• 検索結果がありません。

1. Introduction. We revisit in this short paper the problem of disjoint

N/A
N/A
Protected

Academic year: 2021

シェア "1. Introduction. We revisit in this short paper the problem of disjoint"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

Disjoint sequences generated by the bracket function V Ryozo MORIKAWA

(Received October 31, 1991)

1. Introduction. We revisit in this short paper the problem of disjoint

triples of rational Beatty sequences.

LetZandNmeanasusual. Forq,aENandbJZ,weput S(q,a,b)‑{[(qn+b)/a]:n∈Z)

where[x]means thegreatestinteger≦x. Wetake(q^&蝣) ∈N2(l ≦ i ≦ 3) forwhich

(1) (q;,aj)‑1and(a;,aj)‑1forall1≦iキj≦3・

Now we consider the following" two problems.

Problem A. Obtain a criterion to decide whether three sequences SCq^a^biKl ≦ i ≦ 3)can bemade disjointby taking suitable b;∈ Z (1≦i≦3).

Problem B. TO list up all the(bi,b2,b3) ∈ Z3for which three sequences SCq^a^bjKl ≦ i ≦ 3)are mutually disjoint.

About Probrem A, we obtained a simple if and only if criterion in I , IV of [1J. (Inthefollowingwereferthe paper in [1] by its number.) But we neglected Problem B there. At a glance, Problem B seems to be msignifi‑

cant, and rather a complicated one. But in many cases, Problem B becomes indispensable to solve other problems.

We started in IV to study Problem A for disjoint quadruples of Beatty sequences. The result given there is an insufficient one. But we recently obtained a fairly satisfactory method to treat that problem. On the method, it is essential to solve Problem A for triples.

Since there remain some difficulties to round off the theory of disjoint quadruples, we give here an answer for Problem B of triples. Roughly speaking, we reduce Problem B to list up all lattice points of a parallepiped which lie on certain lines, (cf.Proposition 1, § 4. )

In this paper, we treat Problem B for somewhat restricted type of triples.

(2)

182

R. MORIKAWA

But we think the interesting part of the problem is not spoiled. And the discussions given here are sufficient to treat disjoint triples of any type.

2. In the first half of the paper, we follow the same line of investiga‑

tions as of I andIV. But we note that some notations are changed for the convenience of applications to the theory of disjoint quadruples.

As noted in §1, we do not consider the problem in its full generality.

The first assumption is

(2) Cqi,qj)‑q forall 1≦i≒j≦3・

Then by Theorem 1 of I , our problem is equivalent to that of sequences S (q, ap biKl ≦ i ≦ 3). Thus we consider this triple, and frequently denote S(q,

a^b^bySi.

Assume that the triple(Si, S2, S3) are mutually disjoint. Then by Theorem 1of I,weobtain

(3)

where x

左 上 川 上 v o f

r:Ⅴ一

2 KK

yO

3

eh

u

・   c l つ つ り

O c d a j c d

n′/′̲̲̲′̲̲I̲\0

f

\ 1

‑ ノ

21

0 z z

g relation.

ysandzsareinN. Hereafterweassume

(♯) Forgiven q,a{(1 ≦ i ≦ 3),(3)is the unique relation,if all x's,y's and zs are required to beinN.

We introduce the following numbers f, d and F as follows.

(4) x2y3zi ‑*‑x3yiz2::::::c:lf> (x2,x3) ‑d and dF ‑f.

Then by Lemma2ofIV,f and F are inN.

By translating all S; (1 ≦ i ≦ 3) simultaneously, we may assume b,‑‑1.

Andwetake sl,∈Zforwhicha;ai ≡ 1 (mod q),and we consider them to be fixed in the following.

Now by(♯)and Propositionlof I,we seeSxnS3‑S2nS。‑ φif and only if bl and b2are of the following" forms.

(5) bl=ml+a3alr^(modq), 0≦ml≦Z1‑1, 0≦nl≦・1, b2三m2+a3a2n2(modq), 0≦m2≦Z2‑1, 0≦n2≦y8‑i.

Andby(♯)andTheorem2of l,Sl n S2‑ φifandonlyif

axb. ‑a2bx∈{&![0, x, ‑1]+a2[1, yj}(modq).

Substituting‑ (5), we have

‑a,a,トm2サー1‑m2]‑SLla3(n1‑n2)}∩[1+ml,ml+yx]≒ φ (modq).

By using the relationa2z2 4‑ a3y3 ≡ 0(mod q),we have

(6)トaxa2[z2‑m2,x2+z2‑m, ‑1]‑ala3(y3+nx‑n2)}∩[1+mlrm!

(3)

+yj≒ φ(modq).

Herewenotethatifwetakerもandnsothat品∈[z2‑m2,x24‑z2‑m l]

anda ‑y3+nx‑n2,wehave

(7) ≦ふ≦x9+z,‑1 and l≦品≦y3+x:‑1.

3. To study(6),we define several numbers as follows;

For(品,i)∈Z ,wetaker,s∈Zsuchthat

品…‑a2r(modx?) and a ≡‑a^s(modxA

Weputx2‑dX2andx3‑dX3. Andwetake λ∈Zforwhich

(8) ‑λ =rXg+sX (moddX2XJ

(‑dX2Xs+F)/2< λ ≦(dX2X,+F)/2.

Finally we put

(9) x(品,a)‑(yiX,ふ+ZIX:a Iqλ)/dX9Xq.

Lemma1. %(a,a)≡ a,a.品‑axa3n(modq).

Proof. We refer to theproofofLemmalofIV.

Lemma2. Weput(F品IZ2λ)‑/X,‑a and (Fa ‑y3λ)!X3‑b.

Then aandhare integers. And we have x (品,a) ‑(ayl+bzl)/f.

Proof. We refer to theproof ofLemma2ofIV.

Lemma3. Take(a,a) ∈ Z2which satisfy(7). Assume that 2f<J¥.。‑A‑'and a:≧4(1≦i≦3).

Thentherelation x (品,丘)∈[1, y:+zl‑1] (mod q)impliesl ≦ x (品,這)

≦yi+zi‑1.

Proof. Itissufficienttoprove‑q+yi+zt≦ x ≦q.

Firstweprove % ≦q. Notethat λ ≧C‑dX2X3+F)/2and品≦A.c¥ IZ。

‑1,品≦X3+Y3‑‑1ォThusby(9)wehave

x ≦ q/2+yi(x2+z2‑1)/z2+zx(x3+y3‑1)/x3‑fq/2x2x.

Thusby(4),wehaveq‑% ≧(トf/X。x< /2‑(yi+zl).

By(10), we see easily this value ≧ 0.

A similar reasoning" works for ‑q +yl +zx ≦ x・

The condition given in (10) exclude only very particular cases. Thus in the fol‑

lowing we assume (10) to be satisfied.

Lemma4. Assume that three numbersiも,丘and x (‑ x (血,a))are

(4)

184

R. MORIKAWA

given for which

(ll) ≦ x≦yx+zx‑1,1≦品≦x2+z2‑1, 1≦丘≦x3+y3‑i‑

We take m. , n. (i ‑ 1, 2) which satisfy the following(12).

Max(x‑yi,O)≦ml≦Min(x‑1. z ‑1),

Max(z,一品,0)≦m2≦Min(x9+z,一品蝣1, z.‑1), Max(a‑y3.0)≦nl≦Min(x。‑1,a‑1),

n2=nl+y3‑n.

By substituting these values in (5), we obtain mutually disjoint sequences S(q,al fbi),S(q,a2,b2) and S(q,a3,‑1).

Proof. For a triple(x,血,a)which satisfies(ll),we take m^ri;(i‑ 1, 2).

Then it is easy to see that

(i) nii,n;(i‑ 1, 2) satisfy the inequalities of(5).

(ii)品∈ m9,x2+z2‑m2‑1]andl+ml≦ x ≦mi+Yi‑

Now by(5)and(6), (Sl7 S2, S3) is a disjoint triple.

By Lemmas3and4, the problem to list up disjoint triples for given q, a;

(1 ≦ i ≦ 3)is reduced to the problem to list up(x,品,a)which satisfies (§ &iX +a2品+a3品…o(modq)and(ll).

4. NowbyusingLemma2, were formulate(ァ). Weputaandb as inLemma2. Andweput

a/f‑ a,b/f‑ βandλ/F‑ γ.

Then as easily seen, we obtain

x‑ォyi+βzl,品‑ax2+rZ2,a‑βx3+ry3‑

TO hold symmetry, we put r ‑ C/f.

Now we take all (a, b, c) which satisfy the following ( * );

f≦ay^+bzx≦(yi+zi‑1)f, f≦ ciX.9‑r‑CZ。≦ (x2+z2‑1)f, f≦bx3+cy; ≦(x3+y3‑1)f,

ayx+bzx…ax9+cz, …bx3+cy3=O(modf).

Lemma5. Weassume(q,f) ‑ 1. Then the relation(13)gives a one to one correspondence between ( x,品,a) which satisfies (ァ) and(a, b, c) which satisfies ( * ).

Proof. First note that the determinant of the mapping(13)is fq. From (x,品,a),we obtain(a,b,c)by the process stated above. Since(x,m,丘)

∈ we obtain the congruence relation of(*).

Conversely,we start from (a,b,c) with ( * ). Then by (13),we obtain

(5)

(I,品,丘)∈Zwiththeinequalitiesgivenin(§).Thusitissufficientto ascertainthecongruencerelation.Since(q,f)‑1,weconsider(a^+a2m +丘。丘)f.Aseasilyseen,itisa(aiY:+a,xォ)+b(sIzl+ix。)+c(a,z 3^32^2

+a3y3).By(3),thisvalue…0(modq).

Herewenotethefollowingfact;

By(§)wesee(%,品,a)hasasymmetricalnature(inspiteoftheirdifferent appearances).ThustoapplyLemma3,itissufficientifoneofthethree inequalitiesf<C2x2x3,f<C2yly3,f<C2zlz2issatisfied.Aseasilyseenby(3), therelationqJ>16f2impliesatleastoneofthem.

Nowbysummingtheabovediscussions,weobtain

Propositionl.Forgivenq,a.i(1≦i≦3),weassume(♯),(q,0‑1, ai≧4(1≦i≦3)andq,>16f2.Thentheproblemtolistupallthedisjoint triple(S(q,avb^,S(q,a2,b2),S(q,a3,b3))isequivalenttolistall(a,b,c) whichsatisfies(*).

Weclosethispaperwitharemark.AsshowninLemma3,weobtaina classof(bpb.‑1)from(%,品,a).Converselystartingfrom(hvb2,‑1) ofadisjointtriple,weobtainauniquecorresponding(x,品,a).Wediscuss thispropertyintheforthcomingpaper.

References

[1] R. Morikawa,Disjoint sequences generated by the bracket function,

This Bulletin, 26(1985) 1‑13. IV,30(1989) 1‑10.

参照

関連したドキュメント

Furthermore, the upper semicontinuity of the global attractor for a singularly perturbed phase-field model is proved in [12] (see also [11] for a logarithmic nonlinearity) for two

In this note, we consider a second order multivalued iterative equation, and the result on decreasing solutions is given.. Equation (1) has been studied extensively on the

In this article we study a free boundary problem modeling the tumor growth with drug application, the mathematical model which neglect the drug application was proposed by A..

Thus, we use the results both to prove existence and uniqueness of exponentially asymptotically stable periodic orbits and to determine a part of their basin of attraction.. Let

– Solvability of the initial boundary value problem with time derivative in the conjugation condition for a second order parabolic equation in a weighted H¨older function space,

Using the fact that there is no degeneracy on (α, 1) and using the classical result known for linear nondegenerate parabolic equations in bounded domain (see for example [16, 18]),

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

Girault; The Stokes problem and vector potential operator in three-dimensional exterior domains: An approach in weighted Sobolev spaces. Sequeira; A