabb, Goncalves, Libardi,. In. and Perche studied the Borsuk‐Ulam prop‐. erty by using bordism relation. tween. m ‐dimensional. ((\overline{M}, $\tau$), Y). $\tau$\overline{:M}\rightar ow\overline{M}. Let. manifold M , and Y. be. topological. a. a. free involution be‐. space.. Then the pair. (the BUP) iff for any continu‐ ous map f : \overline{M}\rightarrow Y there exists x\in M such that f(x)=f( $\tau$(x))([[1]]) Set : Then the \overl i n e{ M } \ ri g ht a rrow M is a double Let quotient map q covering map. M=\overline{M}/\langle T\rangle $\lambda$ denote the real line bundle associated with the covering map. Then by usinf the obstruction theory and cobordism theory, Crabb, Goncalves, Libardi, and Perche obtained the following ([[1]]) where R_{ $\eta$} denotes the unoriented cobordism group of dimension i, R_{i}(X)\mathrm{t}\mathrm{h}\mathrm{e} unoriented Uordism group of a topological space X and R(\mathrm{Z}_{2}) the unoriented bordism group of free \mathrm{Z}_{2} action on closed smooth manifolds. Note that R(\mathrm{Z}_{2})\cong R(B\mathrm{Z}_{2}) holds, and that R(\mathrm{Z}_{2}) is generated by the classes [A_{i}]\in R(\mathrm{Z}_{2}) represented by the untipodal maps A_{i} : \mathrm{S}^{n}\rightar ow \mathrm{S}^{n} For general references about bordism theory, see [2]. satisfies the Borsuk‐Ulam property. .. .. .. ,. ,. .. ( \overline{M}, $\tau$), \mathrm{R}^{m}). Theorem 1.1.. satisfies the BUP if and only if w_{1}( $\lambda$)^{m}\neq 0. $\alpha$\in R_{7n}(\mathrm{Z}_{2}) Then $\alpha$ is wrriten as $\alpha$=a_{0}p_{m}+a_{1}\underline{p_{m-1}}+\cdots+a_{m-1}p_{1}+a_{m}p_{0} for some a_{i}\in R_{i}. (i) If $\alpha$=\underline{[(}M, $\tau$ then a_{0}=\langle w_{1}( $\lambda$)^{m}, [M]\underline{\rangle.} (ii) $\alpha$=[(M, $\tau$)] holds for some connected M. (iii) If a_{0}=1 and $\alpha$=[(\underline{\overline{M}, $\tau$)] then \underline{( }\overline{M}, $\tau$ ), \mathrm{R}^{m} ) satisfies the BUP. (iv) If a_{0}=0 and $\alpha$=[(M, $\tau$)] with M connected, then ( \overline{M}, $\tau$), \mathrm{R}^{m}) does Suppose. Theorem 1.2.. that m>1. .. Let. .. ,. not. satisfy. the BUP.. Theorem 1.3.. Supose. that 1<n<m. .. Then,. pair (\overline{M}, $\tau$) (i) $\alpha$=[(M, $\tau$)] with \overline{M} connected, and that ((M, $\tau$), \mathrm{R}^{n}) satisfies the BUP. then (\overline{M}, $\tau$) satisfies a_{m-n} ) \neq(0,0, \ldots 0) and $\alpha$=[(\overline{M}, $\tau$ (ii) If ( a_{0} al, There is. such that. a. .. ,. .. .. the BUP.. (iii) If \underline{(a}_{0} al, a_{\underline{m-}n} ) =(0,0, \ldots 0) then there exisis a pair (\overline{M}, $\tau$) such that $\alpha$=[(M, $\tau$)] with M connected, and that (\overline{M}, $\tau$) does not satisfy the BUP. ,. It. seems. corollary. .. .. .. interesting to restrict by Theorem. is obtained. ,. $\tau$. to. 1.1.. spin. stucture. preserving. case.. Following.

(2) 176. Corollarly. Suppese. 1.1.. structures that. that. \overline{M}. is. a. ((X, $\tau$), \mathrm{R}^{2}) satisfies. preserving. Then. are. preserved by. $\tau$ are. spin manifold and that $\tau$ is spin structure the BUP if and only if the types of spin unique.. Our aim of this paper is to generalize the BUP groups and to consider similar result for the case. to. property. G=\mathrm{U}(1). compact Lie We work in. .. smooth category.. Definition of the BUP for compact Lie gruop. 2 Let. \tilde{M}. be. a. closed smooth. group G acts GL(n, \mathrm{R}) Let. \mathrm{f}x\mathrm{e}\mathrm{e}1_{X_{\ve } Suppose f. :. M\rightarrow \mathrm{R}^{n}. If G is finite. (resp.. Definition 2.1. Let $\rho$. the BUP. :. and. if. exists x\in M such that. a. .. Let $\rho$_{2}. :. \left(bgin{ary}l \mathr{c}\mathr{o}\mathr{s}$\thea&-\mathr{s}\mathr{i}\mathr{n}$\thea \ mathr{s}\mathr{i}\mathr{n}$\thea&\mathr{c}\mathr{o}\mathr{s}$\thea \nd{ary}\ight). finite),. \mathrm{R}^{n} via. a. compact Lie. representation. a. $\rho$. G\rightarrow. :. only if for. f_{G}(x)=\displaystyle \frac{1}{\#(G)}\sum_{g\in G}g^{-1}f(g(x). set. f_{G}(gx)=gf_{G}(x). Note that. be. holds for all. representation. Then. a. any continuous. (resp.. g\in G.. ((\overline{M}, G), $\rho$). function f:M\rightarrow \mathrm{R}^{n}. there. f_{G}(x)=0.. property for (\mathrm{G} $\rho$). \mathrm{U}(1)\rightarrow GL(2, n) .. on. continuous map.. G\rightarrow GL(n, \mathrm{R}). Borsuk Ulam. 3. ‐dimensional manifolds such that that G acts. not. f_{G}(x)=\displaystyle \int_{G}g^{-1}f(g(x) dx) satisfies. m. .. denote the representation defined. Then define the. representation. $\rho$. :. by. $\rho$_{2}(e^{ $\theta$ i})=. \mathrm{U}(n)\rightarrow GL(n, \mathrm{R}). as. follows;. From. $\rho$=\left\{ begin{ar y}{l p_{2}\oplus\cdots\oplus$\rho$_{2}&(n:ev n)\ $\rho$_{2}\oplus\cdots\oplus$\rho$_{2}\oplus1&(n:od ) \end{ar y}\right.. now. on,. we. consider the. case. for. G=\mathrm{U}(1) together. with the above. M\rightarrow M=\overline{M}/\mathrm{U}(1). representation. In this case, the quotient map projection map of a principal \mathrm{U}(1) ‐bundle $\lambda$ equipped with the. f:M\rightarrow B\mathrm{U}(1) In. case. n,. we. have the nowhere‐zero section. M\times \mathrm{R}^{n} $\rho$ given by s(x)=[\tilde{x}, (0,0,. We also. map. 3.1.. If n. is. odd,. \ldots,. then. 0,1. Therefore. ( \overline{M}, $\rho$), \mathrm{R}^{n}). we. does not. s. :. M\rightarrow E(n $\lambda$)=. obtain;. satisfy. the BUP.. have;. Proposition. 3.2.. 0\in H^{2n}(M;\mathrm{Z}). ( \overline{M}^{2n+1}, $\rho$);\mathrm{R}^{2n}). satisfies. holds.. ( \overline{M}^{4n+1}, $\rho$);\mathrm{R}^{4_{7} $\iota$}). holds.. classifying. .. for odd. Proposition. is the. satisfies. the BUP. if. and. the BUP. if. and. only if c_{1}( $\lambda$)^{n}\neq. only if p_{1}( $\lambda$)^{7b}\neq 0\in H^{4n}(M;\mathrm{Z}).

(3) 177. Unoriented bordism category. 3.1. \mathrm{W} first consider in the unoriented bordism category R_{*}. Theorem 3.1. Let m=2n+1.. Suppose that $\alpha$=a_{0}p_{n}+a_{2}p_{n-1}+\cdots+a_{2n}p_{0}\in R_{2_{7} $\iota$}(B\mathrm{U}(1)) where a_{i}\in R_{i} (i) If $\alpha$=[(M^{2n}, f then a_{0}\equiv\langle(c_{1}( $\lambda$)^{n})_{2}, [M]_{2}\rangle holds modulo 2. ,. (ii) There exists (M^{2n}, f) such that $\alpha$=[(M, f)]- and that M is connected. (iii) If a_{0}\neq 0 and $\alpha$=[(M^{2n}, f then ((X, $\rho$);\mathrm{R}^{2n}) satisfies the BUP.. It. seems. natural to consider in the oriented bordism category rather than in. the unoriented bordism category,. Oriented bordism category. 3.2 Next. we. consider in the oriented bordism category $\Omega$_{*}. .. Our consequences. are. following; Theorem 3.2.. Suppose that $\alpha$\in$\Omega$_{2n+1}(\mathrm{U}(1))\cong$\Omega$_{2n}(B\mathrm{U}(1)) (i) If [(M^{2n}, f)]= $\alpha$ holds, then a_{0}=\langle c_{1}( $\lambda$)^{n}, [M]\rangle\in \mathrm{Z}\cong$\Omega$_{0} (ii) There exists (M^{2n}, f) such that $\alpha$=[M, f\underline{]and } that M is connected. and then If a_{0}\neq 0 hold, (iii) $\alpha$=[(M^{2n}, f)] ((M, $\rho$);\mathrm{R}^{2n}) satisfies the BUP. then there exists such that [(M, f)]= $\alpha$ that \overline{M} is (iv) If a_{0}=0 (M^{2n}, f) connected, and that ( \overline{M}^{2n+1}, $\rho$);\mathrm{R}^{2n}) does not satisfies the BUP. ,. Theorem 3.3.. ,. that m\geq 2n+2 and that $\alpha$=a_{0}p_{m}+a_{1}p_{m-1}+\cdots+. Suppose. a_{m}p_{0}\in$\Omega$_{i}(B\mathrm{Z}) (i) There exists .. and that. \exists(\overline{M}, $\tau$) such that [(\tilde{X}, $\tau$)]=a ( \overline{X}, $\tau$);\mathrm{R}^{n}) satisfies the BUP.. (ii) If( a_{0} does not. al,. ,. .. a_{m-n} ). .. \neq(0,0, \ldots, 0)). and. satisfies the BUP.. (iii) f ( a_{0} that. .. ,. al,. [(M, $\tau$)]= $\alpha$. .. ,. .. .. a_{m-n} ). -=(0,0, \ldots, 0) ). ,. and that. \tilde{X}. is. connected,. ([(\overline{M}, $\tau$)]= $\alpha$ hold, then ( \overline{M}, $\tau$);\mathrm{R}^{n}) ). holds,. that M is connected and that. then there exists. ( \overline{M}, $\tau$);\mathrm{R}^{n}). (\overline{X}, $\tau$). satisfies. such. the BUP.. References [1] \mathrm{Z}_{2} ‐Bordism A. K. M.. and the Borsuk‐ Ulam. Libardi,. L.. Theorem, M. C. Crabb. D.L. Goncalves,. Q. Percher, \mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}:1504.03929\mathrm{v}2[\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{A}\mathrm{T}].. [2] Differentiable periodic. maps, P. E. Conner and E. E.. Berlin.. Academic. Support Center University Neyagawasi ikeda‐nakamati Setsunan. 17‐8. JAPAN \mathrm{E} ‐mail address:. nagami@atf.setsunan.ac.jp. Floyd, Springer, 1964,.

(4)

参照

関連したドキュメント

Keywords: divergence-measure fields, normal traces, Gauss-Green theorem, product rules, Radon measures, conservation laws, Euler equations, gas dynamics, entropy solu-

The edges terminating in a correspond to the generators, i.e., the south-west cor- ners of the respective Ferrers diagram, whereas the edges originating in a correspond to the

We then introduce the notion of compression of a graph Γ which plays an important role in the study of partially commutative groups and prove that the lattices of closed sets for

Proof of Theorem 2: The Push-and-Pull algorithm consists of the Initialization phase to generate an initial tableau that contains some basic variables, followed by the Push and

Proof of Theorem 2: The Push-and-Pull algorithm consists of the Initialization phase to generate an initial tableau that contains some basic variables, followed by the Push and

Greenberg and G.Stevens, p-adic L-functions and p-adic periods of modular forms, Invent.. Greenberg and G.Stevens, On the conjecture of Mazur, Tate and

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol- ogy cylinders by considering its action on the acyclic closure, which was defined by Levine in [12]

The proof uses a set up of Seiberg Witten theory that replaces generic metrics by the construction of a localised Euler class of an infinite dimensional bundle with a Fredholm