• 検索結果がありません。

Convolution identities for Cauchy numbers of the first kind and of the second kind (Analytic Number Theory : Distribution and Approximation of Arithmetic Objects)

N/A
N/A
Protected

Academic year: 2021

シェア "Convolution identities for Cauchy numbers of the first kind and of the second kind (Analytic Number Theory : Distribution and Approximation of Arithmetic Objects)"

Copied!
13
0
0

読み込み中.... (全文を見る)

全文

(1)81. 数理解析研究所講究録 第2013巻 2016年 81-93. Convolution identities for. Cauchy. numbers of the first. kind and of the second kind. Takao Komatsu. School of Mathematics and. 1. Statistics, Wuhan University. Introduction. 1 The. Cauchy. numbcrs. c_{n}(n\geq 0). are. defined. by. c_{n}=\displaystyle \int_{0}^{1}x(x-1)\ldots(x-n+1)dx and the. generating function of. c_{n} is. given by. \displaystyle \frac{x}{\ln(1+x)}=\sum_{n=0}^{\infty}c_{n}\frac{x^{n} {n!} (|x<1) ([4,11 c_{0}=1,. 2. Several initial values. are. c_{1}=\displaystyle\frac{1}{2}, c_{2}=-\displaystyle \frac{1}{6}, c_{3}=\displaystyle\frac{1}{4}, c_{4}=-\displaystyle \frac{19}{30}, c_{5}=\displaystyle\frac{9}{4}, c_{6}=-\displaystyle \frac{863}{84}, c_{7}=\displaystyle \frac{1375}{24}.. Preliminaries. c(x)=x/\ln(1+x). satisfies the. identity. c(x)^{2}=(1+x)c(x)-(1+x)xc'(x). (1). .. Since for i, $\nu$\geq 0 it holds that. x^{i}c^{( $\nu$)}(x)=\displaystyle \sum_{n=0}^{\infty}\frac{n!}{(n-i)!}c_{n+ $\nu$-i\frac{x^{n} {n!} iThis research. was. supported in part by Program.. Hubei Provincial 100 Talents. (2). ,. the grant of Wuhan. University. and. by. the.

(2) 82. the. identity (1) immediately. leads to the formula. \displaystyle \sum_{k=0}^{n}\left(\begin{ar ay}{l} n\ k \end{ar ay}\right)c_{k}c_{n-k}=-n(n-2)c_{n-1}-(n-1)c_{n} Differentiating. (1) by. both sides of. x. and. dividing. them. (n\geq 0) by 2,. c(x)c'(x)=-\displaystyle \frac{1}{2}x(x+1)c' (x)-\frac{1}{2}xc'(x)+\frac{1}{2}c(x) Proposition. we. (3). .. obtain. 1.. c(x)^{3}=\displaystyle \frac{1}{2}(x+1)(x+2)c(x)-\frac{1}{2}x(x+1)(x+2)c'(x)+\frac{1}{2}x^{2}(x+1)^{2}c' (x) Proof. By (1). (4). .. and. .. (5). (4),. c(x)^{3}=(1+x)((1+x)c(x)-(1+x)xc'(x)) -(1+x)x. 侍(. x+l ) c”( x )‐. \displaystyle \frac{1}{2}xc'(x)+\frac{1}{2}c(x). =\displaystyle \frac{1}{2}(x+1)(x+2)c(x)-\frac{1}{2}x(x+1)(x+2)c'(x)+\frac{1}{2}x^{2}(x+1)^{2}c' (x). .. 口. Theorem 1. For n\geq 2. we. have. k_{1}+k_{2}+k_{3}=n\displayst le\sum_{k 1},k_{2},k_{3}\geq0}\frac{n!}{k_1}!k_{2}!k_{3}!c_{k 1}c_{k 2}c_{k 3}. =\displaystyle \frac{(n-1)(n-2)}{2}c_{n}+\frac{n(n-2)(2n-5)}{2}c_{n-1}+\frac{n(n-1)(n-3)^{2} {2}c_{ $\eta$-2}.. Remark. In. [2, Corollary 3]. k_{1}+k_{2}+k_{3}=n\displaystyle \sum_{k_{1},k_{2)}k_{3}\geq 0}.\frac{n!}{k_{1}!k_{2}!k_{3}! B_{k_{1} B_{k_{2} B_{k_{3} =\frac{(n-1)(n-2)}{2}B_{n}+\frac{3n(n-2)}{2}B_{n-1}+n(n-1)B_{n-2}..

(3) 83. Proof of. Theorem 1.. By (2). in. Proposition. 1. \displaystyle \frac{1}{2}(x+1)(x+2)c(x)-\frac{1}{2}x(x+1)(x+2)c'(x)+\frac{1}{2}x^{2}(x+1)^{2}c' (x). =\displaystyle \sum_{n=0}^{\infty}(c_{n}+\frac{3}{2}nc_{n-1}+\frac{1}{2}n(n-1)c_{n-2})\frac{x^{n} {n!} -\displaystyle \sum_{n=0}^{\infty}(nc_{n}+\frac{3}{2}n(n-1)c_{n-1}+\frac{1}{2}n(n-1)(n-2)c_{n-2})\frac{x^{n} {n!} +\displaystyle \sum_{n=0}^{\infty}(\frac{1}{2}n(n-1)c_{n}+n(n-1)(n-2)c_{n-1}+\frac{1}{2}n(n-1)(n-2)(n-3)c_{n-2})\frac{x^{n} {n!} =\displaystyle \sum_{n=0}^{\infty}(\frac{(n-1)(n-2)}{2}c_{n}+\frac{n(n-2)(2n-5)}{2}c_{n-1}+\frac{n(n-1)(n-3)^{2} {2}c_{n-2})\frac{x^{n} {n!}. ロ. The fundamental result of the third order is Theorem 2. For $\mu$, n\geq 0 ,. we. given by the following.. have. $\kap a\kap a\kap a$\displayst le\geq0^{$\mu$}\sum_{$\kap a$_{1}+$\kap a$_{2}+$\kap a$_{3}=\frac{$\mu$!}{$\kap a$_{1}!$\kap a$_{2}!$\kap a$_{3}!(c_{l\mathrm{t}_{1}+c_{$\kap a$_{2}+c_{l\mathrm{t}_{3})^{n}=\frac{(n+$\mu$-1)(n+$\mu$-2)}{2c_{n+$\mu$} +\displaystyle \frac{(n+ $\mu$)(n+ $\mu$-2)(2n+2 $\mu$-5)}{2}c_{n+ $\mu$-1} +\displaystyle \frac{(n+ $\mu$)(n+ $\mu$-1)(n+ $\mu$-3)^{2} {2}c_{n+ $\mu$-2}.. Remark. If. $\mu$=1. ,. we. we. put $\mu$=0. ,. we. have the. identity. in Theorem. (1).. If. we. have. (c_{0}+c_{0}+c_{1})^{n}. =\displaystyle \frac{n(n-1)}{6}c_{n+1}+\frac{(n+1)(n-1)(2n-3)}{6}c_{n}+\frac{n(n+1)(n-2)^{2} {6}c_{n-1}. If. we. put $\mu$=2. ,. we. have. (c_{0}+c_{0}+c_{2})^{n}+2(c_{0}+c_{1}+c_{1})^{n}. =\displaystyle \frac{n(n+1)}{6}c_{n+2}+\frac{n(n+2)(2n-1)}{6}c_{n+1}+\frac{(n+1)(n+2)(n-1)^{2} {6}c_{n}.. put.

(4) 84. If. we. put $\mu$=3. ,. have. we. (c_{0}+c_{0}+c_{3})^{n}+6(c_{0}+c_{1}+c_{2})^{n}+2(c_{1}+c_{1}+c_{1})^{n}. =\displaystyle \frac{(n+1)(n+2)}{6}c_{n+3}+\frac{(n+1)(n+3)(2n+1)}{6}c_{n+2}+\frac{n^{2}(n+2)(n+3)}{6}c_{n+1}. To prove Theorem 2 is based upon. Proposition. 2. For. $\mu$\geq 0_{f}. we. a. relation about the function. c(x). .. have. $\kap $_{12,$\kap \kap \kap $\geq0}+$\kap $+\kap $_{3}=$\mu$\displaystle\sum_{1,23}\frac{$\mu$!}{\kap $_{1}!$\kap $_{2}!$\kap $_{3}!c^{($\kap $_{1})(xc^{($\kap $_{2})(xc^{($\kap $_{3})(x. =\displaystyle \frac{1}{2}x^{2}(x+1)^{2}c^{( $\mu$+2)}(x) +\displaystyle \frac{1}{2}x(x+1)( 4 $\mu$-1)x+(2 $\mu$-2) c^{( $\mu$+1)}(x) +\displaystyle \frac{1}{2}( 6$\mu$^{2}-9 $\mu$+1)x^{2}+3(2$\mu$^{2}-4 $\mu$+1)x+( $\mu$-1)( $\mu$-2) c^{( $\mu$)}(x) +\displaystyle \frac{ $\mu$}{2}( 4$\mu$^{2}-15 $\mu$+13)x+(2 $\mu$-5)( $\mu$-2) c^{( $\mu$-1)}(x). +\displaystyle \frac{1}{2} $\mu$( $\mu$-1)( $\mu$-3)^{2}c^{( $\mu$-2)}(x) Proof. By differentiating the desired result. The. right‐hand. Proof of. .. both sides of. (5). $\mu$ times with. respect. to. x , we. have. The left‐hand side is due to the General Leibniz’s rule.. side. Theorem 2.. can. be. By (2). proved by in. induction.. Proposition 2,. we. \square. have. \displaystyle \frac{1}{2}x^{2}(x+1)^{2}c^{( $\mu$+2)}(x). =\displaystyle \sum_{n=0}^{\infty}(\frac{1}{2}n(n-1)c_{n+ $\mu$}+n(n-1)(n-2)c_{n+ $\mu$-1}+\frac{1}{2}n(n-1)(n-2)(n-3)c_{n+ $\mu$-2})\frac{x^{n} {n!} \displaystyle \frac{1}{2}x(x+1)( 4 $\mu$-1)x+(2 $\mu$-2) c^{( $\mu$+1)}(x). =\displaystyle \sum_{n=0}^{\infty}( $\mu$-1)nc_{n+ $\mu$}+\frac{6 $\mu$-3}{2}n(n-1)c_{n+ $\mu$-1}+\frac{4 $\mu$-1}{2}n(n-1)(n-2)c_{n+ $\mu$-2})\frac{x^{n} {n!},.

(5) 85. \displaystyle \frac{1}{2}( 6$\mu$^{2}-9 $\mu$+1)x^{2}+3(2$\mu$^{2}-4 $\mu$+1)x+( $\mu$-1)( $\mu$-2) c^{( $\mu$)}(x). =\displaystyle \sum_{n=0}^{\infty}(\frac{( $\mu$-1)( $\mu$-2)}{2}c_{n+ $\mu$}+\frac{3(2$\mu$^{2}-4 $\mu$+1)}{2}nc_{n+ $\mu$-1}+\frac{6$\mu$^{2}-9 $\mu$+1}{2}n(n-1)c_{n+ $\mu$-2})\frac{x^{n} {n!} \displaystyle \frac{ $\mu$}{2}( 4$\mu$^{2}-15 $\mu$+13)x+(2 $\mu$-5)( $\mu$-2) c^{( $\mu$-1)}(x). =\displaystyle \sum_{n=0}^{\infty}(\frac{ $\mu$(2 $\mu$-5)( $\mu$-2)}{2}c_{n+ $\mu$-1}+\frac{ $\mu$(4$\mu$^{2}-15 $\mu$+13)}{2}nc_{n+ $\mu$-2})\frac{x^{n} {n!} and. \displaystyle \frac{1}{2} $\mu$( $\mu$-1)( $\mu$-3)^{2}c^{( $\mu$-2)}(x)=\sum_{n=0}^{\infty}\frac{ $\mu$( $\mu$-1)( $\mu$-3)^{2} {2}c_{n+ $\mu$-2\frac{x^{n} {n!} . Combining. 3. Higher. In similar. together,. all the relations. we. obtain the desired result.. 口. powers. manners. to. Proposition 1,. we. have the. following.. c(x)^{4}=\displaystyle \frac{(1+x)(x^{2}+6x+6)}{6}c(x)-\frac{x(1+x)(x^{2}+6x+6)}{6}c'(x) +\displaystyle \frac{x^{2}(1+x)^{2} {2}c' (x)-\frac{x^{3}(1+x)^{3} {6}c' (x) c(x)^{5}=\displaystyle \frac{(1+x)(x^{3}+14x^{2}+36x+24)}{24}c(x)-\frac{x(1+x)(x^{3}+14x^{2}+36x+24)}{24}c'(x) +\displaystyle \frac{x^{2}(1+x)^{2}(x^{2}+6x+12)}{24}c' (x)+\frac{(x-2)x^{3}(1+x)^{3} {12}c^{(3)}(x) +\displaystyle \frac{x^{4}(1+x)^{4} {24}c^{(4)}(x) ,. ,.

(6) 86. Therefore,. (c_{0}+c_{0}+c_{0}+c_{0})^{n}. =-\displaystyle \frac{(n-1)(n-2)(n-3)}{6}c_{n}-\frac{n(n-2)(n-3)^{2} {2}c_{n-1} -\displaystyle \frac{n(n-1)(n-3)(3n^{2}-21n+37)}{6}c_{n-2}-\frac{n(n-1)(n-2)(n-4)^{3}}{6}c_{n-3},. (c_{0}+c_{0}+c_{0}+c_{0}+c_{0})^{n}. =\displaystyle \frac{(n-1)(n-2)(n-3)(n-4)}{24}c_{n}+\frac{n(n-2)(n-3)(n-4)(2n-7)}{12}c_{n-1} +\underline{n(n-1)(n-3)(n-4)(6n^{2}-48n+97)}_{c_{n-2}} 24. +\underline{n(n-1)(n-2)(n-4)(2n-9)(2n^{2}-18n+41)}_{\mathcal{C}_{n-3}} 24. +\displaystyle \frac{n(n-1)(n-2)(n-3)(n-5)^{4} {24}c_{n-4}. In. general,. we. have the. following.. Theorem 3. For any integers n\geq 1 and m\geq 2 ,. we. have. (_{\frac{c_{0}+\cdots+c_{0} {m} )^{n}. =\displaystyle\frac{n!}{(m-1)!}\sum_{i=0}^{m-1}(\sum_{l=0}^{m-1}\sum_{k=0}^{m-l1}\frac{(-1)^{l+k}(m-k1)!}{l!(n-li)!}\left\{ begin{ar ay}{l} -m1&\ m-k&-1 \end{ar ay}\right\} displaystyle\left(\begin{ar ay}{l} m-k&-1\ ki-&+1 \end{ar ay}\right) c_{n-i}. By applying Theorem 3,. we. have the. following. Theorem 4. For any integers n\geq 1 and m\geq 2 ,. result. we. have. $\kap $_{1},$\kap $_{m}\displaystle\geq0^{$\mu$}\sum_{$\kap $_{1}+\cdot,.\cdot.+$\kap $_{m}=\frac{$\mu$!}{ \kap $_{1}!\cdots$\kap $_{m}!(c_{$\kap $_{1}+\cdots+c_{$\kap $_{m})^{n} =\displaystyle\frac{(n+$\mu$)!}{(m-1)!}\sum_{i=0}^{m-1}(\sum_{l=0}^{m-1}\sum_{k=0}^{m-l1}\frac{(-1)^{l+k}(m-k1)!}{l!(n-li)!}\left\{ begin{ar ay}{l} -m1&\ m-k&-1 \end{ar ay}\right\}(_{i-k}^{m-k}の )c_{n+ $\mu$-i}..

(7) 87. When. $\mu$=1. in Theorem. 4,. we. have for any. integers n\geq 1. and. m\geq 2,. (c_{0}+_{\tilde{m-1} +c_{0}+c_{1})^{n}. =\displaystyle\frac{(n+1)!}{m!}\sum_{i=0}^{m-1}(\sum_{l=0}^{m-1}\sum_{k=0}^{m-l1}\frac{(-1)^{l+k}(m-k1)!}{l!(n-li)!}\left\{ begin{ar ay}{l m-1\ m-k1 \end{ar ay}\right\} left(\begin{ar ay}{l} m-k&-1\ ki-&+1 \end{ar ay}\right) c_{n-i+1} When. $\mu$=2. in Theorem. 4,. we. have for any. integers n\geq 1 and m\geq 2,. (_{\frac{c_{0}+\cdots+c_{0} {m-1} +c_{2})^{n}+(m-1)(c_{0}+_{\tilde{m-2} +c_{0}+c_{1}+c_{1})^{n}. =\displaystyle\frac{(n+2)!}{m!}\sum_{i=0}^{m-1}(\sum_{l=0}^{m-1}\sum_{k=0}^{m-l1}\frac{(-1)^{l+k}(m-k1)!}{l!(n-li)!}\left\{ begin{ar ay}{l} -m1&\ m-k&-1 \end{ar ay}\right\} displaystyle\left(\begin{ar ay}{l} m-k&-1\ ki-&+1 \end{ar ay}\right) c_{n-i+2} Cauchy. 4 The. Cauchy. numbers of the second kind. numbers of the second kind. \hat{c}_{n}(n\geq 0). are. defined. by. \displaystyle \hat{c}_{n}=\int_{0}^{1}(-x)(-x-1)\ldots(-x-n+1)dx and the. generating function of \hat{c}_{n}. is. given by. \displaystyle \frac{x}{(1+x)\ln(1+x)}=\sum_{n=0}^{\infty}\hat{c}_{n}\frac{x^{n} {n!} (|x|<1) ([4,. Several initial values. 11. \hat{c}_{0}=1, In. are. \displaystyle \hat{c}_{1}=-\frac{1}{2}, \displaystyle\hat{c}_{2}=\frac{5}{6}, \displaystyle \hat{c}_{3}=-\frac{9}{4}, \displaystyle\hat{c}_{4}=\frac{251}{30}, c_{5}=-\displaystyle \frac{475}{12}, \displaystyle \hat{c}_{6}=\frac{19087}{84}, c_{7}=-\displaystyle \frac{3679 }{24}.. [10],. an. explicit expression. of. (\hat{c_{l} +\hat{c}_{m})^{n}. for. l, m, n\geq 0. where with the classical umbral calculus notation is defined. (see,. by. (\displayst le\hat{c_{l}+\hat{c}_{m})^{n}:=\sum_{j}\left(\begin{ar y}{l n\ \dot{j} \end{ar y}\right)\hat{c_{l+j^{\hat{\mathcal{C} m+n-j}.. e.g.,. was. determined,. [12]), (\hat{c_{l}}+\hat{c}_{m})^{n}.

(8) 88. As. special. cases,. we. obtained. (\displaystyle\hat{c}_{0}+\hat{c}_{0})^{n}=n!\sum_{k=0}^{n}(-1)^{n-k}\frac{\hat{}c_{k} {k!} (\displaystyle \hat{c}_{0}+\hat{c}_{1})^{n}=-\frac{(n+1)!}{2}\sum_{k=0}^{n}(-1)^{n-k}\frac{\hat{c}_{k} {k!}-\frac{1}{2}n\hat{c}_{n+1} (\displaystyle\hat{c}_{0}+\hat{c}_{2})^{n}=\frac{n!}{12}\sum_{k=0}^{n}\frac{(-1)^{n-k} {k!} (. (6). —ncn,. (7). ,. 2k(n+2k-2)+5(n-k+2)(n. -\displaystyle \frac{n}{2}\hat{c}_{n+1}-\frac{n}{3}\hat{c}_{n+2}. —k +. l))姦 (8). ,. (\displaystyle \hat{c}_{1}+\hat{c}_{1})^{n}=\frac{n!}{12}\sum_{k=0}^{n}\frac{(-1)^{n-k} {k!}( n+1)(n+2)+k(8n-9k+19))\hat{c}_{k}-\hat{c}_{n+1}-\frac{n+3}{6}\hat{c}_{n+2} (9). (see [10]). We shall consider thc. higher. order. recurrences. for. Cauchy. numbers of the. second kind:. (\displaystyle\hat{c_{l 1} +\cdots+\hat{c_{l m} )^{n}:=k_{1}+\cdot\cdot.\cdot.+k_{m}=n\sum_{k_{1},k_{m}\geq0}\frac{n!}{k_{1}!\cdotsk_{m}!\hat{c}_{k_{1}+l_{1}\cdots\hat{c}_{k_{m}+l_{m}. As. special. cases,. we. shall have. (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0})^{n}. =\displaystyle \frac{n^{2} {2}\hat{c}_{n}+\frac{n!}{2}\sum_{i=0}^{n}\frac{(-1)^{n-i}(n-4i+2)}{i!}\hat{c_{i} =\displaystyle \frac{(n-1)(n-2)}{2}\hat{c}_{n}+\frac{n!}{2}\sum_{i=0}^{n-1}\frac{(-1)^{n-i}(n-4i+2)}{i!}\hat{c_{i}. (10). ,. (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{1})^{n}. =\displaystyle \frac{n(n-1)}{6}\hat{c}_{n+1}-\frac{(n+1)!}{6}\sum_{i=0}^{n}\frac{(-1)^{n-i}(n-4i+3)}{i!}\hat{c_{i}. .. (11).

(9) 89. and. (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0})^{n}. =-\displaystyle \frac{n^{3} {6}\hat{c}_{n}+\frac{n!}{12}\sum_{i=0}^{n}\frac{(-1)^{n-i}(n^{2}-16in+11n+27i^{2}-33i+12)}{i!}\hat{c_{i}. ,. (12). (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{1})^{n}. =-\displaystyle \frac{(n+1)^{3} {24}\hat{c}_{n+1}-\frac{(n+1)!}{48}\sum_{i=0}^{n+1}\frac{(-1)^{n-i}(n^{2}-16in+13n+27i^{2}-49i+24)}{i!}\hat{c} (13). \hat{c}(x)=x/((1+x)\ln(1+x)). satisfies the. identity. \displaystyle \hat{c}(x)^{2}=-x\tilde{c}(x)+\frac{1}{1+x}\hat{c}(x). (14). .. Since for i, $\nu$\geq 0 it holds that. x^{i}\displaystyle\hat{c}^{($\nu$)}(x)=\sum_{n=0}^{\infty}\frac{n!}{(n-i)!}\hat{c}_{n+$\nu$-i\frac{x^{n} {n!} the. identity (14) immediately leads. (15). ,. to the formula. \displaystyle\sum_{k=0}^{n}\left(\begin{ar ay}{l n\ k \end{ar ay}\right)\hat{c}_{k}\hat{c}_{n-k}=-n\hat{c}_{n}+n!\sum_{i=0}^{n}(-1)^{n-i}\frac{\hat{}c_{i} {i!}(n\geq0) Differentiating. both sides of. (14) by. x. and. dividing. them. by 2,. we. \displaystyle \hat{c}(x)\tilde{c}(x)=-\frac{1}{2}x\tilde{c}'(x)-\frac{x}{2(1+x)}\tilde{c}(x)-\frac{1}{2(1+x)^{2} \hat{c}(x) Proposition. The. proof. get the result.. .. obtain. (17). 3.. \displaystyle \hat{c}(x)^{3}=\frac{1}{2}x^{2}\tilde{c}'(x)+\frac{x(x-2)}{2(1+x)}\tilde{c}(x)+\frac{x+2}{2(1+x)^{2} \hat{c}(x) Proof. (16). .. is similat to that of. Proposition. 5.. By (14). (18). .. and. (17),. we. \square.

(10) 90. Applying (15). and. Proposition 3,. Theorem 5. For n\geq 0. we. we. have the result of the third order.. have. (\displaystyle \hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0})^{n}=\frac{n^{2} {2}\hat{c}_{n}+\frac{n!}{2}\sum_{i=0}^{n}\frac{(-1)^{n-i}(n-4i+2)}{i!} Similarly,. for n\geq 0. we. 窃.. have. (\displaystyle \hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0})^{n}=-\frac{n^{3} {6}\hat{c}_{n}+\frac{n!}{12}\sum_{i=0}^{n}\frac{(-1)^{n-i}(n^{2}-16in+1 n+27i^{2}-3 i+12)}{i!}\hat{c_{i} . (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0})^{n}. =\displaystyle \frac{n^{4} {24}\hat{c}_{n}+\frac{n!}{14 }\sum_{i=0}^{n}\frac{(-1)^{n-i} {i!}(n^{3}-48in^{2}+39n^{2}+243i^{2}n ‐393in +. In. general,. we can. state the. l76n—256i3. +. 564i2‐476i. +. l44)窃.. following.. Theorem 6. For any integers n\geq 1 and m\geq 2 ,. we. have. (\rightar ow^{0}\hat{c}_{0}+\cdots+\hat{c})^{n} m. =\displaystyle\frac{n!}{(m-1)!}\sum_{i=0}^{n-1}(\sum_{l=0}^{i}\sum_{k=0}^{\min\{n-i,m-l1\} frac{(-1)^{n-i+l}(m-k1)!}{(i-l)! }\left\{ begin{ar ay}{l -m1&\ m-k&-1 \end{ar ay}\right\} displaystyle\left(\begin{ar ay}{l n&-i\ &k \end{ar ay}\right) \displayst le\sum_{i=0}^{n-1}\sum_{k=0}^{m-1}\left\{ begin{ar y}{l m-1\ k \end{ar y}\right\} left(\begin{ar y}{l -ni1&\ m-k&-1 \end{ar y}\right)\displayst le\frac{(-1)^{n-i+k-1}{(i-k)!}\hat{c_i} +\displayst le\sum_{l=0}^{\min\{ ,m\}(-1)^{l}\eft(\begin{ar y}{l n\ l \end{ar y}\right)\hat{c}_{n}..

(11) 91. Theorem 7. For any. integers n\geq 1 and m\geq 2. ,. we. have. $\kap $_{1}+\displaystle\cdot.\cdot.\cdot.+$\kap $_{m}=$\mu$\sum_{$\kap $_{1},$\kap $_{m}\geq0}\frac{$\mu$!}{\kap $_{1}!\cdots$\kap $_{m}!(\hat{c}_$\kap $_{1}+\cdots+\hat{c}_$\kap $_{m})^{n}. =\displayst le\frac{(n+$\mu$)!}{(m-1)!}\sum_{i=0}^{n+$\mu$-1}(\sum_{l=0}^{i}\sum_{k=0}^{\min\{n+$\mu$-i,m-l1\} frac{(-1)^{n+$\mu$-i+l}(m-k1)!}{(i-l)! }\left\{ begin{ar y}{l -m1&\ m-k&-1 \end{ar y}\right\} displayst le\left(\begin{ar y}{l n+$\mu$&-i\ k& \end{ar y}\right) \displayst le\sum_{i=0}^{n+$\mu$-1}\sum_{k=0}^{m-1}\left\{ begin{ar y}{l m&-1\ &k \end{ar y}\right\} displayst le\left(\begin{ar y}{l -n+$\mu$i-1&\ m-k&-1 \end{ar y}\right)\frac{(-1)^{n+$\mu$-i+k-1}{(i-k)!}\hat{c_i} +\displayst le\sum_{l=0}^{\min\{n+$\mu$,m\}(-1)^{l}\eft(\begin{ar y}{l n+$\mu$\ l \end{ar y}\right) ち + $\mu$. If m=4 and. $\mu$=2. in Theorem 7.. .. we. have. 12 (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{1}+\hat{c}_{1})^{n}+4(\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{2})^{n}. =-\displaystyle \left(\begin{ar ay}{l } n & +1\ & 3 \end{ar ay}\right)\hat{c}_{n+2}+\frac{(n+2)!}{12}\sum_{l=0}^{n+1}\frac{(-1)^{n-l} {l!}(27l^{2}-16nl-65l+n^{2}+15n+38)\hat{c_{l} . If m=4 and. $\mu$=3. in Theorem 7.. we. have. 24(\hat{c}_{0}+\hat{c}_{1}+\hat{c}_{1}+\hat{c}_{1})^{n}+36(\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{1}+\hat{c}_{2})^{n}+4(\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{3})^{n}. =-\displaystyle \left(\begin{ar ay}{l } n & +2\ & 3 \end{ar ay}\right)\hat{c}_{n+3}+\frac{(n+3)!}{12}\sum_{l=0}^{n+2}\frac{(-1)^{n-l+1} {l!}(27l^{2}-16nl-81l+n^{2}+17n+54)\hat{c_{l} . If m=5 and. $\mu$=1. in Theorem. 7,. we. have. 5 (\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{0}+\hat{c}_{1})^{n}. =\left(\begin{ar y}{l n\ 4 \end{ar y}\right)\hat{c}_{n+1} ‐. \displaystyle \frac{(n+1)!}{14 }\sum_{l=0}^{n}\frac{(-1)^{n-l+1} {l!}(256l^{3}-(243n+807)l^{2}. +(48n^{2}+489n+917)l-(n^{3}+42n^{2}+257n+360))\hat{c_{l}}..

(12) 92. References [1]. Agoh and K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory 124 (2007), 105‐122.. [2]. T.. T.. Agoh. [3]. T.. Agoh. Dilcher, Higher‐order recurrences for Bernoulli numbers, Theory 129 (2009), 1837‐1847.. and K.. J. Number. and K.. Dilcher, of the. Bernoulli numbers. Recurrence relations second. kind,. for Nörlund numbers and Quart. 48 (2010), 4‐12.. Fibonacci. Combinatorics, Reidel, Dordrecht, 1974.. [4]. L.. Comtet,. [5]. K.. Dilcher, Sums of products of Bernoulli numbers, J.. 60. (1996),. [6]. I. M.. Theory. (2005),. Miki’s. identity for. Bernoulli. numbers,. J. Number The‐. 75‐82.. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, edn., Addison‐Wesley, Reading, MA, 1994.. R. L. 2nd. [8]. Number. 23‐41.. Gessel, On. ory 110. [7]. Advanced. T.. Komatsu, Poly‐Cauchy numbers, Kyushu. J. Math. 67. (2013),. 143‐. 153.. [9]. T. Komatsu, Convolution identities for Cauchy numbers, Acta Hungar. 144 (2014), 76‐91.. Math.. Komatsu, Convolution identities for Cauchy numbers of the second kind, Kyushu J. Math. 69 (2015) (to appear).. [10]. T.. [11]. D.. Merlini,. R.. Sprugnoli. Math. 306. (2006). [12]. S.. The Umbral. [13]. F.‐Z.. Roman,. Verri,. The. Cauchy numbers,. Calculus, Dover,. New. York,. and M. C.. Zhao, Sums of products of Cauchy numbers,. (2009). 3830‐3842.. Discrete. 1906‐1920. 2005.. Discrete Math. 309.

(13) 93. School of Mathematics and Statistics Wuhan. University. Wuhan 430072. CHINA \mathrm{E}‐mail address: komatsu@whu.edu.c.

(14)

参照

関連したドキュメント

Transirico, “Second order elliptic equations in weighted Sobolev spaces on unbounded domains,” Rendiconti della Accademia Nazionale delle Scienze detta dei XL.. Memorie di

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid

[2])) and will not be repeated here. As had been mentioned there, the only feasible way in which the problem of a system of charged particles and, in particular, of ionic solutions

After performing a computer search we find that the density of happy numbers in the interval [10 403 , 10 404 − 1] is at least .185773; thus, there exists a 404-strict

Lemma 1.11 Let G be a finitely generated group with finitely generated sub- groups H and K , a non-trivial H –almost invariant subset X and a non-trivial K –almost invariant subset

This relies on the theory of polynomial hulls of curves due to Wermer [W], Bishop and Stolzenberg [St]as well as on the Harvey-Lawson [HL] theorem for curves that involves the

It is well known that in the cases covered by Theorem 1, the maximum permanent is achieved by a circulant.. Note also, by Theorem 4, that the conjecture holds for (m, 2) whenever m

In this section we shall derive analogues of the Kolosov–Muskhelishvili general representation formulas for nonhomogeneous equations of statics in the theory of elastic