• 検索結果がありません。

Elimination of Ka2 Lines and Effects of Instrumental Aberrations from Powder X-ray Diffraction Pattern / Takashi IDA and Hideo TORAYA (PDF, 3,443kB)

N/A
N/A
Protected

Academic year: 2021

シェア "Elimination of Ka2 Lines and Effects of Instrumental Aberrations from Powder X-ray Diffraction Pattern / Takashi IDA and Hideo TORAYA (PDF, 3,443kB)"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1). 

(2)              .  

(3)  .  

(4)                  .         .       . .

(5)  .  

(6)   

(7)                   . 

(8)     

(9)      

(10)  .     . 

(11)  

(12)   .    .   

(13)            .  

(14)      . 

(15)  .        .  .     .

(16) .

(17)    .  

(18) .    

(19)    .    

(20)                    .  

(21)       .  

(22)  . .  . . . 

(23).   .       .    .

(24).       .          . .     

(25)  .   . .         .      

(26)

(27) .   

(28)       . 

(29) .       .     .  

(30)       .   

(31)   . 

(32)     

(33)   .  .

(34)   .   .

(35)       .  

(36).            . .

(37)           .  .

(38).  

(39)        .       .   

(40)   .                 .         .   

(41) .            . 

(42)    .    .   .         .   

(43)    

(44) .      . . 

(45)     

(46) .         .   . 

(47) 

(48)                      .            .

(49) 

(50)    .  .           .   

(51)  .         . .

(52)    . 

(53) 

(54) .  . 

(55)

(56) 

(57) 

(58)    

(59) . 

(60) . 

(61) . 

(62) . 

(63) 

(64) .  

(65) . 

(66) .     

(67) . 

(68) .  .

(69) . 

(70)  . 

(71) . 

(72) . 

(73)  . 

(74)  . 

(75)      . 

(76)  . 

(77) . 

(78) . .

(79) .   

(80)  . 

(81)  . 

(82) 

(83) .    

(84) .   .  

(85)  . 

(86)   .

(87) . 

(88) .      

(89)       .        . 

(90) .           . 

(91) .       

(92). 

(93)  . 

(94)  .   .

(95)  

(96)  . 

(97)  .  

(98) . 

(99) 

(100) .  

(101) . 

(102)   . .     . 

(103)  .    

(104) . 

(105)      .  

(106) .  

(107) . 

(108) . 

(109)  . 

(110) . 

(111)   . 

(112) 

(113) . 

(114)  . 

(115) . 

(116)  . 

(117)  

(118) .     .  

(119)   . 

(120) . 

(121)  . 

(122)  . 

(123) . 

(124)    

(125) .  .  

(126)  

(127) .   . 

(128) 

(129) .       . . •.        

(130).  g(x)∫Ú.  

(131)  .          .  

(132)

(133) . 

(134) . 

(135) . . -•. . 

(136) . •.  F(k)∫Ú. 

(137)  . f(x- y)w( y)dy. -•. 

(138)  .  W (k)∫Ú. 

(139)  . f(x)exp[2πikx]dx. •. -•. 

(140)  . •. 

(141)  .  G(k)∫Ú. 

(142) . . -•. 

(143)   . w(x)exp[2πikx]dx. g(x)exp[2πikx]dx.       . .

(144)  

(145) . 

(146)   .   

(147) . 

(148) .  

(149) . •. 

(150) .  f(x)= Ú. 

(151) .  

(152) .     .  

(153)  .  

(154) . 

(155) . 

(156) .     

(157)  . 

(158) .    

(159) . 

(160) 

(161) .    

(162) . 

(163) .         

(164) . -•. F(k)exp[-2πikx]dk. 

(165) .         .  

(166) .     . 

(167)  .   

(168)     . 

(169) .  

(170) . 

(171) .  

(172) . 

(173)  .  

(174) . 

(175) .  

(176) . 

(177) . 

(178) 

(179)   .

(180) .          .   . 

(181) . 

(182)  . 

(183) 

(184) .    

(185)  

(186)  . Dc 1  =  D(2q) g(2q). 

(187)  . .  

(188)    . w(D2q;2q)= .        . Ê Dc ˆ 1 w  bg(2q) Ë b ¯. . .   

(189) .  

(190)   .  

(191)   .    . 

(192) 

(193) . 1 Ê Dc ˆ  

(194) 

(195)  w  b Ë b ¯.   

(196) . 

(197) . 

(198) .  

(199) . 

(200) . 

(201) .  

(202)  . 

(203) . 

(204) . 

(205)    .  

(206)  . 

(207) . 

(208) . 

(209) . 

(210) .  

(211)  

(212) . 

(213) .  

(214)  .  

(215)   . .

(216) . 

(217) . 

(218)  . 

(219) .   

(220) .   .  

(221)  . 

(222) . 

(223) . 

(224)  . 

(225)   .  .

(226)  . 

(227)  .    . 

(228) . 

(229) .  

(230) .  

(231)  . . 

(232)  .   . 

(233) .   

(234) . 

(235) .   . 

(236)  . 

(237) . 

(238) .  

(239)  . 

(240) .   . 

(241)  . .  

(242) . w(D2q; 2q)= . Ê D2q ˆ 1 w  bg(2q) Ë bg(2q) ¯.          . . 

(243) . 

(244) . 

(245) . . 

(246) 

(247) . 

(248) . .

(249) 

(250) . . 

(251) . G(2q)∫Ú . d(2q)  g(2q). 

(252) . .     .   

(253)  .    . 

(254)   .

(255)  

(256)  . 

(257)  . 

(258) 

(259) 

(260) . 

(261) . 

(262) . 

(263) . 

(264)   

(265) .    

(266) . 

(267) 

(268) .      . .  

(269) 

(270) .  

(271)     . 

(272)  . 

(273) .       .      . 

(274)

(275) . N-1.  d-n 2= Â s2l wl2-n.   .  N-1.  yn= Â zn-mwm  m=0.   

(276)     .   

(277) . . 

(278)  .           . 

(279)  N-1.  Wk= Â wn exp[2πikn / N ] n=0. 

(280)    d-n 2=. 

(281)  1  w = N (-1) n. N-1. ikn / N ]  Â exp[-2π Wk k=0. 1 N. N-1. Â. k=0. *. Vk(-1)(Wk(2)) exp[-2πikn / N ]. .       . . .           .  .      N-1. . l=0. 

(282)    .  zn= Â yn-mw. (-1) m. m=0. .  w A(D2q;2q)= . .                N-1.  Smn= Â s2l wm(--1)lwn(--1l)  l=0. ÈÊ 1ˆ D2q ˘ Ê Ê 1ˆ D2q ˆ 2 expÍ tK0Á t+ 2 2 ˜ πy2 ÎË t ¯ y ˙˚ Ë Ë t ¯ y ¯. . .     . .       . .  

(283)     . 

(284) 

(285)  .  

(286) .  

(287) .  

(288)  . 

(289) .  

(290)  . 

(291)  . N-1 N-1.  c 2= Â. m=0. Â [z. - f(xm)]Tmn[zn- f(xn)] . m. n=0. . 

(292)      .      

(293)  N-1.  Tmn= Â s2l wl-mwl-n l=0. . 

(294)  

(295)  

(296)   .               .

(297)  -1. È 2tD2q ˘ 2t y2 wA-(D2q)= expÍ 2 ˙  2 2tD2q πy Î y ˚. 2 1 È Ê xˆ ˘   fL(x;w)= Í1+ ˙ πw ÍÎ Ë w ¯ ˙˚.    .    . . 

(298)  . È 2D2q ˘ 2 ty2 expÍ 2 ˙ wA+(D2q)=  2 π y 2D2q Î ty ˚.  

(299)    .    . . Dl 1  =  l 2tan q. 

(300)   wA(D2q)= Ú. •. -•. wA-(D2q- y)wA+( y)dy. 

(301)   .  

(302) .   

(303) . 

(304)  .  

(305)           . wT(D2q;2q)= . 

(306)    

(307)    .     gT =. G1(2q)= Ú tan qdq=-ln(cosq) . . sin2q  2mR. . 

(308)  . 

(309)  . . 

(310)       g 2(2q)=2 tan q. . 

(311)   .  

(312) . 

(313) .  G3(2q)= Ú. . dq 1+ cos2q  =-ln sin 2q 1 - cos2q. . 

(314)  . 

(315)   G2(2q)= Ú. È D2q ˘ 1 expÍ gT Î g T ˙˚.    . 2  tanq. . 

(316) . .           .  g1(2q)=. . . dq =ln(sinq) tanq. .  . 

(317)  

(318) .    . 

(319) . 

(320) .  

(321) .  

(322) .  

(323) . 

(324)  

(325)  .  

(326) . 

(327)  . 

(328) .  

(329) .  wF(D2q;2q)=.  

(330)  . -1/ 2. È 1 D2q ˘ 2bF g1(2q) ÍÎ bF g1(2q) ˙˚.    . 

(331)  

(332)  

(333) . .    .  

(334) .   .  . .     . 

(335) . .  . 

(336) .     . 

(337) 

(338) .      .  

(339) .    

(340) .  wX(D2q;2q)=(1-r)δ(D2q). .  r fL(D2q-2q2+2q1;w2-w1) +. 

(341)   . .  

(342)  .

(343)  

(344)  .   .   . 

(345) . 

(346) .    . 

(347)  .   

(348) . 

(349)     .  

(350).  

(351) .  .

(352)  .  

(353) 

(354) . 

(355)   .  .     .   

(356) . 

(357) . 

(358)      

(359) .   .  .     

(360)     .  . 

(361) .      .

(362)  

(363) . 

(364)  .     .

(365)  

(366)   

(367).  

(368)  . 

(369)  . 

(370)  . 

(371) . 

(372) .        .    

(373) .        

(374) . . 

(375)  . 

(376)                   . 

(377)  

(378) . .  

(379)  .  .  

(380) .    . 

(381)  .  

(382) .   

(383)      

(384)   

(385) 

(386) 

(387) .  .

(388) . 

(389) . 

(390)  .  

(391) . .      

(392)      .   

(393) .    .

(394) .    . 

(395)   . 

(396) .    .

(397)       .

(398).     . 

(399) 

(400) .    .

(401)         . 

(402)  . .      .

(403)         . 

(404)   .      .   

(405)        . 

(406)  .  

(407) .  . 

(408) .    .

(409) .      .

(410).    . 

(411) . . 

(412) .        .

(413).    .        . 

(414) .         .  

(415)  .        

(416).             . 

(417) .    . .   . 

(418) .          .

(419)                . 

(420) .        .

(421).

(422).  

(423).     .   

(424) .  . 

(425)   .   .

(426)  . .   .  

(427) .   .

(428)   .      .

(429)    . 

(430)  . . 

(431)  .      . . 

(432) .     .     .   . 

(433) .  .

(434)

参照

関連したドキュメント

Giuseppe Rosolini, Universit` a di Genova: rosolini@disi.unige.it Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk James Stasheff, University of North

This is a consequence of a more general result on interacting particle systems that shows that a stationary measure is ergodic if and only if the sigma algebra of sets invariant

We solve by the continuity method the corresponding complex elliptic kth Hessian equation, more difficult to solve than the Calabi-Yau equation k m, under the assumption that

In [9], it was shown that under diffusive scaling, the random set of coalescing random walk paths with one walker starting from every point on the space-time lattice Z × Z converges

When i is a pants decomposition, these two properties allow one to give a nice estimate of the length of a closed geodesic (Proposition 4.2): the main contribution is given by the

More general problem of evaluation of higher derivatives of Bessel and Macdonald functions of arbitrary order has been solved by Brychkov in [7].. However, much more

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result

We describe a generalisation of the Fontaine- Wintenberger theory of the “field of norms” functor to local fields with imperfect residue field, generalising work of Abrashkin for