• 検索結果がありません。

x = 2 cos , θ y = 2 sin θ

N/A
N/A
Protected

Academic year: 2021

シェア "x = 2 cos , θ y = 2 sin θ "

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

次の点P

( , x y )

は,どのような曲線を描くか求めよ。

(1)

x = 2 cos , θ y = 2 sin θ

2 2

cos θ + sin θ = 1

cos , sin

2 2

x y

θ = θ =

を代入して

2 2

2 2 1

x y

  +   =

   

   

2 2

4 x + y =

よって,原点中心,半径

2

の円。

(2)

x = 2 sin θ + cos , θ y = sin θ − 2 cos θ 2 sin cos

x = θ + θ

…①

sin 2 cos

y = θ − θ

…②

①-②×

2

より

x − 2 y = 4 cos θ

1

cos ( 2 )

4 x y

θ = −

…③

①×

2

+②より

2 x + = y 4 sin θ

1

sin (2 )

4 x y

θ = +

…④

2 2

cos θ + sin θ = 1

に③,④を代入して

2 2

1 1

( 2 ) (2 ) 1

4 x y 4 x y

   

− + + =

   

   

2 2

5 x + 5 y = 16

2 2

16 x + y = 5

よって,原点中心,半径

4 5

5

の円。

(3) 2 2

1 ,

1 1

x y t

t t

= =

+ +

2

1 x 1

= t

+

…①,

1

2

y t

= t

+

…② ①,②より

y = tx

…③

①より

x ≠ 0

であり,

③ ⇔

y

t = x

を①に代入して 133.媒介変数表示②

(1) 原点中心,半径

2

の円 (2) 原点中心,半径

4 5

5

の円

(3)

1 2 , 0

 

 

 

中心,半径

1

2

の円 (4) 双曲線

x

2

y

2

= 1

(2)

2

1 1 x

y x

= +      

2

2 2

x x

x y

= +

1

2 2

x

x y

= +

2 2

0 x − + x y =

2

1

2

1

2 4

x y

 

− + =

 

 

よって,

1 2 , 0

 

 

 

中心,半径

1

2

の円。

(4)

2

2 2

1 2

1 , 1

t t

x y

t t

= + =

− −

2 2

1 1 x t

t

= +

…①, 2

2 1 y t

= t

…②

①+②より

2 2

2

1 2 (1 ) 1

1 (1 )(1 ) 1

t t t t

x y

t t t t

+ + + +

+ = = =

− + − −

…③

①-②より

2 2

2

1 2 (1 ) 1

1 (1 )(1 ) 1

t t t t

x y

t t t t

+ − − −

− = = =

− + − +

…④

③,④より

1

x y

x y + = −

2 2

1 xy =

よって,双曲線

x

2

y

2

= 1

参照

関連したドキュメント

With the help of an integrable function θ a general summabil- ity method (called θ-summability) of different orthogonal series is considered. As special cases the trigonometric

Since locally closed functions with all point inverses closed have closed graphs [2], (c) implies

We aim at developing a general framework to study multi-dimensional con- servation laws in a bounded domain, encompassing all of the fundamental issues of existence,

In the present work, which is self-contained, we study the general case of a reward given by an admissible family φ = (φ(θ), θ ∈ T 0 ) of non negative random variables, and we solve

Abstract: In this paper, we proved a rigidity theorem of the Hodge metric for concave horizontal slices and a local rigidity theorem for the monodromy representation.. I

We provide an accurate upper bound of the maximum number of limit cycles that this class of systems can have bifurcating from the periodic orbits of the linear center ˙ x = y, y ˙ =

We study a Neumann boundary-value problem on the half line for a second order equation, in which the nonlinearity depends on the (unknown) Dirichlet boundary data of the solution..

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result