• 検索結果がありません。

Study on Pre-treatment of Bamboo Fibers and Kneading Conditions in Process of Bamboo Fiber Reinforced Polypropylene by Twin Screw Extrusion

N/A
N/A
Protected

Academic year: 2022

シェア "Study on Pre-treatment of Bamboo Fibers and Kneading Conditions in Process of Bamboo Fiber Reinforced Polypropylene by Twin Screw Extrusion "

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

Study on Pre-treatment of Bamboo Fibers and Kneading Conditions in Process of Bamboo Fiber Reinforced Polypropylene by Twin Screw Extrusion

Hyojin K

IM

*, Hidenori K

UBOTA

**, Kazuya O

KUBO

*** and Toru F

UJII

***

(Received May 9, 2009)

Bamboo fiber reinforced polypropylene (BFRPP) pellets is manufactured by twin screw extruder with different screw segment, where the ingredient feed method is major concern in investigating the effect of pre-treatment of bamboo fibers and assembly condition of twin screw extruder on mechanical properties of BFRPP. In the present study, three different types of segments and two different types of ingredient feed method are selected. The used specimen of tensile test is molded by injection molding machine, using manufactured pellets. Tensile strength of specimens and residual fiber aspect ratio of pellets are found to be increased with kneads ability of segments (Full flight <Rotor<Kneading). In contrast, residual fiber length of pellets using specimen is decreased at high tensile strength and residual fiber aspect ratio. The diameter of fiber bundle is decreased, when the fiber is compressed in clearance between segment and barrel.

-G[YQTFU㧦bamboo fiber, pre-treatment, assembly condition, mechanical properties

ࠠ࡯ࡢ࡯࠼㧦┻❫⛽ޔ೨ಣℂޔㅧ☸᧦ઙޔᯏ᪾⊛․ᕈ

┻❫⛽ᒝൻࡐ࡝ࡊࡠࡇ࡟ࡦߩᯏ᪾⊛․ᕈߦ෸߷ߔㅧ☸᧦ઙ߅ࠃ߮

┻❫⛽ߩ೨ಣℂߩᓇ㗀

㊄ቁ㎾*ޔਭ଻↰ ⑲ౖ**ޔᄢ┄ ๺਽***ޔ⮮੗ ㅘ***

ߪߓ߼ߦ

PP ଔᩰߩ㜞㛛߅ࠃ߮ㄭᐕߩⅣႺ߳ߩ㑐ᔃߩ㜞߹

ࠅ߆ࠄ㧘BFRPP㧔┻❫⛽ᒝൻࡐ࡝ࡊࡠࡇ࡟ࡦ㧕኿಴

ᚑᒻຠ߳㑐ᔃ߇㓸߹ߞߡ޿ࠆ㧚ߎߩ PP 㧔ࡐ࡝ࡊࡠࡇ

࡟ࡦ㧕ߩᒝൻ᧚ߣߒߡ೑↪ߐࠇࠆ┻❫⛽ߪࠟ࡜ࠬ❫

⛽ߣ⇣ߥࠅᑄ᫈ᤨߦ὾ළ಴᧪ࠆ߶߆㧘ࠟ࡜ࠬ❫⛽ߣ Ყߴߡ┻❫⛽╬ߩ࠮࡞ࡠ࡯ࠬ♽❫⛽ߩ୯Ბߪ቟ଔ㧘

シ㊂߆ߟᲧᒝᐲߩ㜞޿ౣ↢น⢻ߥ⾗Ḯߢ޽ࠆߎߣ߇

೑ὐߣߒߡ᜼ߍࠄࠇࠆ

(1-4)

㧚৻ᣇ㧘⃻࿷Ꮢ⽼ߐࠇߡ޿

ࠆ BFRPP ࡍ࡟࠶࠻߆ࠄᚑᒻߒߚ኿಴ᚑᒻຠߩᯏ᪾

⊛․ᕈߪ╩⠪ߩ⍮ࠆ㒢ࠅᒁᒛࠅᒝߐ 20㨪30 MPa ߣ ߆ߥࠅૐ޿㧚઒ߦᯏ᪾⊛․ᕈࠍ❫⛽฽᦭₸ 10 㨣㨠㧑 ߩࠟ࡜ࠬ❫⛽ᒝൻ PP ਗߦะ਄ߔࠆߎߣ߇಴᧪ࠇ߫㧘

᭴ㅧㇱຠ᧚ᢱߦㆡᔕ▸࿐߇ᐢ߇ࠆ

㧔5㧕

㧚❫⛽ⶄว᧚ᢱ ߩ႐ว㧘ᯏ᪾⊛․ᕈߦߪ㈩ะ

(6)

㧘❫⛽㐳

(7)

㧘ࠕࠬࡍࠢ

*Research and Development Center for Composite Materials, Doshisha University, Kyoto Tel&Fax:075-65-6784, E-mail:hkim@mail.doshisha.ac.jp

**Former graduate student of Doshisha University

***Department of Mechanical Engineering and System, Doshisha University, Kyoto E-mail:kokubo@mail.doshisha.ac.jp, tfujii@mail.doshisha.ac.jp

(2)

࠻Ყ

(8-10)

㧘⇇㕙ᒝᐲ

(11-12)

㧘❫⛽ಽᢔᕈ

(13)

㧘᳓ಽ฽᦭

㧔14㧕

╬᭽ޘߥ࿃ሶ߇㑐ଥߒߡ߅ࠅ㧘․ߦࠟ࡜ࠬ❫

⛽ᒝൻ PP ߩ႐ว㧘ࡍ࡟࠶࠻ㅧ☸ᤨߦᷙ✵ߖߕߦㅧ

☸ߔࠆ੐ߢᱷሽ❫⛽㐳㧘ࠕࠬࡍࠢ࠻Ყ߇ᡷༀߐࠇᯏ

᪾⊛․ᕈ߇ะ਄ߔࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ

㧔15㧕

㧚หߓ ᄤὼ❫⛽ࠍ↪޿ߚⶄว᧚ᢱߢ޽ࠆ㤗❫⛽ᒝൻ PP ߦ ߟ޿ߡߪੑゲ᛼಴ᯏਥゲ࿁ォᢙࠍ਄ߍࠆߦߟࠇᱷሽ

❫⛽ߩࠕࠬࡍࠢ࠻Ყ߇ะ਄ߔࠆߣ޿߁ႎ๔

(16)

߇߽

޽ࠆ㧘ࡍ࡟࠶࠻ਛߩᱷሽ❫⛽ࠕࠬࡍࠢ࠻Ყࠍะ਄ߐ ߖࠆὑߦߤߩࠃ߁ߥࠬࠢ࡝ࡘ࡯࠮ࠣࡔࡦ࠻ࠍ↪޿ㅧ

☸ߔࠇ߫ࠃ޿ߩ߆㧘߹ߚߤߩࠃ߁ߥ᧚ᢱ❫⛽ࠍ↪޿

ࠇ߫ࠃ޿ߩ߆ࠍᬌ⸛ߒߚ⺰ᢥߪ╩⠪ߩ⍮ࠆ㒢ࠅߥ޿㧚 ߘߎߢᧄ⎇ⓥߢߪ㧘 BFRPP ኿಴ᚑᒻຠߩᯏ᪾⊛

․ᕈะ਄ࠍ⋡⊛ߦ BFRPP ࡍ࡟࠶࠻ߩㅧ☸᧦ઙ,❫⛽

ߩ೨ಣℂ᧦ઙߦᵈ⋡ߒ㧘ੑゲ᛼಴ᯏౝߦ߅ߌࠆᒝൻ

❫⛽ߩࠕࠬࡍࠢ࠻Ყߩะ਄ࡔࠞ࠾࠭ࡓߩ⸃᣿߅ࠃ߮㧘

┻❫⛽ᒝൻ PP ߦㆡߔࠆㅧ☸ᴺߩᬌ⸛ࠍⴕߞߚ㧚 ⹜㛎ᣇᴺ

Უ᧚ߣᒝൻ᧚

ࠪࡦࡢᩣᑼળ␠⵾ PP ਇ❱Ꮣ 6640-10 ࠍ૶↪ߒߚ㧚 ߅ࠃ߮ࠪࡦࡢᩣᑼળ␠⵾ PP ਇ❱Ꮣ 6640-10 ࠍੑゲ᛼

಴ᯏࠍ↪޿ߡࡍ࡟࠶࠻ൻߒߚ PP ࡍ࡟࠶࠻ࠍ↪޿ߚ㧚

↢┻߆ࠄ⷏ᣣᧄᛛⴚ㐿⊒⵾ࡈࠔࠗࡃ࡜ࠗࠩࠍ↪

޿ߡขࠅ಴ߒߚ┻❫⛽ࠍ↪޿ߚ㧚ታ㛎ߦ૶↪ߒߚᧂ ಣℂ┻❫⛽ࠍ Fig. 1 ߦ␜ߔ㧚

⵾૞ᚻ㗅ߩ᭎⇛ࠍ Fig. 2 ߦ␜ߔ㧚ࠕ࡞ࠞ࡝ᵞᵺಣ ℂߒߚ┻❫⛽ࡄ࡞ࡊ (WALP) ߩ⵾૞ߦߪ㧘᏷ 25 㨙㨙

ෘߐ 2 㨙㨙⒟ᐲߩࠬ࡜ࠗࠬߦടᎿߒߚቃቬ┻ࠍ 70͠ߩ 6 wt㧑 NaOH ṁᶧߦ 10 ᤨ㑆ᶐẃߒߚ㧚 NaOH ṁᶧߦᶐẃߒߚᓟ㧘❫⛽ߦઃ⌕ߒߚ NaOH ࠍቢోߦ 㒰෰ߔࠆὑߦ┻ࠬ࡜ࠗࠬࠍ᳓㆏᳓ߦᶐߒ㧘ᶐߒߚ᳓

ߩ PH ߇ 7 એਅߦߥࠆ߹ߢ 3 ᣣᲤߦ᳓ࠍ੤឵ߒߚ㧚

ࠬ࡜ࠗࠬߒߚ┻ ࠍࡊ࡟ࠬ߈ࠍ↪޿ߡ࿶ኒߒߚᓟ㧘

᳓ಽ฽᦭₸ 10 㧑⒟ᐲ߹ߢੇ῎ߐߖ㧘ߘߎ߆ࠄࡇࡦࠞ

࡯࠼ᯏࠍ↪޿ߡ┻❫⛽᧤ࠍขࠅ಴ߒߚ㧚ขࠅ಴ߒߚ

❫⛽ࠍࡒࠠࠨ࡯ߦ᳓ߣ౒ߦᛩ౉ߒ┻❫⛽ࡄ࡞ࡊࠍ⵾

૞ߒߚ㧚

Fig. 1. Photograph of none treated fiber (NTF).

Fig. 2. Process of WALP.

(a) ࡠ࡯࡞ᣇᑼ (b) side feed ᣇᑼ

Fig. 3. Schematic diagram of manufacturing BFRPP pellets.

(3)

ࡍ࡟࠶࠻ߩㅧ☸߅ࠃ߮⹜㛎 ᚑᒻ

Fig. 3 ߦㅧ☸ᚻᴺߩᮨᑼ࿑ࠍ␜ߔ㧚ੑㅢࠅߩ᧚ᢱ

ᛩ౉ᴺࠍ⹜ߺߚ㧚৻ߟߪ┻❫⛽ߣ MAPP ߣࠍᚲቯߩ

฽᦭₸ߢਇ❱Ꮣߦ൮ࠎߛࠬ࠻࡜࠶ࡊࠍ೨߽ߞߡ⵾૞

ߒ㧘ੑゲ᛼಴ᯏࠬࠢ࡝ࡘ࡯㧙ࡃ࡟࡞㑆ߩࠢ࡝ࠕ࡜ࡦ

ࠬߦ⵾૞ߒߚࠬ࠻࡜࠶ࡊࠍ߆ߺㄟ߹ߖߥ߇ࠄ᛼಴ᯏ

ౝߦᛩ౉ߔࠆᣇᴺࠍ⹜ߺߚ㧔ࡠ࡯࡞ᣇᑼ㧕㧚߹ߚ㧘᛼

಴ᯏࡃ࡟࡞ౝߢߩ┻❫⛽ߩ᛬៊ࠍ㒐ᱛߔࠆὑ㧘ੑゲ

᛼಴ᯏߩ਄ᵹ߆ࠄ MAPP ߇ 5 㨣t㧑ᷙ౉ߐࠇߚࡍ࡟

࠶࠻ࠍᛩ౉ߒ㧘หᤨߦ᛼಴ᯏਛᵹ߆ࠄࠨࠗ࠼ࡈࠖ࡯

࠳࡯ࠍ↪޿ߡ┻❫⛽ࠍᛩ౉ߔࠆᚻᴺ㧔side feed ᣇᑼ㧕

߽⹜ߺߚ㧚

Fig. 4 ߦㅧ☸ߦ↪޿ߚ kneading ࠮ࠣࡔࡦ࠻㧔⋥ᓘ 㧩 31.58 mm 㧘ࡃ࡟࡞ - ࠮ࠣࡔࡦ࠻㑆㧩 0.21 㨙㨙㧕㧘

rotor ࠮ࠣࡔࡦ࠻㧔ࡃ࡟࡞-࠮ࠣࡔࡦ࠻㑆㧩1.4 㨙㨙㧕 㧘

full flight ࠮ࠣࡔࡦ࠻㧔⋥ᓘ㧩 31.58 mm 㧘ࡃ࡟࡞ - ࠮ࠣ

ࡔࡦ࠻㑆㧩0.21 㨙㨙㧕ࠍ␜ߔ㧚ߎࠇࠄߩ࠮ࠣࡔࡦ࠻

ߣᧂಣℂ┻❫⛽㧔 NTF 㧕ߣࠍ↪޿ߡ㧘࠮ࠣࡔࡦ࠻ᒻ

⁁߇ㅧ☸ᓟߩࠕࠬࡍࠢ࠻Ყߦ෸߷ߔᓇ㗀ࠍ⏕⹺ߒߚ㧚

Table 1 ߦᧄታ㛎ߢㅧ☸ߐࠇߚࡍ࡟࠶࠻ߩㅧ☸᧦ઙ

ࠍ⸥ߔ㧚

┻❫⛽㧘ࡐ࡝ࡊࡠࡇ࡟ࡦߣ MAPP 㧔ਃᵗൻᚑᎿ

ᬺ㧦࡙࡯ࡔ࠶ࠢࠬ 1101㧕ߣࠍ 50㧦47.5㧦2.5 ߩഀว ߢᷙวߐߖߚ኿಴ᚑᒻ↪ BFRPP ࡍ࡟࠶࠻ࠍ , ੑゲ᛼

಴ᯏ㧔␹ᚭ⵾㍑⵾, HYPER-KTX 30㧘ࡃ࡟࡞ౝᓘ 32.00 㨙㨙㧕ࠍ↪޿ߡ⵾ㅧߒߚ㧚

᧲ᵗᯏ᪾⵾኿಴ᚑᒻᯏ ET40V ࠍ↪޿ߡ࠳ࡦࡌ࡞

ဳᒁᒛ⹜㛎 ࠍ⵾૞ߒߚ㧚ᚑᒻ᧦ઙࠍ Table 2 ߦ␜ߔ㧚

⹜㛎 ᒻ⁁ߪ JIS7113A ߦᓥߞߚ㧚 ┻❫⛽᧤ߖࠎᢿ߅ࠃ߮ᒁᒛ․ᕈ

ᧂಣℂ┻❫⛽㧔NTF㧕ࠍ↪޿❫⛽᧤ߖࠎᢿಽഀ⹜

㛎ࠍ⹜ߺߚ㧚ᧄ⹜㛎ߩኻ⽎ߢ޽ࠆ┻❫⛽ߩ❫⛽ߪ⋥

ᓘ⚂ 100 ঙߩ❫⛽⁁ߢ޽ࠆߩߢ㧘᳢↪ⵝ⟎ߦߡ┻❫

⛽᧤ࠍߖࠎᢿಽഀߐߖࠆߎߣߪ࿎㔍ߢ޽ࠆ㧚ߘߎߢ

┻ ❫ ⛽ ᧤ 1 ᧄ ࠍ ା ⿧ ൻ ቇ ⵾ ࠪ ࡝ ࠦ ࡦ ࠝ ࠗ ࡞

(KF96H100) ਛߦᛩ౉ߒ㧘ࠪ࡝ࠦࡦࠝࠗ࡞ߦߖࠎᢿᄌ

ᒻࠍਈ߃ࠆߎߣߢ┻❫⛽᧤ࠍಽ㔌ߒߚ㧚Fig. 5 ߦ␜

ߔᄢဳ࿁ォᑼ☼ᐲ⸘㧔ᄖ╴ᓘ 32.02 㨙㨙㧕ࠍ⥄૞ߒ ߚ㧚Fig. 6 ߦౝ╴ߩᒻ⁁ࠍ␜ߔ㧚߹ߚ Table 3 ߦ❫⛽

Table 1. Manufacturing parameters for BFRPP pellets.

Fiber-Type Feed-Type Screw Rev.

(r.p.m)

Kneading NTF twist 100rpm

Rotor NTF twist 100rpm

Fullflight NTF twist 100rpm Kneading NTF sidefeed 100rpm Rotor NTF sidefeed 100rpm Fullflight NTF sidefeed 100rpm Kneading NTF sidefeed 300rpm

WALP

( Fullflight) WALP sidefeed 100rpm

Table 3. Test condition of shear test.

Diameter (mm)

Shear rate (1/s)

Shear stress (MPa)

Rev.

(rpm) Time (sec)

Type-A 31.52 4000 0.16 600 60

Type-B 31.52 4000 0.16 600 60

Type-B 31.78 8400 0.21 600 60

Type-B 31.96 25000 0.22 600 60 Fig. 4. Photograph of segment.

Table 2. Injection parameters for BFRPP specimen.

Injection Speed

Injection Pressure

Holding Pressure

Back Pressure

Screw Rev.

Barrel Temp.

50mm/sec 80MPa 55MPa 10MPa 45rpm 180

(4)

ߦട߃ࠄࠇࠆߖࠎᢿㅦᐲ㧘ߖࠎᢿᔕജ㧘ౝ╴࿁ォᢙ ߅ࠃ߮⽶⩄ᤨ㑆ࠍ␜ߔ㧚⹜㛎ߦߪᒻ⁁ߣࡃ࡟࡞࠮ࠣ

ࡔࡦ࠻㑆ࠢ࡝ࠕ࡜ࡦࠬߩ⇣ߥࠆ 4 ⒳㘃ߩ࿁ォሶࠍ↪

޿ߚ㧚

ᧄታ㛎᧦ઙߦ߅޿ߡੑゲ᛼಴ᯏౝߦ⊒↢ߔࠆߖ ࠎᢿㅦᐲᚑಽࠍᵹ૕⸃ᨆ࠰ࡈ࠻ poly flow 㧔ࠕࡦࠪ

ࠬࠫࡖࡄࡦᩣᑼળ␠㧕ࠍ↪޿ߡ⷗Ⓧ߽ߞߚ㧚⸃ᨆߢ ߪߖࠎᢿ⊒ᾲࠍ⠨ᘦߖߕ㧘ቢోలḩ㧘߆ߟ࠮ࠣࡔࡦ

࠻ోၞߦࠊߚࠅ╬᷷ߣ઒ቯߒߚ㧚

ᧄታ㛎ߢㅧ☸ߒߚ BFRPP ࡍ࡟࠶࠻ౝᱷሽ❫⛽ߩ ࠕࠬࡍࠢ࠻Ყࠍ᷹ቯߒߚ㧘ࠕࠬࡍࠢ࠻Ყߩ᷹ቯߦᒰ ߚࠅ㧘ㅧ☸ߒߚࡍ࡟࠶࠻ࠍ 140 ߩࠠࠪ࡟ࡦਛߢㆶᵹ

ߐߖ BFRPP ࡍ࡟࠶࠻ࠍ┻❫⛽ߣ PP ߣߦಽ㔌ߒߚ㧚

ಽ㔌ߒߚ┻❫⛽ߩ❫⛽㐳߅ࠃ߮❫⛽ᓘࠍ᷹ቯߒࠕࠬ

ࡍࠢ࠻Ყࠍ▚಴ߒߚ㧚᷹ቯࠨࡦࡊ࡞ᢙࠍ 600 ߣߒߚ㧚

⹜㛎ߦߪ AUTOGRAPH ਁ⢻⹜㛎ᯏ㧔ፉᵤ⵾૞

ᚲ㧕ࠍ↪޿ߚ㧚⹜㛎ㅦᐲࠍ 2 mm/min ߣߒߚ㧚 ⚿ᨐ

ੑゲ᛼಴ᯏౝᵹ૕⸃ᨆ⚿ᨐ

ᵹ૕⸃ᨆ࠰ࡈ࠻ poly flow ࠍ↪޿⷗Ⓧ߽ߞߚ

kneading ࠮ࠣࡔࡦ࠻ࠍ↪޿ߚ႐ว㧔 100 㨞㨜㨙㧕ߩ࠮

ࠣࡔࡦ࠻ోၞߩߖࠎᢿㅦᐲಽᏓࠍ Fig. 㧣ߦ␜ߔ㧚

Fig. 㧣ࠃࠅੑゲ᛼಴ᯏౝߢ┻❫⛽ߦ⽶⩄ߐࠇࠆਥߚ ࠆߖࠎᢿᔕജߪ࠺ࠖࠬࠢࠡࡖ࠶ࡊㇱߢᦨᄢߢ޽ࠅ

0.13 MPa ⒟ᐲߢ޽ࠆߎߣ߇ಽ߆ߞߚ㧚

┻❫⛽᧤ߖࠎᢿ⹜㛎⚿ᨐ

ടᎿ೨ߩ┻❫⛽᧤ߩ⁁ᘒߣ㧘 d=31.52mm 㧘 type A ߩ࿁ォゲࠍ↪޿ߚ႐วߩ┻❫⛽᧤ߩߖࠎᢿಽᢔᓟߩ

❫⛽᧤ߩ⁁ᘒߣࠍ Fig. 㧤ߦ␜ߔ㧚ࡍ࡟࠶࠻ㅧ☸ਛߦ

⽶⩄ߔࠆߖࠎᢿᔕജએ਄ߩߖࠎᢿࠍ⽶⩄ߒߡ߽❫⛽

(Type A) (Type B)

Fig. 5. Rotational rheometer. Fig. 6. Rotational axis.

Fig. 7. Shear rate of internal twin-screw extruder in using kneading segment.

Fig. 8. State of untreated and treated bamboo fiber

bundle by shear.

(5)

᧤ ߪ න ❫ ⛽ ߦ ಽ ഀ ߒ ߥ ߆ ߞ ߚ 㧚 Fig. 㧥 ߦ ౝ ╴ ᓘ d=31.94㨪31.50 mm ߩ type B ࿁ォሶࠍ↪޿ߚ႐วߩ

⚿ᨐࠍ␜ߔ㧚┻❫⛽߇ࡃ࡟࡞ - ࿁ォሶ㑆ࠢ࡝ࠕ࡜ࡦࠬ

ࠍㅢㆊߔࠆߎߣߢ❫⛽߇⚦ಽൻߔࠆߎߣ߇ಽ߆ߞߚ㧚 ಽᢔߐࠇߚ❫⛽ߩ❫⛽ᓘߪࠢ࡝ࠕ࡜ࡦࠬߦଐሽߒߡ

޿ߚ㧚

ㅧ☸᧦ઙ߇ᱷሽ❫⛽ࠕࠬࡍࠢ࠻Ყߦਈ߃ࠆᓇ 㗀

ᧂಣℂ┻❫⛽㧔 NTF 㧕ࠍ↪޿ߡㅧ☸ߒߚࡍ࡟࠶࠻

ߩᐔဋᱷሽ❫⛽ࠕࠬࡍࠢ࠻Ყ⴫ߔ᫔ࠣ࡜ࡈࠍ Fig. 10

ߦ␜ߔ㧚 Side feed ᴺᑼ㧘ࡠ࡯࡞ᴺᑼߦ㑐ࠊࠄߕ㧘ㅧ

☸ߦᷙ㍰⢻ജߩ㜞޿࠮ࠣࡔࡦ࠻ࠍ૶↪ߔࠆߦߟࠇㅧ

☸ߒߚࡍ࡟࠶࠻ߩᱷሽࠕࠬࡍࠢ࠻Ყ߇ะ਄ߔࠆ௑ะ ࠍ␜ߒߚ㧚߹ߚ㧘side feed ᣇߣᲧߴ㧘ࡠ࡯࡞ᣇᑼࠍ

↪޿ߡㅧ☸ߐࠇߚࡍ࡟࠶࠻ߩࠕࠬࡍࠢ࠻Ყ߇㜞޿੐

߇ࠊ߆ߞߚ㧚

ᱷሽ❫⛽㐳ߦ෸߷ߔㅧ☸᧦ઙߩᓇ㗀

ᧂಣℂߩ┻❫⛽㧔 NTF 㧕ࠍ↪޿ߡㅧ☸ߒߚࡍ࡟࠶

࠻ߩᱷሽ❫⛽㐳ߩ࠮ࠣࡔࡦ࠻᧦ઙߦࠃࠆ㆑޿ࠍ Fig.

11 ߦ␜ߔ㧚ᷙ㍰⢻ജߩૐ޿ゲ᭴ᚑࠍ↪޿ㅧ☸ߔࠆߦ ߟࠇߡ㧘ࡍ࡟࠶࠻ߩ❫⛽㐳߇ᡷༀߔࠆߣ޿߁௑ะࠍ

␜ߒߚ㧚߹ߚ㧘side feed ᣇߣᲧߴ㧘ࡠ࡯࡞ᣇᑼࠍ↪

޿ߡㅧ☸ߐࠇߚࡍ࡟࠶࠻ߩᱷሽ❫⛽㐳߇⍴޿੐߇ࠊ ߆ߞߚ㧚

ᱷሽ❫⛽㐳ߦ෸߷ߔㅧ☸᧦ઙߩᓇ㗀

ࠕ࡞ࠞ࡝ᵞᵺಣℂࠍߒߚ┻❫⛽ࡄ࡞ࡊࠍ૶↪ߒ full flight ࠮ࠣࡔࡦ࠻㧘߅ࠃ߮ side feed ᴺߦࠃࠅㅧ☸

ߒߚࡍ࡟࠶࠻ߩᐔဋᱷሽ❫⛽ࠕࠬࡍࠢ࠻Ყߣ㧘ᧂಣ ℂ┻❫⛽ࠍ૶↪ߒ kneading ࠮ࠣࡔࡦ࠻㧘ࡠ࡯࡞ᣇᑼ ࠍ↪޿ߡㅧ☸ߒߚࡍ࡟࠶࠻ߩᐔဋᱷሽ❫⛽ࠕࠬࡍࠢ

࠻Ყߩ㆑޿ࠍ Fig. 12 ߦ␜ߔ㧚࠮ࠣࡔࡦ࠻࠲ࠗࡊ߅ࠃ

߮ᛩ౉ᴺߩ㆑޿ߦࠃࠅᱷሽ❫⛽㐳ߪᄢ߈ߊᄌൻߒ㧘 full flight ࠮ࠣࡔࡦ࠻ࠍ૶↪ߒ side feed ᣇᴺࠍⴕ߁ߣ ᦨ߽㐳޿ᱷሽ❫⛽㐳ࠍᓧࠄࠇߚ㧚

⠨ኤ

Fig. 9. States of bamboo fiber bundle sheared by type B axial.

Fig. 10. Residual NTF fiber aspect ratio of BFRPP pellets manufactured by different segment and feed method.

Fig. 11. Residual NTF fiber length in BFRPP pellets

manufactured by different segment and feed

method.

(6)

$(422 ᱷሽ❫⛽ࠕࠬࡍࠢ࠻Ყߩะ਄ࡔࠞ࠾࠭

Fig. 13 ߦ㧘ㅧ☸ਛߩᷙ㍰ߦࠃࠅᱷሽ❫⛽ߩࠕࠬ

ࡍࠢ࠻Ყ߇ะ਄ߔࠆࡔࠞ࠾࠭ࡓࠍᮨᑼ⊛ߦ␜ߔ㧚 3.1

▵߅ࠃ߮ 3.2 ▵ߩ⚿ᨐ߆ࠄ㧘┻❫⛽߇❫⛽᧤⁁ߩᒻ

⁁ ࠍ ⛽ᜬ ߒߚ ߹ ߹ᛩ ౉ߐ ࠇ ࠆߩ ߢ㧘 ᒝ ޿ᷙ ㍰ࠍ

BFRPP ߦ⽶⩄ߔࠆߎߣߢ࿑ߦ␜ߔࠃ߁ߦ┻❫⛽߇

࠮ࠣࡔࡦ࠻-ࡃ࡟࡞㑆ࠢ࡝ࠕ࡜ࡦࠬ㧘ᚗ޿ߪ❫⛽ห჻

ߢ᜽߹ࠇࠆ㗫ᐲ߇Ⴧടߒ㧘ߘߩ⚿ᨐ㧘❫⛽߇⚦ಽൻ ߒࠕࠬࡍࠢ࠻Ყ߅ࠃ߮ᒁᒛࠅᒝߐ߇ᡷༀߐࠇߚ ߣᕁࠊࠇࠆ㧚߹ߚ᧚ᢱᛩ౉ᴺߩੑ⒳㘃ߩ㆑޿ߦࠃߞ ߡ߽㧔side feed ᣇᴺ㧘ࡠ࡯࡞ᣇᑼ㧕㧘ᱷሽ❫⛽㐳㧘ᱷ ሽ❫⛽ࠕࠬࡍࠢ࠻Ყ߅ࠃ߮ᒁᒛࠅᒝߐߩ㆑޿߇ߺࠄ ࠇߚ㧚ࠨࠗ࠼ࡈࠖ࡯࠳ࠍ૶↪ߔࠆ᧚ᢱᛩ౉ᣇᑼߢߪ

ߔߢߦᲣ᧚᮸⢽߇ቢోṁⲢߒߡ޿ࠆ⁁ᘒߢ❫⛽߇᛼

ߒㄟ߹ࠇࠆߩߦኻߒߡ㧘ࡠ࡯࡞ᣇᑼߢߪ┻̆PP ਇ❱

Ꮣߩਛ

㑆⵾ㅧ‛߇᛼ߒ಴ᯏߦᛩ౉ߐࠇࠆߎߣ߆ࠄ㧘࿕૕

᮸⢽ߣ┻❫⛽ߣߩធ⸅㗫ᐲ߇ࠨࠗ࠼ࡈࠖ࡯࠼ᣇᑼߣ ᲧߴჇടߒ㧘┻❫⛽᧤߇⎈ߌ⚦ಽൻߐࠇ߿ߔߊ㧘ࠕ

ࠬࡍࠢ࠻Ყ߇ᡷༀߐࠇߚߣ⠨߃ࠄࠇࠆ㧚 ⚿⸒

ᧄ⎇ⓥߢ BFRPP ኿಴ᚑᒻຠߩᯏ᪾⊛․ᕈࠍะ਄

ߐߖࠆߚ߼ਥߦ BFRPP ࡍ࡟࠶࠻ߩㅧ☸᧦ઙߩᬌ⸛

ࠍⴕߞߚ㧚ੑ⒳㘃ߩ᧚ᢱᛩ౉ᴺ߅ࠃ߮㧘ਃ⒳㘃ߩࠬ

ࠢ࡝ࡘ࡯࠮ࠣࡔࡦ࠻㧘߅ࠃ߮૶↪᧚ᢱߩ೨ಣℂߩᬌ

⸛ࠍⴕߞߚ㧚એਅߦ⚿⸒ࠍ␜ߔ㧚

1. ࠨࠗ࠼ࡈࠖ࡯࠳࡯ࠍ↪޿ߡㅧ☸ᤨߩ❫⛽᛬៊

ࠍᛥ೙ߔࠆߎߣߦࠃࠅ㧘┻❫⛽ᒝൻࡐ࡝ࡊࡠࡇ

࡟ࡦᚑᒻຠߩᱷሽ❫⛽㐳ࠍᡷༀߔࠆߎߣ߇಴

᧪ߚ㧚

2. ┻❫⛽᧤ࠍᒝൻ᧚ߣߒߡ↪޿ࠆ႐ว㧘ᒝൻߣ᮸

⢽ߣࠍ੍஻ᷙ㍰ߒߚᓟ㧘᛼಴ߒᯏߦᛩ౉ߔࠆࡠ

࡯࡞ᣇᑼߪࠕࠬࡍࠢ࠻Ყ㧘ᒁᒛࠅᒝߐߩᡷༀߦ

᦭ലߢ޽ࠆ߇㧘ᱷሽ❫⛽㐳ߪૐਅߒߚ㧚 3. ❫⛽᛬៊㧘❫⛽ߩ⚦ಽൻߪ❫⛽ห჻㧘࿕૕᮸⢽

ߣធ⸅ߒ 2 ゲ᛼಴ᯏౝߢᷙߗࠄࠇࠆߎߣߦࠃࠅ

᛼ߒẩߐࠇࠆߎߣߢ߅߈ߚ㧚ࡠ࡯࡞ᣇᑼߢߪ┻

̆PP ਇ❱Ꮣߩਛ㑆⵾ㅧ‛߇᛼ߒ಴ᯏߦᛩ౉ߐ ࠇࠆߎߣ߆ࠄ㧘࿕૕᮸⢽ߣ┻❫⛽ߣߩធ⸅㗫ᐲ ߇ࠨࠗ࠼ࡈࠖ࡯࠼ᣇᑼߣᲧߴჇടߒ㧘┻❫⛽᧤

߇⎈ߌ⚦ಽൻߐࠇ߿ߔߊ㧘ࠕࠬࡍࠢ࠻Ყࠍᡷༀ ߢ߈ߚ㧚

4. ㅧ☸೨ߦ┻❫⛽ࠍࡄ࡞ࡊൻ㧔⚦ಽൻ㧕ߒߚᓟ㧘 side feed ᣇᑼ full flight ࠮ࠣࡔࡦ࠻ߩߺߩゲ᭴ᚑ ࠍ૶↪ߒࡍ࡟࠶࠻ࠍㅧ☸ߔࠆߎߣߢࡍ࡟࠶࠻

ౝߩᱷሽ❫⛽ࠕࠬࡍࠢ࠻Ყࠍᡷༀߔࠆߎߣ߇ ߢ߈ߚ㧚ߘߩ⚿ᨐᒁᒛᒝᐲ․ᕈࠍᡷༀߔࠆߎߣ ߇಴᧪ߚ㧚

ᧄ⎇ⓥߪ㧘ᢥㇱ⑼ቇ⋭⑳┙ᄢቇ⎇ⓥ㜞ᐲൻផㅴ੐

ᬺޟవㅴⶄว᧚ᢱߩ㐿⊒ߣߘߩᔕ↪㧔หᔒ␠ᄢቇ㧕 ޠ ߩᡰេࠍฃߌߚ㧚⸥ߒߡ⻢ᗧࠍ⴫ߔ㧚

Fig. 12. Aspect ratio of kneaded pellet and WALP pellet.

Fig. 13. Mechanism of fiber breakage and separation

between barrel and segment.

(7)

ෳ⠨ᢥ₂

1) L. Jiang, J. Huang, J. Qian, F. Chen, J. Zhang, M. P.

Wolcott and Y. Zhu, “Study of Poly(3-hydroxybutyrate- co -3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer”, Journal of Polymers and the Environment, 16, 83-93 (2008).

2) O. Yamashita, Yokochi, H. Imanishi, and K. Kanayama,

“Transfer molding of bamboo”, Journal of Materials Processing Technology, 192-193, 259-264 (2007).

3) ⮮੗ ㅘ, ᄤὼ❫⛽ᒝൻⶄว᧚ᢱ㧘Materials and Processing Division Newsletter, 28, 8-9 (2004).

4) P. Wambua, J. Ivens and I. Verpoest, “Natural fibres: can they replace glass in fibre reinforced plastics?”, Composites Science and Technology, 63, 1259-1264 (2003).

5) S. Shibata, Y. Cao and I. Fukumoto, “Study of the flexural modulus of natural fiber/polypropylene composites by injection molding”, Journal of Applied Polymer Science, 100, 911-917 (2006).

6) E. W. Liang and V. K. Stokes, “Mechanical properties of injection-molded short-fiber thermoplastic composites.

Part 1: The elastic moduli and strengths of glass-filled poly(butylene terephthalate)”, Polymer Composites, 26, 428-447 (2005).

7) U. Yilmazer and M. Cansever, “Effects of processing conditions on the fiber length distribution and mechanical properties of glass fiber reinforced nylon-6”, Polymer Composites, 23, 20 – 28 (2002).

8) A. Terenzi, J. M. Kenny and S. E. Barbosa, “Natural fiber suspensions in thermoplastic polymers. I. Analysis of fiber damage during processing”, Journal of Applied Polymer Science, 103, 2501 – 2506 (2007).

9) J. Z. Lu, Q. Wu, I. I. Negulescu and Y. Chen, “The influences of fiber feature and polymer melt index on mechanical properties of sugarcane fiber/polymer composites”, Journal of Applied Polymer Science, 102, 5607 – 5619 (2006).

10) B. Nyström, R. Joffe, and R. Långström, “Microstructure and Strength of Injection Molded Natural Fiber Composites”, Journal of Reinforced Plastics and Composites, 26, 579-599 (2007).

11) P. V. Joseph, K. Joseph and S. Thomas, “Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites”, Composites Science and Technology, 59, 1625-1640 (1999).

12) H. D. Rozman, C. Y. Lai, H. Ismail, Z. A. M. Ishak, “The effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch-polypropylene composites”, Polymer International, 49, 1273-1278 (2000).

13) T.katayama Zairyo, Journal of the Society of Materials Science, Japan, 50, 1394-1399 (2001).

14) K. Shima, H. Mizoguchi, K. Okubo, T. Fujii, and T.

Tanaka, “Effect of pellet geometry and water absorption on strength of long jute fiber reinforced polypropylene”, Journal of the Society of Materials Science, Japan, 51, 826-831 (2002).

15) D. M. Bigg, “Effect of compounding on the properties of short fiber reinforced injection moldable thermoplastic composites”, Polymer Composites, 6, 20 – 28 (1985).

16) V. Alvarez, A. Iannoni, J. M. Kenny, and A. Vazquez,

“Influence of Twin-Screw Processing Conditions on the Mechanical Properties of Biocomposites”, Journal of Composite Materials, 39, 2023-2038 (2005).

参照

関連したドキュメント

Therefore, we considered the heat conduction effects concentrated around the heat extraction pipe embedded in the bamboo chip pile, and obtained relatively simple analytical

Provided that the reduction of the time interval leads to incomparableness of normalized bubble-size distributions and does not change the comparable distributions in terms of

In this article we provide a tool for calculating the cohomology algebra of the homo- topy fiber F of a continuous map f in terms of a morphism of chain Hopf algebras that models (Ωf

Some new sufficient conditions are obtained for the existence of at least single or twin positive solutions by using Krasnosel’skii’s fixed point theorem and new sufficient conditions

The purpose of this paper is to prove Alexander and Markov theorems for higher genus case where the role of groups is played by a new class of groups called virtual twin groups

socket head cap screw M4×8(With washers) 六角穴付ボルト M4×8(平座金 バネ座金付)... socket head cap screw M4×8(With washers) 六角穴付ボルト

The first helix (Figure 13.1, bottom) is a right-hand screw; hence, it moves along a filament whose vorticity is also directed to the right. The other helix (Figure 13.1, top) is

One problem with extending the definitions comes from choosing base points in the fibers, that is, a section s of p, and the fact that f is not necessarily fiber homotopic to a