Heegaard
Floer
homology
for embedded
bipartite graphs
Yuanyuan
Bao
Graduate School of Mathematical
Sciences,
the
University
of
Tokyo
1
Introduction
Heegaard
Floertheory
definestopological
invariantsformany low‐dimensionaltopolog‐
icalobjects.
The word(Heegaard
indicates that it is defined on aHeegaard diagram
associated with the
given
topological object,
and the word Floer comes from the factthat it isa
special
caseof theLagrangian
intersection Floerhomology,
where thesymplec‐
tic manifold and its
Lagrangian
pair
are constructed from thegiven Heegaard diagram.
Inthis
note,
we introducea definition of theHeegaard
Floerhomology
for anembeddedbalanced
bipartite graph
in a closed oriented 3‐manifold. Details of the definition areincluded inthe
preprint
[2].
Forsimplicity,
we assume that the ambient manifold M is arational
homology 3‐sphere.
In Section
2,
wereviewthe definition ofaHeegaard diagram
for M and that for alinkin M. Then we show how to
generalize
the definition to a balancedbipartite
graph
inM. In Section
3,
we brief the definition of theHeegaard
Floercomplex
for M and for alink in it.
Among
various versions ofthecomplex,
we focusonthe minus‐version since itis the most usefulcase andcanbe used to reconstruct the other versions. Thenweshow
a
generalization
of the definitiontoabalancedbipartite
graph
in M. In the lastsection,
wediscusstwo combinatorial
aspects
of thetheory,
thedefinitions based ongrid diagram
and Kauffmanstate.
The
topological
invariance oftheHeegaard
Floerhomology
will not be discussed here. Pleaserefer to theoriginal
papers for theproofs.
2
Heegaard
diagram
for
a3
manifold,
alink,
or abalanced bi‐
partite
graph
2.1 For a 3‐manifold
Givenaclosed oriented3‐manifold M,let
( $\Sigma$, $\alpha$, $\beta$)
beaHeegaard diagram
for M,wherePa 1: A2‐pointed Heegaard diagramfor the3‐sphere
(left figure),
andasingle‐pointed Heegaard diagramfortheright‐handedtrefoil knot
(right figure).
are two sets of
pairwisely disjoint simple
closed curves on $\Sigma$. Ozsváth and Szabó[7]
defined a
topologicial
invariant,
calledHeegaard
Floerhomology,
for a 3‐manifoldby
using
itsHeegaard diagram.
In theirdefinition,
an extradatumw\in $\Sigma$\backslash ( $\alpha$\cup $\beta$)
, whichis called a base
point,
is neededto make the invariant non‐trivial. The data( $\Sigma$, $\alpha$, $\beta$, w)
is called asingle‐pointed Heegaard diagram
for M.It is
usually
convenient to define the chaincomplex
on amulti‐pointed Heegaard
dia‐gram, which can be obtained from a
single‐pointed Heegaard diagram by applying
(0,3)
stabilizations. The definition is asfollows.
Definition 2.1. Let
n\geq 1
be aninteger.
An n‐pointed Heegaard diagram
for M is aquartet
( $\Sigma$, $\alpha$, $\beta$, w)
, whichsatisfies thefollowing
conditions.$\Sigma$ is a closed oriented genus g
surface,
which is called theHeegaard
surface,
and$\alpha$=\{$\alpha$_{1}, $\alpha$_{2}, \cdots , $\alpha$_{d}\}
and$\beta$=\{$\beta$_{1}, $\beta$_{2},
)$\beta$_{d}\}
are two sets of dpairwisely disjoint
simple
closedcurveson $\Sigma$, wheren=d-g+1.
Attaching
2‐handlesto $\Sigma$along
curvesin $\alpha$(resp.
$\beta$
),
weget
an n‐punctured
genusg
handlebody
U_{ $\alpha$}
(resp.
U_{ $\beta$}
).
The unionU_{ $\alpha$}\displaystyle \bigcup_{ $\Sigma$}U_{ $\beta$}
is the 3‐manifold \mathrm{M} with 2n‐punctures.
The orientation of $\Sigma$ is induced from that ofU_{ $\alpha$}
,which in turn coincideswith that of M.
Let
\{A_{i}\}_{i=1}^{n}
(resp.
\{B_{i}\}_{i=1}^{n}
)
be the connectedcomponents
of$\Sigma$\backslash $\alpha$ (resp.
$\Sigma$\backslash $\beta$
).
Then
w=\{w_{1}, w_{2}, \cdots, w_{n}\}
is a set ofnpoints
in$\Sigma$\backslash ( $\alpha$\cup $\beta$)
so thatw_{i}\in A_{i}\cap B_{i}
(by
relabelling
\{B_{i}\}_{i=1}^{n}
ifnecessary),
which are called the basepoints.
See
Figure
1(left)
for anexample
of2‐pointed Heegaard diagram
for the3‐sphere.
A convenient way to understand the construction of a
Heegaard diagram
is to considerits
corresponding
Morse function. Choose ageneric
Riemannian metric \mathfrak{g} on M andsuppose
f
: M\rightarrow \mathbb{R} isaself‐indexed Morse function. Then(f, \mathfrak{g})
inducesamulti‐pointed
is the set of intersection curves of $\Sigma$ with the
ascending
disks(resp.
descending
disks)
of the index one
(resp. two)
criticalpoints.
The basepoints
in w are chosen in a waythat each
component
of$\Sigma$\backslash $\alpha$
or$\Sigma$\backslash $\beta$
containsexactly
one basepoint.
For anypoint
p\in $\Sigma$\backslash ( $\alpha$\cup $\beta$)
, thereexists apath
$\gamma$_{p}\subset M
froman indexzerocriticalpoint
toanindexthree one sothat
\mathfrak{g}(\dot{ $\gamma$}_{p}, \cdot)=df
.Namely
it isthe flow linepassing
through
p(see
Figure
2 for an
illustration).
Since the basepoints
comefrom differentcomponents
of$\Sigma$\backslash $\alpha$
or$\Sigma$\backslash $\beta$
, it is easy to seethat\{$\gamma$_{p}\}_{p\in w}
arepairwisely disjoint simple paths.
2.2 For a link
Consider an oriented link L\subset M. An n
‐pointed
Heegaard diagram
( $\Sigma$, $\alpha$, $\beta$, w, z)
for(M, L)
is definedby
a Morse functionf
: M\rightarrow \mathbb{R} and a Riemannian metric \mathfrak{g} so thati)
( $\Sigma$, $\alpha$, $\beta$, w)
is an n‐pointed Heegaard diagram
for M,ii)
z is afinite set ofpoints
in$\Sigma$\backslash ( $\alpha$\cup $\beta$\cup w)
for whichL=\displaystyle \bigcup_{p\in w\cup z}$\gamma$_{p}
, andiii)
the orientation of L makes thepaths
\{$\gamma$_{p}\}_{p\in w}
direct downwards and\{$\gamma$_{p}\}_{p\in z}
upwards.
Note that in this case wealways
have|w|=|z|
, sothere aretotally
2nbasepoints
ontheHeegaard
surface. SeeFigure
2 foraschematic illustration of the
construction,
and also seeFigure
1(right)
for anexample
of asingle‐pointed Heegaard
diagram
of theright‐handed
trefoil knot inS^{3}.
Remark 2.2. Note that a
single‐pointei Heegaard
diagram of
aknot K isnothing
buta 1‐bridge
decomposition
of
the knot(see
[6]
for
thedefinition).
The minimalHeegaard
genusis a knot invariant which is
closely
related tothe tunnel numberof
the knot.Nevertheless,
as
far
as the authorknows,
no research is known about the relation betweenHeegaard
Floer
homology
and thesegeometric
invariants.2.3 For a
bipartite graph
A
graph
G with the vertex set V and theedge
setE iscalled abipartite
graph
if V is adisjoint
unionoftwonon‐empty
setsV_{1}
andV_{2}
sothateveryedge
in E is incidenttobothV_{1}
andV_{2}
. We useG_{V_{1},V_{2}}
to denote thegraph
with the choice of(V_{1}, V_{2})
. If|V_{1}|=|V_{2}|,
the
graph
G_{V_{1},V_{2}}
iscalled balanced.Furthermore,
wecallanorientation forG_{V_{1},V_{2}}
balancedif there are n
:=|V_{1}|
edges
\{e_{i}\}_{i=1}^{n}
directing
fromV_{1}
toV_{2}
and theendpoints
of whichoccupy
V_{1}
andV_{2}
, and the otheredges
direct fromV_{2}
toV_{1}
. SeeFigure
4(left)
for anexample,
where the solid lineedges
are\{e_{1}, e_{2}\}
. We assume that all thegraphs
in thispaper haveno isolated vertices and
single‐valency
vertices.Two smooth
embeddings
f_{i}
:G_{V_{1},V_{2}}\leftarrow+M
are said to be ambientisotopic
if there is a3‐manifold
((\}
\cdot\cdot \bulletknot/ link
r\triangleleft:\}.\cdot\cdot.r..\cdot \mathrm{t} \}
|
bipartite graph
\}^{:}:.\cdot.\cdot.\cdot:_{\mathrm{r}|_{:=}^{r_{ $\eta$}}\}}:_{\ulcorner} $\eta$.:\cdot\backslash \cdot.\cdot.\cdot.\sim.=.\cdot.\cdot\cdot.\cdot
2: The schematicdiagramforaMorsefunction ofa3‐manifold. Theflow lines constitutealink or a
graphembedded in the manifold.
f_{1}(V_{i})
tof_{2}(V_{i})
for i=1,2. TheHeegaard
Floerhomology
to be defined is an invariantunder the ambient
isotopy.
To define the
homology,
we consider amulti‐pointed Heegaard diagram
( $\Sigma$,
$\alpha$,$\beta$,
w :=\{w_{i}\}_{i=1}^{n}
,z)
for(M, G_{V_{1},V_{2}})
with a balanced orientation. It isdefinedby
a Morse functionf
: M\rightarrow \mathbb{R} and a Riemannian metric \mathfrak{g} so thati) ( $\Sigma$, $\alpha$, $\beta$, w)
is an n‐pointed
Heegaard
diagram
for M,ii)
zis afinitesetofpoints
in$\Sigma$\backslash ( $\alpha$\cup $\beta$\cup w)
for whichG_{V_{1},V_{2}}=\displaystyle \bigcup_{p\in w\cup z}$\gamma$_{p}
and
iii)
the orientation ofG_{V_{1},V_{2}}
makes\{e_{i}\}_{i=1}^{n}=\{$\gamma$_{p}\}_{p\in w}
direct downwards and\{$\gamma$_{p}\}_{p\in z}
upwards.
SinceG_{V_{1},V_{2}}
has noisolated vertices andsingle‐valency
vertices,
we have|z|\geq
|w|
, but theposition
ofw andz canbecomplicated.
SeeFigure
2 foran illustration.3
The
Heegaard
Floer
complex
\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w, z)
3.1
Nearly symmetric
almostcomplex
structuresLet
( $\Sigma$, $\alpha$, $\beta$, w)
be an n‐pointed Heegaard diagram
of M asin Def. 2.1. Consider thed‐fold
symmetric product
of$\Sigma$,
Sy
\mathrm{m}^{}( $\Sigma$)=$\Sigma$^{\times d}/S_{d},
where
S_{d}
is thesymmetric
group ofdegree
d, and let\mathbb{T}_{ $\alpha$}=$\alpha$_{1}\times$\alpha$_{1}\times\cdots\times$\alpha$_{d}
and\mathbb{T}_{ $\beta$}=$\beta$_{1}\times$\beta$_{1}\times\cdots\times$\beta$_{d}.
Then
Sy\mathrm{m}^{}
(
$\Sigma$)
is a 2d‐dimensional smoothmanifold,
whose local coordinate chart canpolynomial.
Then\mathbb{T}_{ $\alpha$}
and\mathbb{T}_{ $\beta$}
are twod‐dimensional submanifolds ofSy\mathrm{m}^{}
(
$\Sigma$)
.Suppose
that
\mathbb{T}_{ $\alpha$}
and\mathbb{T}_{ $\beta$}
areingeneral
position.
Let
( $\eta$
, be a Kähler form on $\Sigma$. Then it induces a Kähler form($\eta$^{\times d}, \mathfrak{j}^{\times d})
on$\Sigma$^{\times d}.
Consider the
quotient
map $\pi$ :$\Sigma$^{\times d}\rightarrow \mathrm{S}\mathrm{y}\mathrm{m}^{d}( $\Sigma$)
. Thecomplex
structure\mathfrak{j} gives
rise to acomplex
structureSy\mathrm{m}^{}
(
\mathfrak{j}
)
onSy\mathrm{m}^{}
(
$\Sigma$)
for which $\pi$ is aholomorphic
map. Let D be thediagonal
ofSy
\mathrm{m}^{}
(
$\Sigma$)
.Namely
D :=
{ \{x_{1},
x_{2},\cdots,x_{n}\}\in \mathrm{S}\mathrm{y}\mathrm{m}^{d}( $\Sigma$)|x_{i}=x_{j}
forsomei\neq j
}.
Then $\pi$ induces a
covering
map away from thediagonal.
Since$\eta$^{\times d}
is invariant underthe action of
S_{d}
, weget
a Kähler form(Sym ( $\eta$), Sym(
\mathfrak{j}
))
onSy\mathrm{m}^{}
( $\Sigma$)\backslash D
. Note thatthe submanifolds
\mathbb{T}_{ $\alpha$}
and\mathbb{T}_{ $\beta$}
keep
away from thediagonal,
and aretwoLagrangian
andtotally
real tori withrespects
to(Sym
( $\eta$),
\mathrm{S}\mathrm{y}\mathrm{m}^{d}(\mathfrak{j})
).
For afinitesetof
points
\{p_{ $\lambda$}\}_{ $\lambda$\in $\Lambda$}\subset $\Sigma$\backslash ( $\alpha$\cup $\beta$)
, find anopen setV\subset \mathrm{S}\mathrm{y}\mathrm{m}^{d}( $\Sigma$)
keeping
awayfrom
\mathbb{T}_{ $\alpha$}
and\mathbb{T}_{ $\beta$}
sothat\{p_{ $\lambda$}\}_{ $\lambda$\in $\Lambda$}\times \mathrm{S}\mathrm{y}\mathrm{m}^{d-1}( $\Sigma$)\cup D\subset V.
An almost
complex
structure J onSy\mathrm{m}^{}
(
$\Sigma$)
is called(\mathrm{j}, $\eta$, V)
‐nearly symmetric
ifi)
Jis
compatible
withSy\mathrm{m}^{}
(
$\eta$)
onSy
\mathrm{m}^{}( $\Sigma$)\backslash V
andii)
J=\mathrm{S}\mathrm{y}\mathrm{m}^{d}(\mathfrak{j})
over V. The spaceof $\eta$,
V)
‐nearly
symmetric
almostcomplex
structures is denoted\mathcal{J}(\mathfrak{j}, $\eta$, V)
.Obviously
\mathrm{S}\mathrm{y}\mathrm{m}^{d}
\in \mathcal{J}(\mathrm{j}, $\eta$, V)
.3.2 The chain
complex
for a manifoldFor an n
‐pointed Heegaard diagram
( $\Sigma$, $\alpha$, $\beta$, w)
of M, the definition of the chaincom‐plex
(\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w), \partial^{-})
is ananalogue
of that ofLagrangian
intersection Floer com‐plex.
It is a free\mathbb{F}[U_{1}, U_{2}, \cdots, U_{n}]
‐modulegenerated by
the intersectionpoints
\mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$},
where\mathbb{F}[U_{1}, U_{2}, \cdots, U_{n}]
isthen‐variablepolynomial
ring
withcoefficient \mathbb{F}:=\mathbb{Z}/2\mathbb{Z}
. Thedifferential is defined
by
counting
pseudo‐holomorphic
disksconnecting
twogenerators.
Precisely,
forx\in \mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$},
\displaystyle \partial^{-}(x)=\sum_{y\in \mathrm{T}_{ $\alpha$}\cap \mathrm{T}_{ $\beta$}}\sum_{\{ $\phi$\in$\pi$_{2}(x,y)| $\mu$( $\phi$)=1\}}\#\hat{\mathcal{M}}_{J_{S}}( $\phi$)\cdot U_{1}^{n_{w_{1}}( $\phi$)}U_{2}^{n_{w_{2}}( $\phi$)}\cdots U_{n}^{n_{w_{n}}( $\phi$)}y
.(1)
The notations
$\pi$_{2}(x, y)
,$\mu$( $\phi$)
,\hat{\mathcal{M}}_{J_{S}}( $\phi$)
andn_{w_{i}}( $\phi$)
aredefinedasfollows. Let \mathbb{D} be the unitdisk onthe
complex
plane.
A smooth mapu :
(\mathbb{D}, -i, i)\rightarrow(\mathrm{S}\mathrm{y}\mathrm{m}^{d}( $\Sigma$), x, y)
sending
\{s+it\in\partial \mathbb{D}|s\geq 0\}
(resp.
\{s+it\in\partial \mathbb{D}|s\leq 0\}
)
to\mathbb{T}_{ $\alpha$}
(resp. \mathbb{T}_{ $\beta$})
is called adisks from x to y. Then
$\mu$( $\phi$)
is the Maslov index(also
called the formal dimension orexpected
dimension insomeliteratures)
of$\phi$
. Fix apath
J_{s}\subset \mathcal{J}(\mathfrak{j}, $\eta$, V)
, where\{p_{ $\lambda$}\}_{ $\lambda$\in $\Lambda$}
inthe definition of Vis chosento bew. Let
\mathcal{M}_{J_{\mathcal{S}}}( $\phi$)=
{
u :awhitney
disk fromx toy|
[u]= $\phi$,
\partial_{s}u+J_{s}\partial_{t}u=0
}.
The translation action of \mathbb{R} on \mathbb{D} induces an action of \mathbb{R} on
\mathcal{M}_{J}.( $\phi$)
. Let\hat{\mathcal{M}}_{J_{S}}( $\phi$)
:=\mathcal{M}_{J_{S}}( $\phi$)/\mathbb{R}
, which is called theunparameterized
moduli space of$\phi$
.Finally,
n_{w_{i}}( $\phi$)
:=\#$\phi$^{-1}(\{w_{i}\}\times \mathrm{S}\mathrm{y}\mathrm{m}^{d-1}( $\Sigma$))
is called the localmultiplicity
of w_{i} in$\phi$
. When$\phi$
is aJ_{s^{-}}
holomorphic
representative,
we haven_{w_{i}}( $\phi$)\geq 0 (Lemma
3.2[7]).
Theorem 3.1
(Theorems
3.4,
3.18[7]).
For ageneric
choiceof
J_{s}\subset \mathcal{J}(\mathrm{j}, $\eta$, V)
, wehave1.
\mathcal{M}_{J_{S}}( $\phi$)
is anorientedmanifold of
dimension$\mu$( $\phi$)
, and\hat{\mathcal{M}}_{J_{S}}( $\phi$)
is an oriented man‐ifold of
dimension$\mu$( $\phi$)-1
, and2. when
$\mu$( $\phi$)=1,
\hat{\mathcal{M}}_{J_{s}}( $\phi$)
iscompact,
for
any x,y\in \mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}
and$\phi$\in$\pi$_{2}(x, y)
.From this
theorem,
weseethat for ageneric J_{s}
, the set\hat{\mathcal{M}}_{J_{S}}( $\phi$)
appeared
in\partial^{-}(x)
is acompact 0-\dim manifold. Thereforewe cancount its number
\#\hat{\mathcal{M}}_{J_{S}}( $\phi$)
modulo two. Herewe
only
consider the number modulo two to avoid the discussion of coherent orientation of the moduli spaces.In order to make the
right
hand side of(1)
a finite sum for each y, theHeegaard
diagram
isrequired
tosatisfy
a techniccondition,
called weakadmissibility.
For detailsof the
definition, please
referto[8,
Section3.4].
Forthis reason, wehereafter assumethatthe
Heegaard diagrams
areweakly
admissible,Finally
we state that the differentialdefined in(1)
respects
Spi
\mathrm{n}^{}(M)
, the set ofspinC‐
structures of M. Inthe contextof
Heegaard
Floertheory,
aspinC‐structure
indicates thehomology
classofanowherevanishing
vectorfieldoverM. Two nowherevanishing
vectorfields are said to be
homologous
ifthey
arehomotopic through
nowherevanishing
vectorfieldson the
complement
ofa 3‐ball in M. The basepoints
wprovide
a maps_{w}:\mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}\rightarrow \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{n}^{c}(M)
,for the definition of whichonecanreferto
[7,
Section3.3].
We haves_{w}(x)=s_{w}(y)
,wheny appears inthe differential ofx. In this way, we havethe
splitting
3.3 The chain
complex
for a linkConsider a
Heegaard diagram
( $\Sigma$, $\alpha$, $\beta$, w, z)
for a link L\subset M. The additional basepoints
zareusedhereto constructafiltrationtothe chaincomplex
(\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w),
\partialIt is defined
by
themaps_{w,z}:\mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}\rightarrow \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{n}^{c}(M, L)
,where
Spi
\mathrm{n}^{}(M, L)
is the set of relativespinC‐structures
defined as follows. Let v be anowhere
vanishing
unit vector fieldoverM\backslash \mathrm{i}\mathrm{n}\mathrm{t}(N(L))
for which the restriction ofv on\partial N(L)
coincides with the canonical vectorfield,
which is definedby
the condition that its orbit on eachcomponent
of\partial N(L)
is a frame zerolongitude
of the linkcomponent.
Let
$\chi$(M, L)
be the set of such vector fields. Then v can be extended to M so that Lis a closed orbit of the extension. Two elements in
$\chi$(M, L)
are said to behomologous
relative toL(\sim(M,L))
ifthey
arehomotopic through
nowherevanishing
vector fields onthe
complement
ofa3‐ball inM\backslash
int(N(L))
. LetSpi
\mathrm{n}^{}(M, L)
:= $\chi$(M, L)/\sim(M,L)
For the construction of s_{w,z},
please
referto[8,
Section3.6].
The extensionofv\in $\chi$(M, L)
to M defines a map
$\xi$
:Spi
\mathrm{n}^{}(M, L)\rightarrow \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{n}^{c}(M)
. We have$\xi$\circ s_{w,z}=s_{w}
. When L isnull‐homologous
in M, we have an affine identificationSpi
\mathrm{n}^{}(M, L)\cong \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{n}^{c}(M)\oplus \mathbb{Z}^{l},
where l is the
component
number of L. The restrictiononthe second factorgives
rise to\mathrm{a}\mathbb{Z}^{l}
‐filtration to(\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w),
\partialThe associated
graded
chaincomplex
is denotedby
(\mathrm{C}\mathrm{F}\mathrm{L}^{-}( $\Sigma$, $\alpha$, $\beta$, w, z),
\partial_{L}
We seethat
\mathrm{C}\mathrm{F}\mathrm{L}^{-}( $\Sigma$, $\alpha$, $\beta$, w, z)
isthesame as\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w)
,afree\mathbb{F}[U_{1}, U_{2}, \cdots, U_{n}]
‐modulegenerated by
the intersectionpoints
\mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}
. The differential is\displaystyle \partial_{L}^{-}(x)=\sum_{y\in \mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}}\sum_{\{ $\phi$\in $\pi$ 2(x,y)| $\mu$( $\phi$)=1,n_{z}( $\phi$)=\{0\}\}}\#\hat{\mathcal{M}}_{J_{s}}( $\phi$)\cdot U_{1}^{n_{w_{1}}( $\phi$)}U_{2}^{n_{w_{2}}( $\phi$)}\cdots U_{n}^{n_{w_{n}}( $\phi$)}y)
(2)
wheren_{z}( $\phi$)
isthe set of localmultiplicities
at$\phi$
ofpoints
in z.3.4 The chain
complex
for agraph
In this section we
give
aparalleled description
as Section 3.3 whilekeeping
in mindthe differences. For details about the contents in this
section,
please
see[2].
Considera
Heegaard diagram
( $\Sigma$, $\alpha$, $\beta$, w, z)
for a balancedbipartite
graph
G_{V_{1},V_{2}}\subset M
. Theadditional base
points
z can be used here to construct a relativegrading
to the chaincomplex
(\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w),
\partial Similar with the caseoflink,
it is definedby
the mapwhere
Spi
\mathrm{n}^{}(M, G_{V_{1},V_{2}})
isthesetof relativespinC‐structures.
Wegive
itsdefinition below. Let X:=M\backslash \mathrm{i}\mathrm{n}\mathrm{t}(N(G_{V_{1},V_{2}}))
and consider thedecomposition
\partial X=\partial_{+}X\cup N(\mathfrak{m})\cup\partial_{-}X,
whereN(\mathrm{m})
is a tubularneighborhood
of the meridian set \mathrm{m} of theedges
on \partial X and\partial_{+}X
(resp.
\partial_{-}X)
is the intersection of\partial X with aneighborhood
ofV_{1}
(resp.
V_{2}
)
in M.Definev_{G} tobe the unitvectorfieldon
TX|_{\partial X}
asfollows:1)
v_{G}|_{\partial+X}\perp T\partial_{+}X
andpoints
outwards;
2) v_{G}|_{\partial_{-X}}\perp T\partial_{-}X
andpoints
inwards;
3)
v_{G}|_{N(\mathfrak{m})}=\displaystyle \frac{\partial}{\partial t}(\mathfrak{m}\times\{t\})
under the identificationN(\mathfrak{m})=\mathfrak{m}\times[-1, 1]
. Weperturb
v_{ $\gamma$} around\partial N(\mathrm{m})
to makeit continuous.Note thatv_{G}
only depends
onthetopology
of G. Letvbeanowherevanishing
unit vectorfieldoverXfor which
v|_{\partial X}=v_{G}
, andwedenote thesetof suchvectorfields$\chi$(M, G_{V_{1},V_{2}})
.Two elements in
$\chi$(M, G_{V_{1},V_{2}})
are said to behomologous
relative toG_{V_{1},V_{2}}(\sim(M,G_{V_{1},V_{2}}))
if
they
arehomotopic through
nowherevanishing
vector fields on thecomplement
of a3‐ball in X. Let
Spi
\mathrm{n}^{}(M, G_{V_{1},V_{2}})
:= $\chi$(M, G_{V_{1},V_{2}})/\sim(M,G_{V_{1},V_{2}})
.Note that there is a free and transitive action of
H_{1}(X;\mathbb{Z})\cong H^{2}(X, \partial X;\mathbb{Z})
on the setSpi
\mathrm{n}^{}(M, G_{V_{1},V_{2}})
. For[v], [w]\in \mathrm{S}\mathrm{p}\mathrm{i}\mathrm{n}^{c}(M, G_{V_{1)}V_{2}})
, let[v]-[w]\in H_{1}(X;\mathbb{Z})
be their differ‐ence.
Define the Alexander
grading
on\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w)
. It is a relativeH_{1}(X;\mathbb{Z})
‐grading
defined
by
the mapA:(\mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$})\cup\{U_{i}\}_{i=1}^{n}\rightarrow H_{1}(X;\mathbb{Z})
which satisfies the relationsA(x)-A(y)
=s_{w,z}(x)-s_{w,z}(y)
, and
A(U_{i}) = [m_{w_{i}}].
forany x,
y\in \mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}
,where m_{w_{i}} is the meridian of theedge
that containsw_{i}.The map \partial^{-} does not preserve the
grading
ingeneral.
We define a chaincomplex
(\mathrm{C}\mathrm{F}\mathrm{G}^{-}( $\Sigma$, $\alpha$, $\beta$, w, z), \partial_{G}^{-})
that preserves thegrading,
where\mathrm{C}\mathrm{F}\mathrm{G}^{-}( $\Sigma$, $\alpha$, $\beta$, w, z)
is thesameas
\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w)
. The differential is\displaystyle \partial_{G}^{-}(x)=\sum_{y\in \mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}}\sum_{\{ $\phi$\in $\pi$ 2(x,y)| $\mu$( $\phi$)=1,n_{z}( $\phi$)=\{0\}\}}\#\hat{\mathcal{M}}_{J_{s}}( $\phi$)\cdot U_{1}^{n_{w_{1}}( $\phi$)}U_{2}^{n_{w_{2}}( $\phi$)}\cdots U_{n}^{n_{w_{n}}( $\phi$)}y
.(3)
There are
mainly
twoalgebraic
differences with the case of link. For agraph
therelative
grading
takes value onH_{1}(X;\mathbb{Z})
, onwhich thereisno canonical order ingeneral.
Therefore it is hardto discussanon‐trivial filtration onit. Another difference is that the
chain
complex
(\mathrm{C}\mathrm{F}\mathrm{G}^{-}( $\Sigma$, $\alpha$, $\beta$, w, z), \partial_{L}^{-})
ingeneral
isnotthe associatedgraded complex
of
(\mathrm{C}\mathrm{F}^{-}( $\Sigma$, $\alpha$, $\beta$, w),
\partialPrecisely
we meanthat theremight
be someterms in\partial^{-}(x)-\partial_{G}^{-}(x)
having
thesameH_{1}(X;\mathbb{Z})
‐grading
withx forgiven
x\in \mathbb{T}_{ $\alpha$}\cap \mathbb{T}_{ $\beta$}.
Remark 3.2. The chain
complex
considered here can beregarded
as aspecial
caseof
theEZ 3: Twogrid diagrams separatelyfrom
[5]
and[3]
foralink andfor atransverse graph. The dottedcurves arethecorrespondinglinkandgraph.
define
thealgebra for
theboundary
so that eachedge
e_{i}for
1\leq i\leq n
is associated with avariable
U_{i}
and the otheredges
zero. Then thealgebra
becomes\mathbb{F}[U_{1}, U_{2}, \cdots, U_{n}].
4
Combinatorial
aspects
of the
homology
4.1
grid diagram
The
Heegaard
Floerhomology
for a link in the3‐sphere
S^{3}
has acompletely
combi‐natorial
definition,
whichwas introduced in[5].
The chaincomplex
is definedon agrid
diagram
of thegiven
link. Thegenerators
arethebijections
between theset of horizontal circlesand that of the verticalcircles,
and the differentialcountsempty
rectangles
betweentwo
generators.
Inasimilarvein,
Harvey
and ODonnol[3]
defined thegrid diagram
foratransverse
graph
(the
definition of which wasfirst introducedthere)
and constructed theHeegaard
Floerhomology
for it. SeeFigure
3for theexamples
of both cases.Note thatann\times n
grid diagram
ofalinkisinparticular
an n‐pointed Heegaard diagram
for the link. For this
Heegaard diagram,
the $\alpha$- and$\beta$
‐curves are the horizental andvertical circles
respectively,
and thepesudo‐holomorphic
disks are the emptyrectangles.
Therefore the combinatorial definition coincides with the definitionin Section 3.3. We remark that abalanced
bipartite graph
with a balanced orientationnaturally
gives
rise to a transverse
graph,
and vise versa. SeeFigure
4 for anexample.
As in the caseof
link,
ifweregard
thegrid diagram
ofatransversegraph
as aHeegaard diagram
ofits\mathrm{H}^{\backslash }4: shrinkingthe solid lineedges,whoseorientationreversesthat oftheothers,of thebipartite graph on theleft, onegets atransversegraph onthe right. Conversely, inserting anedge ateach bar ofthe
transversegraphontheright,wegetthebipartiteone.
J4y
t \mathrm{t}\backslash \backslash _{ $\lambda$}\backslash
- $\alpha$‐curve
(,
}\dot{1}^{/\times.f_{i}^{i\backslash }}*\nwarrow \mathrm{x}^{J}\nearrow^{ $\beta$}p^{$\xi$_{\nwarrow}\prime}$\beta$_{\vee}$\lambda$_{\sim\backslash -\prime^{\wedge^{\wedge\sim\wedge}}}.\nearrow'\sim\nearrow'\prime\cdot\sim--\sim\wedge\sim\aleph\backslash $\beta$_{\backslash _{\backslash }}\nwarrow_{\mathrm{L}},
—
$\beta$‐curve
5: Aknotdiagramfor theright‐handedtrefoilknot anditsassocited Heegaard diagram. The square
intersectionpointappears in everygenerator and thereforeisomittedontheright.
4.2 Kauffman state
For a knot in
S^{3}
, its knotdiagram
inS^{2}
defines aHeegaard diagram
[10].
SeeFigure
5 for an
example.
The set of dotsprovides
a Kauffman state[4]
and alsocorresponds
to a
generator
of theHeegaard
Floer chaincomplex.
For analternating diagram,
[10]
showed that the differential of the
complex
istrivial,
and theHeegaard
Floerhomology
is determinedby
the Alexanderpolynomial
and thesignature
of thegiven
knot. But forgeneral diagram,
acombinatorialdescription
of the differential is unknown.For a
bipartite graph
inS^{3}
, we also constructed in[2]
aHeegaard
diagram
from itsdiagram
inS^{2}
. Weproved
that thegenerators
of theHeegaard
Floer chaincomplex
forthe
graph
are the states of thediagram
(see
Figure
6).
Compare
with the case ofknot,
there arestill many
questions
tobe solved.Question
4.1(Y. Bao).
Can any two states be connectedby
transpositions
of
type
I and II^{(}? Is itpossible
to calculate the(relative)
Alexandergrading combinatorially
? Foralternating
(there
is no standarddefinition)
bipartite
graphs,
is theHeegaard
Floercomplex completely
determinedby
the Alexanderpolynomial
(up
to overallshifts of
thegradings)
/?type1
\mathrm{t}_{\mathrm{V}\uparrow \mathrm{j}j}\mathrm{e}\mathrm{I}\mathrm{I}
6: Theset ofdotsrepresents agenerator oftheHeegaardFloer complexbiult onthediagram
(left
figure).
TranspositionsoftypeIandIIbetweentwogenerators(right figure).
\mathrm{g}7: Sliceaknotdiagram.
In arecent paper
[9],
froma knotdiagram,
Ozsváth and Szabó constructedabigraded
chain
complex
over\mathbb{F}[U]
,thehomology
of which is showntobeisomorphic
totheHeegaard
Floer
homology
(minus version)
of thegiven
knot. It isfreely generated by
theKauffmanstates,
and its differential is definedalgebraically,
built on bordered Floerhomology.
The brief idea is as follows. Slice the knot
diagram
at differentheights
so that eachpiece
containsexactly
onecap, cup, orcrossing.
SeeFigure
7(left).
Ozsváth and Szabóannounced that for each
piece
they
constructeda differentialgraded algebra
for thetop
boundary
and an A^{\infty}algebra
for the bottomboundary
and a bimodule for thepiece
inbetween and
proved
that the tensorproduct
of allpieces
reproduces
theHeegaard
Floerhomology
of thegiven
knot. For the case ofgraph,
wemay ask thefollowing
question.
Question
4.2. Forabipartite graph,
orageneral graph,
isitpossible
to constructsuch aReferences
[1]
A. S. Alishahiand E.Eftekhary,
A refinement of sutured Floerhomology,
J.Symplec‐
tic Geom. 13 no. 3(2015)
pp. 609‐743.[2]
Y.Bao, Heegaard
Floerhomology
for embeddedbipartite graphs,
arXiv:1401.6608v2,
(2016).
[3]
S.Harvey
and D.ODonnol, Heegaard
Floerhomology
ofspatial
graphs,
arXiv:1506.04785v1,
(2015).
[4]
L. H.Kauffman,
Formal KnotTheory,
MathematicalNotes,
30. PrincetonUniversity
Press, Princeton, NJ,
(1983).
[5]
C.Manolescu,
P.Ozsváth,
Z. Szabó and D.Thurston,
On combinatorial link Floerhomology, Geometry
&Topology
11(2007)
pp. 2339‐2412.[6]
K.Morimoto,
Tunnelnumber, 1‐bridge
genusand \mathrm{h}‐genusofknots, Topology
and itsApplications,
Vol. 146‐147(2005),
pp. 149‐158.[7]
P. Ozsváth and Z.Szabó, Holomorphic
disks andtopological
invariants for closedthree‐manifolds,
Ann. of Math.(2),
159(2004),
pp. 1027‐1158.[8]
P. Ozsváth and Z.Szabó, Holomorphic
disks,
link invariants and the multi‐variable Alexanderpolynomial,
Algebraic
& GeometricTopology
8(2008)
pp. 615‐692.[9]
P. Ozsváth and Z.Szabó,
Kauffman states, borderedalgebras,
and abigraded
knotinvariant,
arXiv: 1603.06559vl,
(2016).
[10]
P. Ozsváth and Z.Szabó, Heegaard
Floerhomology
andalternating
knots,
Geometry
&
Topology
7(2003)
pp. 225‐254.Graduate School of Mathematical Sciences the
University
ofTokyo
3‐8‐1 Komaba
Meguro‐ku Tokyo
153‐8914JAPAN
\mathrm{E}‐mail address: