• 検索結果がありません。

Contribution for Sputtering Due to Undeveloped Collision Cascade

N/A
N/A
Protected

Academic year: 2022

シェア "Contribution for Sputtering Due to Undeveloped Collision Cascade"

Copied!
9
0
0

読み込み中.... (全文を見る)

全文

(1)

Contribution for Sputtering Due to Undeveloped Collision Cascade

Takahiro KENMOTSU

(Received March 4, 2010)

The existing theoretical models for sputtering are derived from the general Boltzmann transport equation based on the well developed collision cascade. Experimental results have indicated that the theories describe sputtering phenomenon well in high energy, and nearly unity mass ratio of the projectile to the targetile. However, the collision cascades do not developed well in low-energy and/or light ion injections into metal targets. The reason for observing the deviation from theories is considered in these cases. In order to quantify the deviation, a Monte Carlo simulation code ACAT has been used to calculate sputtering due to low energy and/or light ions incidences. The ACAT code numerically calculates trajectories of atoms colliding in an amorphous target based on the binary collision approximation. The ACAT results have indicated that energy distributions of sputtered atoms were different from Thompson-Sigmund theory due to low-energy light ions incidence.

.

.H\ZRUGsputtering, collision cascade, Monte Carlo simulation

࣮࣮࢟࣡ࢻ㸸

ࢫࣃࢵࢱࣜࣥࢢ㸪⾪✺࢝ࢫࢣ࣮ࢻ㸪ࣔࣥࢸ࣭࢝ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥ

ᑡᩘᅇ⾪✺ᶵᵓ࡟ࡼࡿࢫࣃࢵࢱࣜࣥࢢ⌧㇟࡬ࡢᐤ ᐤ୚

๢ᣢ ㈗ᘯ

㸯㸬 ࡣ ࡣࡌࡵ࡟

㐠ື࢚ࢿࣝࢠ࣮ࢆࡶࡗࡓ⢏Ꮚࡀᅛయࢱ࣮ࢤࢵ

ࢺ⾲㠃࠿ࡽධᑕࡍࡿ࡜㸪ࢱ࣮ࢤࢵࢺཎᏊ࡜⾪✺ࡍࡿ

ࡇ࡜࡟ࡼࡗ࡚཯㊴ཎᏊࢆ⏕ᡂࡍࡿ㸬⏕ᡂࡉࢀࡓ཯㊴ ཎᏊࡣධᑕ⢏Ꮚ࡜ྠࡌാࡁࢆࡋ㸪ูࡢࢱ࣮ࢤࢵࢺཎ Ꮚ࡜⾪✺ࡍࡿࡇ࡜࡟ࡼࡗ࡚᪂ࡓ࡟཯㊴ཎᏊࢆ⏕ࡳ

ฟࡍ㸬ࡇࡢᅛయෆ࡛ࡢ⾪✺ࡢ㐃㙐ࡢࡇ࡜ࢆ⾪✺࢝ࢫ ࢣ࣮ࢻ࡜࠸࠸㸪ࡇࡢ⾪✺࢝ࢫࢣ࣮ࢻࡀࢱ࣮ࢤࢵࢺ⾲

㠃ࡲ࡛Ⓨ㐩ࡋ㸪⾲㠃᪉ྥ࡟ࢱ࣮ࢤࢵࢺཎᏊࡀࡣࡌࡁ ฟࡉࢀࡓ࡜ࡁ㸪ࡑࡢ཯㊴ཎᏊࡀ⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮

ࡼࡾ኱ࡁ࡞࢚ࢿࣝࢠ࣮ࢆࡶࡗ࡚࠸ࡿሙྜ㸪ࢱ࣮ࢤࢵ

ࢺཎᏊࡣᅛయ⾲㠃࠿ࡽᨺฟࡉࢀࡿ㸬ࡇࡢ⌧㇟ࢆࢫࣃ

ࢵࢱࣜࣥࢢ࡜࠸࠺㸬ࡇࡢࢫࣃࢵࢱࣜࣥࢢ⌧㇟ࡣ⌧

ᅾ㸪ⷧ⭷స〇㸪ᚤ㔞ศᯒ࡞࡝ࡢᕤᴗศ㔝࡟ᗈࡃ ᛂ⏝ࡉࢀ࡚࠸ࡿ㸬ࡲࡓ㸪᰾⼥ྜᐇ㦂⿦⨨ࡢቨᮦᩱ

ࡸ㸪↷᫂ᶵჾࡢᨺ㟁᫬ࡢ㟁ᴟࡢᦆ⪖࡞࡝ࡶ㸪ࢫࣃ

ࢵࢱࣜࣥࢢ࡟ࡼࡗ࡚ᘬࡁ㉳ࡇࡉࢀࡿࡇ࡜ࡀ▱ࡽࢀ

࡚࠸ࡿ㸬

ࢫࣃࢵࢱࣜࣥࢢࡢཎᅉࡣ㸪㐠ື࢚ࢿࣝࢠ࣮ࢆࡶ

ࡗࡓධᑕ⢏Ꮚࡀࢱ࣮ࢤࢵࢺ࡟↷ᑕࡉࢀࡿࡇ࡜࡟ࡼ

ࡗ࡚⏕ࡳฟࡉࢀࡿ⾪✺࢝ࢫࢣ࣮ࢻࡀᅛయ⾲㠃࡛Ⓨ

㐩ࡍࡿࡇ࡜࡟ࡼࡿ㸬⌧ᅾࡲ࡛ࡢ࡜ࡇࢁ㸪ࡇࡢࢫࣃࢵ

ࢱࣜࣥࢢ⌧㇟࡟ᑐࡍࡿ⌮ㄽⓗ࡞ྲྀࡾᢅ࠸ࡣ㸪༑ศ⾪

✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋࡓሙྜ࡟ᑐࡋ࡚ࡔࡅ᭷ຠ࡛

࠶ࡾ㸪ධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ሙྜࡸ㸪ධᑕ⢏Ꮚࡀ Ỉ⣲ཎᏊ࡞࡝ࡢ㍍࢖࢜ࣥࡢሙྜࡣ㸪ࡇࡢ⾪✺࢝ࢫࢣ

*Department of Biomedical Engineering

Telephone: +81-774-65-6687, E-mail: tkenmots@mail.doshisha.ac.jp

(2)

.H\ZRUG

࣮࣮࢟࣡ࢻ㸸

ᑡᩘᅇ⾪✺ᶵᵓ࡟ࡼࡿࢫࣃࢵࢱࣜࣥࢢ⌧㇟࡬ࡢᐤ୚

㸯㸬 ࡣࡌࡵ࡟

࣮ࢻࡀ༑ศ࡟Ⓨ㐩ࡏࡎ㸪ࡑࡢሙྜࡢࢫࣃࢵࢱࣜࣥࢢ

⌧㇟ࡣ⌮ㄽⓗ࡟ண ࡉࢀࡿ᣺ࡿ⯙࠸࡜␗࡞ࡿࡶࡢ

࡜⪃࠼ࡽࢀࡿ㸬

ᮏ◊✲࡛ࡣ㸪⾪✺࢝ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡋ࡞࠸

పධᑕ࢚ࢿࣝࢠ࣮㸪㍍࢖࢜ࣥࢫࣃࢵࢱࣜࣥࢢ࡟ࡘ࠸

࡚㸪ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻACATࢆ⏝࠸࡚㸪ࢫ

ࣃࢵࢱࣜࣥࢢ࡟ᑐࡍࡿᑡᩘᅇ⾪✺ࡢᐤ୚࡟ࡘ࠸࡚

ゎᯒࢆ⾜࠸㸪⌮ㄽ࡜ࡢ㐪࠸ࢆ᳨ドࡋࡓ㸬

㸬ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻ

$$&$7 ࢫࣃࢵࢱࣜࣥࢢࡢࢩ࣑࣮ࣗࣞࢩࣙࣥゎᯒ࡟㛵 ࡋ࡚㸪⌧ᅾࡲ࡛࡟2య⾪✺㏆ఝἲ࡜ࣔࣥࢸ࢝ࣝࣟἲ

ࢆࡶ࡜࡟ࡋࡓࢩ࣑࣮ࣗࣞࢩࣙࣥࢥ࣮ࢻࡀᗄࡘ࠿㛤

Ⓨࡉࢀ࡚࠾ࡾ㸪ࢫࣃࢵࢱࣜࣥࢢ཰㔞࡞࡝ከࡃࡢ᭷⏝

࡞ࢹ࣮ࢱࡀ⏕ᡂࡉࢀ࡚࠸ࡿ 6)㸬௦⾲ⓗ࡞ࡶࡢ࡟

ACATࢥ࣮ࢻ7)㸦Atomic Collision in Amorphous Target㸧㸪TRIMࢥ࣮ࢻ8)㸦Transport in Material㸧 ࡀᣲࡆࡽࢀࡿ㸬௨ୗ࡟㸪௒ᅇゎᯒ࡟⏝࠸ࡓ ACAT ࢥ࣮ࢻࣔࢹࣝࡢ୺せ࡞㒊ศࢆㄝ᫂ࡍࡿ㸬

ACATࢥ࣮ࢻࡣ㸪Fig. 1࡟♧ࡍࡼ࠺࡟ࢱ࣮ࢤࢵ

ࢺࢆ1 ㎶R0㸦=N-1/3㸧ࡢࣘࢽࢵࢺࢭࣝ࡟ศ๭ࡋ㸪ࣘ

ࢽࢵࢺࢭࣝ࡟஘ᩘࢆ⏝࠸࡚ࢱ࣮ࢤࢵࢺཎᏊࢆ 1 ࡘ

ࣛࣥࢲ࣒࡟㓄⨨ࡉࡏ㸪࢔ࣔࣝࣇ࢓ࢫ㸦㠀⤖ᬗ㸧ࢱ࣮

ࢤࢵࢺࢆᵓᡂࡍࡿ㸬ࡇࡇ࡛㸪Nࡣࢱ࣮ࢤࢵࢺࡢᩘᐦ ᗘ㸦atoms/cm3㸧࡛࠶ࡿ㸬

Fig. 1. Unite Cell model (ACAT).

య య⾪✺㏆ఝ

ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻ ACAT ࡣ๓㏙ࡢ㏻

ࡾࣔࣥࢸ࢝ࣝࣟἲࢆᇶ࡟㸪ᅛయෆࡢཎᏊ⾪✺࡟㛵ࡋ

࡚2య⾪✺㏆ఝ9)ࢆ᥇⏝ࡋ࡚࠸ࡿ㸬⢏Ꮚࡀᅛయෆ࡟

ධᑕࡉࢀࡿ࡜㸪⾪✺࢝ࢫࢣ࣮ࢻ࡜࿧ࡤࢀࡿ⾪✺㐃㙐 ࡀ㉳ࡇࡿ㸬2య⾪✺㏆ఝࡣ㸪Fig. 2࡟♧ࡉࢀࡿࡼ࠺

࡟㐠ືࡋ࡚࠸ࡿ⢏Ꮚ࡜㟼Ṇࡋ࡚࠸ࡿᶆⓗཎᏊࡢ 2 ࡘࡢࡳࢆ⪃៖ࡋ㸪ཎᏊ⾪✺ࢆᶍᨃࡍࡿ㸬2య⾪✺㏆

ఝࡣ㸪ධᑕ⢏Ꮚࡢ㐠ື࢚ࢿࣝࢠ࣮EࡀᩘⓒeV௨ୖ

࡛ࡼ࠸㏆ఝࢆ୚࠼ࡿ࡜࠸ࢃࢀ࡚࠸ࡿ㸬୍᪉㸪ධᑕ࢚

ࢿࣝࢠ࣮ࡀ100 eV௨ୗࡢప࢚ࢿࣝࢠ࣮࡛ࡣ㸪ධᑕ

⢏Ꮚࡢ࿘ࡾ࡟࠶ࡿࢱ࣮ࢤࢵࢺཎᏊ࠿ࡽࡢᐤ୚ࡀ↓

ど࡛ࡁ࡞ࡃ࡞ࡾ㸪㏆ఝࡣᝏࡃ࡞ࡿ㸬

Fig. 2. Binary collision approximation.

2య⾪✺㏆ఝ࡟ࡼࡿ㔜ᚰ⣔ࡢᩓ஘ゅ

4

ࡣ㸪ḟᘧ

࡛ᐃ⩏ࡉࢀࡿ㸬

> @

(1)

2

0

2 1

dr r g r p

r

³

f

4 S

ࡇࡇ࡛㸪pࡣ⾪✺ᚄᩘ㸬rࡣཎᏊ㛫㊥㞳㸪r0ࡣ᭱㏆᥋

㊥㞳࡛࠶ࡾ㸪㏆᪥Ⅼ࡜ࡶ࿧ࡤࢀ㸪g(r0) 0ࢆ‶ࡓࡍ㸬 ࡇࢀࡽࢆᶍᘧⓗ࡟Fig. 2࡟♧ࡍ㸬Fig. 2୰Tࡣᩓ஘

ᚋ࡟ࢱ࣮ࢤࢵࢺཎᏊࡀᚓࡿ㐠ື࢚ࢿࣝࢠ࣮࡛࠶ࡿ㸬 ࡋࡓࡀࡗ࡚㸪ᩓ஘ᚋࡢධᑕ⢏Ꮚࡢ࢚ࢿࣝࢠ࣮ࡣE㸫 T࡛୚࠼ࡽࢀࡿ㸬ࡲࡓ㸪㛵ᩘg(r)ࡣ

) 2 ) (

1 ( ) (

2 1

2 2

»»

¼ º

««

¬

ª

Er

r V r r p

g ධᑕ࢖࢜ࣥ

R0

཯㊴⢏Ꮚࡢ࢚ࢿࣝࢠ࣮ T ධᑕ࢚ࢿࣝࢠ࣮ E

⾪✺ಀᩘp

⾪✺ᚋࡢ࢚ࢿࣝࢠ࣮ ET

ᐇ㦂⣔ࡢᩓ஘ゅ T

ᐇ㦂⣔ࡢ཯㊴ゅ I 42

㸦㔜ᚰ⣔ࡢᩓ஘ゅ 4

ࢱ࣮ࢤࢵࢺཎᏊࡢ

ึᮇ఩⨨

ධᑕ⢏Ꮚࡢ㌶㊧

(3)

࡛୚࠼ࡽࢀࡿ㸬ࡇࡇ࡛㸪V(r)ࡣཎᏊ㛫࣏ࢸࣥࢩࣕࣝ

࡛ACATࢥ࣮ࢻ࡛ࡣ㸪᩺ຊ࣏ࢸࣥࢩࣕࣝࡢࡳࡀ⪃៖

ࡉࢀࡿ㸬ཎᏊ㛫࣏ࢸࣥࢩࣕࣝ࡟㛵ࡋ࡚ࡣ㸪ḟ⠇࡛ヲ ࡋࡃ㏙࡭ࡿ㸬

ᘧ㸦2㸧୰ࡢErࡣ┦ᑐ࢚ࢿࣝࢠ࣮࡛㸪 ) 3 1 E (

A Er A ¸

¹

¨ ·

©

§

࡜ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪㉁㔞ẚAࡣ㸪ධᑕ⢏Ꮚࡢ㉁

M1࡜ᶆⓗ⢏Ꮚࡢ㉁㔞M2࡜ࡢẚ࡛㸪A M2 M1

࠶ࡿ㸬ᘧ㸦1㸧࠿ࡽᚓࡽࢀࡿ㔜ᚰ⣔ࡢᩓ஘ゅ4࠿ࡽ㸪 ᐇ㦂ᐊ⣔ࡢᩓ஘ゅT࡜཯㊴࢚ࢿࣝࢠ࣮Tࡣ㸪

) 4 cos (

1 tan 1 sin

4

4 A T A

1

sin 2 (5)

4

2 ¸

¹

¨ ·

©

§ 4

E

A T A

࡜࡞ࡿ㸬

ཎᏊ㛫ຊ࣏ࢸࣥࢩࣕࣝ

ACATࢥ࣮ࢻ࡛ࡣ㸪ཎᏊ㛫࡟స⏝ࡍࡿ᩺ຊࢆホ ౯ࡍࡿ2య㛫࣏ࢸࣥࢩࣕࣝ࡜ࡋ࡚㸪ࢺ࣮࣐ࢫ࣭ࣇ࢙

࣑ࣝࣔࢹࣝ࡟ࡼࡿ㐽ⶸࢡ࣮࣏ࣟࣥࢸࣥࢩࣕࣝ 10)ࢆ ᥇⏝ࡍࡿ㸬ཎᏊ␒ྕZ1Z2ࡢ2ࡘࡢཎᏊ㛫࡟ാࡃ᩺

ຊ࣏ࢸࣥࢩࣕࣝࡣ㸪

) 6 ( )

(

2 2

1 ¸

¹

¨ ·

©

§ a r r

e Z r Z

V I

࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪Ir a ࡣ㐽ⶸ㛵ᩘ࡛㸪a ࡣ 㐽ⶸ㛗ࡉ(Å)࡛࠶ࡾ㸪Firsov11)࡟ࡼࡗ࡚

0.4658122

23 (7)

2 1

1 Z

Z

a

࡜୚࠼ࡽࢀ࡚࠸ࡿ㸬ཎᏊ᰾ࡢṇ㟁Ⲵࡀ㸪࿘ࡾ࡟Ꮡᅾ ࡍࡿ㟁Ꮚࡢ㈇㟁Ⲵ࡟ࡼࡗ࡚㐽ⶸࡉࢀࡿຠᯝࢆྲྀࡾ

ධࢀࡓᙧ࡜࡞ࡗ࡚࠸ࡿ㸬ࡋࡓࡀࡗ࡚㸪ཎᏊ㛫ࡢ㊥㞳 ࡀ㞳ࢀ࡚࠸ࡿሙྜࡣཎᏊ᰾ࡢṇ㟁Ⲵࡣ㟁Ꮚࡢ㈇㟁 Ⲵ࡟㐽ⶸࡉࢀ㸪⾪✺┦ᡭࡢཎᏊ࠿ࡽࡳࡿ࡜୰ᛶ࡟ぢ

࠼㸪ẁࠎ࡜ཎᏊ㛫㊥㞳ࡀ㏆࡙ࡃ࡟ࡘࢀ㐽ⶸࡢຠᯝࡀ ῶᑡࡋ࡚࠸ࡃ㸬

㐽ⶸ㛵ᩘ࡟ࡘ࠸࡚ࡣ㸪ከࡃࡢ㛵ᩘᙧࡀᥦ᱌ࡉࢀ

࡚࠾ࡾ㸪ACATࢥ࣮ࢻ࡛ࡣ㸪௨ୗࡢ5ࡘࡢ㐽ⶸ㛵ᩘ

ࢆ᥇⏝ࡍࡿࡇ࡜ࡀ࡛ࡁࡿ㸬ᮏ◊✲࡟࠾࠸࡚ࡣ㸪

Moriereࡢ㐽ⶸ㛵ᩘ12)ࢆ⏝࠸ࡓ㸬

(1) Moliere࣏ࢸࣥࢩࣕࣝ

) 8 ( 10

. 0 55

. 0 35

.

0 0.3x 1.2x 6.0x

Mol e e e

x

I

ࡇࡇ࡛㸪rࡣཎᏊ㛫㊥㞳࡛࠶ࡿ㸬ࡲࡓx r a࡛࠶ࡾ㸪 㐽ⶸ㛗ࡉaࡣᘧ㸦7㸧࡛୚࠼ࡽࡿFirsovࡢ㐽ⶸ㛗ࡉ

ࢆ⏝࠸ࡿ㸬ZBL( Ziegler㸪Biersak, Littmark)࣏ࢸࣥࢩ

ࣕࣝ13)௨እࡣ㸪ࡇࡢFirsovࡢ㐽ⶸ㛗ࡉࢆ⏝࠸ࡿ㸬

(2) Kr-C (Krupyon-Carbon)࣏ࢸࣥࢩࣕࣝ14)

) 9 ( 335381

. 0 . 0

473674 . 0 1909451

. 0

919249 . 1

63717 . 0 278544

. 0

x

x x

C Kr

e

e e

x

I

(3) ࢰ࣐࣮ࣥࣇ࢙ࣝࢺ࣏ࢸࣥࢩࣕࣝ15)

144

(10)

1 13

c

som x

x

¿¾

½

¯®­ O

I

ࡇࡇ࡛㸪cO 3ࡢ㛵ಀࡀ࠶ࡾ㸪O 0.8034࡛࠶ࡿ㸬

(4) ZBL࣏ࢸࣥࢩࣕࣝ

Ziegler㸪Biersak, Littmark ࡟ࡼࡗ࡚ᥦ᱌ࡉࢀࡓ ཎᏊ㛫ຊ࣏ࢸࣥࢩ࡛ࣕࣝ㸪௨ୗ࡛ᐃ⩏ࡉࢀࡿ㸬

) 11 ( 18175

. 0 50986

. 0

28022 . 0 028171

. 0

1998 . 3 94229

. 0

4029 . 0 20162

. 0

x x

x x

ZBL

e e

e e

x

I

ࡇࡇ࡛㸪㐽ⶸ㛗ࡉaࡣḟᘧ࡛ᐃ⩏ࡉࢀࡿ㸬

0.465820.23

23 (12)

23 . 0

1 Z

Z

a

࡜ᐃ⩏ࡋ࡚⏝࠸ࡿ㸬

(5) AMLJ㸦Averaged Modified Lenz-Jensen 㸧࣏ࢸࣥ

ࢩࣕࣝ16)

(13)

exp 1x 2x32 3x2

x AMLJ D D D

I

ࡇࡇ࡛㸪Dj

j 1,2,3

ࡣḟᘧ࡛ᐃ⩏ࡉࢀࡿ㸬

(14)

706 .

1 10.307 20.307 23

1 Z Z

D

(15)

916 .

0 10.169 20.169

2 Z Z

D

(4)

ཎᏊ㛫ຊ࣏ࢸࣥࢩࣕࣝ

(16)

244 .

0 10.0418 20.0418 2

3 Z Z

D

ࡇࡇ࡛㸪x{r aB ࡛࠶ࡾ㸪aB 0.529 Å㸦࣮࣎࢔

༙ᚄ㸧ࢆ⏝࠸ࡿ㸬

࢚ࢿࣝࢠ࣮ᦆኻ

㐠ືࡋ࡚࠸ࡿ⢏Ꮚࡀ㟼Ṇࡋ࡚࠸ࡿࢱ࣮ࢤࢵࢺ ཎᏊ࡜⾪✺ࡍࡿࡇ࡜࡟ࡼࡿ㐠ື࢚ࢿࣝࢠ࣮ࡢᦆኻ ࡣ㸪⾪✺ࡢ๓ᚋ࡛㐠ື࢚ࢿࣝࢠ࣮࡜㐠ື㔞ࡀಖᏑࡉ

ࢀࡿᙎᛶ⾪✺࡟ࡼࡿࡶࡢ࡜㸪㐠ື㔞ࡀಖᏑࡉࢀ࡞࠸

㠀ᙎᛶ⾪✺࡜ࡀ࠶ࡿ㸬ᙎᛶ⾪✺࡟ࡼࡗ࡚㸪ࢱ࣮ࢤࢵ

ࢺཎᏊ࡟୚࠼ࡿ࢚ࢿࣝࢠ࣮ࡣᘧ㸦5㸧࡛୚࠼ࡽࢀࡿ㸬 㠀ᙎᛶ⾪✺ࡣ㸪㟁Ꮚⓗ࢚ࢿࣝࢠ࣮ᦆኻ࡜ࡶゝࢃࢀ㸪 ධᑕ࢚ࢿࣝࢠ࣮ࡀ኱ࡁࡃ࡞ࡿ࡟ࡘࢀ࡚ࢱ࣮ࢤࢵࢺ ཎᏊࡢཎᏊ᰾ࡢࡲࢃࡾ࡟Ꮡᅾࡍࡿ㟁Ꮚ⣔࡟㸪ບ㉳࣭

㟁㞳࡜࠸࠺㐣⛬ࢆ⤒࡚࢚ࢿࣝࢠ࣮ࡀ௜୚ࡉࢀࡿࡼ

࠺࡟࡞ࡿ㸬㟁Ꮚ⣔࡟࢚ࢿࣝࢠ࣮ࡀ௜୚ࡉࢀࡿሙྜࡣ㸪 㟁Ꮚࡢ㉁㔞ࡀධᑕ⢏Ꮚ࡟ẚ࡭࡚ᅽಽⓗ࡟ᑠࡉ࠸ࡓ

ࡵ࡟㸪ධᑕ⢏Ꮚࡣ┤㐍ࡍࡿ࡜⪃࠼࡚ࡼ࠸㸬

ධᑕ⢏Ꮚࡀࢱ࣮ࢤࢵࢺ୰ࢆ༢఩㛗ࡉᙜࡓࡾ㐍

ࡴࡢ࡟ኻ࠺࢚ࢿࣝࢠ࣮ࢆ㜼Ṇ⬟࡜࠸࠸㸪

) 17 ( )

( 2

)

³

( ˜

N T p pdp Ns E dx

dE S

࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪xࡣධᑕ⢏Ꮚࡀࢱ࣮ࢤࢵࢺ

୰ࢆ㐍ࢇࡔ㛗ࡉ㸪N[atoms/cm3]ࡣࢱ࣮ࢤࢵࢺࡢᩘᐦ ᗘ࡛㸪T(p)ࡣ⾪✺ಀᩘp࡟࠾ࡅࡿ཯㊴࢚ࢿࣝࢠ࣮㸪 s(E)[eV˜cm2]ࡣ㜼Ṇ᩿㠃✚࡜࿧ࡤࢀࡿ㸬ᘧ㸦17㸧࡟

ࡣ㸪ᙎᛶ⾪✺࡟ࡼࡿ࢚ࢿࣝࢠ࣮ᦆኻ࡜㸪㠀ᙎᛶ⾪✺

࡟ࡼࡿ࢚ࢿࣝࢠ࣮ᦆኻࡀྵࡲࢀ࡚࠾ࡾ㸪๓⪅ࢆ᱁ⓗ

㜼Ṇ⬟

dE dx

n㸪ᚋ⪅ࢆ㟁Ꮚⓗ㜼Ṇ⬟

dE dx

e࡜࿧

ࡪ㸬㜼Ṇ⬟ࢆࡇࢀࡽ஧ࡘࡢせ⣲࡟ศ๭ࡋ࡚⾲ࡍ࡜㸪

s (E) s E

(18) dx N

dE dx

dE dx dE

e n e

n

¸

¹

¨ ·

© §

¸¹

¨ ·

©

§

࡜࡞ࡿ㸬

㟁 Ꮚ ⓗ 㜼 Ṇ ⬟ ࡢ ⌮ ㄽ ࡜ ࡋ ࡚ 㸪Lindhard㸪 Scharff㸪Schiøtt࡟ࡼࡗ࡚ᥦ᱌ࡉࢀࡓ LSSࡢ㜼Ṇ⬟

බᘧ7)ࡀ᭷ྡ࡛࠶ࡿࡀ㸪ACATࢥ࣮ࢻ࡟࠾࠸࡚ࡣ㸪 Ziegler㸪Biersak, Littmark (ZBL)࡟ࡼࡗ࡚୚࠼ࡽࢀࡓ ᗈ࠸࢚ࢿࣝࢠ࣮⠊ᅖ࡟ரࡗ࡚㐺⏝࡛ࡁࡿᐇ㦂ࢹ࣮

ࢱࢆᇶ࡟ࡋࡓබᘧ17)ࢆ᥇⏝ࡋ࡚࠸ࡿ㸬ࡇࡢᐇ㦂ᘧࡢ

㜼Ṇ᩿㠃✚ࢆsZBL(E)࡜ࡍࡿ࡜㸪ධᑕ⢏Ꮚࡀࢱ࣮ࢤ

ࢵࢺ୰ࢆ'xࡔࡅ㐍ࡴ㛫࡟ኻ࠺㟁Ꮚⓗ࢚ࢿࣝࢠ࣮ᦆ ኻ'Eࡣ㸪

) 19 ( )

(E x Ns

E ZBL ' '

࡜⾲ࡉࢀࡿ㸬

ࢫࣃࢵࢱࣜࣥࢢ཰㔞ࡢホ౯ᘧ

ACAT ࢥ࣮ࢻ࡛ィ⟬ࡉࢀࡓࢫࣃࢵࢱࣜࣥࢢ཰

㔞ࡢጇᙜᛶࢆ᳨ドࡍࡿࡓࡵ㸪⤖ᯝࢆᐇ㦂ࢹ࣮ࢱ㸪ཬ ࡧ ᐇ 㦂 ࢹ ࣮ ࢱ ࢆ ࡼ ࡃ ෌ ⌧ ࡍ ࡿ ࡇ ࡜ ࡛ ▱ ࡽ ࢀ ࡿ

Yamamura ➼࡟ࡼࡗ࡚ᥦ᱌ࡉࢀࡓබᘧ 6)ࡢ⤖ᯝ࡜ẚ

㍑ࡋࡓ㸬ࡇࡢࢫࣃࢵࢱࣜࣥࢢබᘧࡣ㸪ᆶ┤ධᑕࡢࢫ

ࣃࢵࢱࣜࣥࢢ཰㔞ࢆホ౯ࡋ㸪⥺ᙧ࢝ࢫࢣ࣮ࢻ⌮ㄽ5)

࠿ࡽᑟ࠿ࢀࡿ㛵ᩘᙧ࡟㸪ᐇ㦂ࢹ࣮ࢱࢆᇶ࡟Ỵࡵࡽࢀ

ࡓࣇ࢕ࢵࢸ࢕ࣥࢢࣃ࣓࣮ࣛࢱࢆྵࡴ༙⌮ㄽ༙ᐇ㦂 ᘧ࡛࠶ࡿ㸬ࡇࡢࣇ࢕ࢵࢸ࢕ࣥࢢࣃ࣓࣮ࣛࢱ࡟㛵ࡋ࡚

ࡣ㸪ཧ⪃ᩥ⊩6)࡟ᩘ್⾲ࡀ࠶ࡾ㸪ࢱ࣮ࢤࢵࢺẖ࡟᭱

㐺್ࡀ♧ࡉࢀ࡚࠸ࡿ㸬 Yamamuraබᘧ࡛୚࠼ࡽࢀ

ࡿࢫࣃࢵࢱࣜࣥࢢ཰㔞ࡣᘧ㸦20㸧࡛୚࠼ࡽࢀࡿ㸬

) 20 ( 1

1 ) 042 (

. 0 )

( 0.3

s th e

n

s E

E k

E S U E Q

Y ¿¾½

¯®

­ ¸¸¹

¨¨ ·

© §

°¿

°¾

½

°¯

°®

­

*

¸¸

¹

¨¨ ·

©

§

H D

ࡇࡇ࡛㸪Y(E) [atoms/ion]ࡣධᑕ࢚ࢿࣝࢠ࣮E [eV]ࡢ

࡜ࡁࡢࢫࣃࢵࢱࣜࣥࢢ཰㔞㸪Q㸪s ࡣࢱ࣮ࢤࢵࢺཎ Ꮚ࡟౫Ꮡࡍࡿࣃ࣓࣮ࣛࢱ࡛࠶ࡿ㸬ࡲࡓ㸪Us[eV]ࡣࢱ

࣮ࢤࢵࢺཎᏊࡢ⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮࡛㸪㏻ᖖࡣ᪼⳹

࢚ࢿࣝࢠ࣮ࡀ⏝࠸ࡽࢀࡿ㸬Eth[eV]ࡣࢫࣃࢵࢱࣜࣥࢢ ࡢࡋࡁ࠸್࢚ࢿࣝࢠ࣮࡛㸪

) 21 ( for

7 . 5 1

2 1 2

1

M M M U

Eth M s

d

»u

¼

« º

¬ ª

J

) 22 ( for

7 . 6

2

1 M

M U

Eth s

t J u

࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪Jࡣᙎᛶ⾪✺࡟࠾ࡅࡿ࢚ࢿ

ࣝࢠ࣮⛣⾜ᅉᏊ࡛㸪

(23)

4

2 2 1

2 1

M M

M M J

࠶ࡿ㸬ࡑࡢ௚ࡢࣃ࣓࣮ࣛࢱࡣḟࡢࡼ࠺࡟ᐃ⩏ࡉࢀࡿ㸬

(5)

) 24 ( for

0035 . 0 249

. 0

2 1

15 . 0

1 2 56

. 0

1 2

M M M M M

M

d

¸¸¹

¨¨ ·

© §

¸¸¹

¨¨ ·

© D §

) 25 ( for

165 . 0 088

. 0

2 1 1 2 15

. 0

1 2

M M M M M

M

t

¸¸¹

¨¨ ·

© §

¸¸¹

¨¨ ·

©

§

D

ࡇࡇ࡛㸪M1㸪M2[a.m.u]ࡣධᑕ⢏Ꮚ࡜ࢱ࣮ࢤࢵࢺཎ Ꮚࡢ㉁㔞࡛࠶ࡿ㸬᰾ⓗ㜼Ṇ᩿㠃✚ Sn(E) [eV·Å/cm2] ࡣ㸪

84.78 223

12 1 1 2 ( ) (26)

3 2 1

2

1 n H

n s

M M

M Z

Z

Z E Z

S

࡛ᐃ⩏ࡉࢀࡿ㸬ࡇࡇ࡛㸪Z1㸪Z2ࡣධᑕ⢏Ꮚ࡜ࢱ࣮ࢤ

ࢵࢺཎᏊࡢཎᏊ␒ྕ࡛࠶ࡿ㸬ࡲࡓ㸪᥮⟬᰾ⓗ㜼Ṇ᩿

㠃✚sn(H)ࡣ㸪

) 27 ( )

( 708 . 1 882 . 6 355

. 6 1

718 . 2 ln 441 . 3

2 1

1 H

H H

H H H H

n n

M s M

M s

u

࡛୚࠼ࡽࢀࡿ㸬ࡇࡇ࡛㸪᥮⟬࢚ࢿࣝࢠ࣮Hࡣ

0.03255223

12 1 1 2 (28)

3 2 2 1 1

M E M

M Z

Z Z

Z

H

࡛࠶ࡿ㸬ࡲࡓ㸪

7

(29)

1 M1 3 W

*

࡛୚࠼ࡽࢀ㸪ࣇ࢕ࢵࢸ࢕ࣥࢢࣃ࣓࣮ࣛࢱ W ࡣࢱ࣮

ࢤࢵࢺཎᏊ࡟౫Ꮡࡍࡿ㸬keࡣLindhardࡢ㟁Ꮚⓗ㜼Ṇ

⬟ಀᩘ࡛࠶ࡾ㸪

(30)

079 .

0 23 34

2 3 2 1

2 1 2 3 2 1 2

1 2 2 3 1

2 3 2 1

Z Z

Z Z M

M M ke M

࡛࠶ࡿ㸬

4㸬ゎᯒ⤖ᯝ

ACATࢥ࣮ࢻࢆ⏝࠸࡚㸪⾪✺࢝ࢫࢣ࣮ࢻࡀ༑ศ

Ⓨ㐩ࡋ࡞࠸ሙྜ࡟࠾࠸࡚㸪ࢫࣃࢵࢱࣜࣥࢢࡀ⌮ㄽ࡜

࡝ࡢࡼ࠺࡟␗࡞ࡿ࠿ࢆゎᯒࡋࡓ㸬⾪✺࢝ࢫࢣ࣮ࢻࡀ

༑ศⓎ㐩ࡋ࡞࠸ሙྜ࡜ࡋ࡚㸪ධᑕ⢏Ꮚࢆప࢚ࢿࣝࢠ

࣮ࡢAr+࢖࢜ࣥ, H+࢖࢜ࣥ࡜ࡋ㸪ࢱ࣮ࢤࢵࢺࡣ㖡ࢆ

㑅ࢇࡔ㸬

㸬 $U㸫&X

ࢫࣃࢵࢱࣜࣥࢢ

Fig. 3࡟㸪Ar+࢖࢜ࣥࢆ㖡ࢱ࣮ࢤࢵࢺ⾲㠃࡟ᑐ

ࡋ࡚ᆶ┤࡟ධᑕࡉࡏࡓሙྜࡢ㖡ཎᏊࡢࢫࣃࢵࢱࣜ

ࣥ ࢢ ཰ 㔞 ࡢ ᐇ 㦂 ࢹ ࣮ ࢱ 18-20)㸪ACAT ࢹ ࣮ ࢱ 㸪

Yamamuraබᘧ࡟ࡼࡾᚓࡽࢀࡓ⤖ᯝࢆ♧ࡍ㸬Fig. 3

ࡼࡾ㸪ACAT ࢹ࣮ࢱ㸪Yamamura බᘧ࡜ࡶ㸪ⱝᖸ ࡢᕪࡣぢࡽࢀࡿࡀ㸪ᐇ㦂ࢹ࣮ࢱࡢㄗᕪ࡞࡝ࢆ⪃៖ࡍ

ࡿ࡜㸪ᐇ㦂ࢹ࣮ࢱ࡜ࡼࡃ୍⮴ࡋ࡚࠸ࡿ㸬ࡇࡢሙྜ࡟

⏝࠸ࡓ Yamamuraබᘧࡢࣇ࢕ࢵࢸ࢕ࣥࢢࣃ࣓࣮ࣛ

ࢱࡢ್ࡣ㸪Q=1.0㸪W=0.73㸪s=2.5 ࡛࠶ࡿ㸬ࡲࡓ㸪

ACATࢥ࣮ࢻ࡜Yamamuraබᘧ࡟ࡘ࠸࡚ࡶ㸪ࡼࡃ

୍⮴ࡋ࡚࠾ࡾ㸪ࢫࣃࢵࢱࣜࣥࢢ཰㔞ࡢゎᯒ࡟㛵ࡋ࡚㸪 ACAT ࢥ࣮ࢻ㸪Yamamura බᘧ࡜ࡶ᭷⏝࡛࠶ࡿ࡜

⪃࠼ࡽࢀࡿ㸬

Fig. 3. Sputtering yields of Cu bombarded by Ar+ ions at 0°.

ḟ࡟㸪100 eV㸪5 keVࡢAr+࢖࢜ࣥࢆ㖡ࢱ࣮ࢤ

ࢵࢺ࡟ᆶ┤࡟ධᑕࡉࡏࡓሙྜࡢࢫࣃࢵࢱ࣮ࡉࢀࡓ 㖡ཎᏊࡢゅᗘศᕸࢆ ACAT ࢥ࣮ࢻ࡛ゎᯒࡋࡓ⤖ᯝ

ࢆFig. 4㸪5࡟♧ࡍ㸬ࡲࡓ㸪༑ศⓎ㐩ࡋࡓ⾪✺࢝ࢫ

ࢣ࣮ࢻ࡟ࡼࡗ࡚ࢫࣃࢵࢱ࣮ࡉࢀࡓࢫࣃࢵࢱ࣮⢏Ꮚ ࡢゅᗘศᕸࢆ෌⌧ࡍࡿ࡜ࡋ࡚⌮ㄽⓗ࡟ᑟ࠿ࢀࡿࢥ

(6)

4㸬ゎᯒ⤖ᯝ

㸬 $U㸫&X

ࢫࣃࢵࢱࣜࣥࢢ

ࢧ࢖ࣥศᕸ 12)ࡶేࡏ࡚♧ࡍ㸬ࢥࢧ࢖ࣥศᕸࡣᴟゅ T

T

T

d 㸪᪉఩ゅI

IdI୰࡟ᨺฟࡉࢀࡿ⢏Ꮚ

࡟ᑐࡍࡿࢫࣃࢵࢱ⋡ࢆY

T, I

࡜ࡋ࡚㸪

) 31 ( cos

) ,

(T I dTdI TdTdI

Y v

࡛⾲ࡉࢀࡿ㸬ࡇࡇ࡛㸪ゅᗘTࡣᅛయ⾲㠃࡟ᑐࡋ࡚ᆶ

┤᪉ྥࢆ0r࡜ࡋ㸪ྑഃࢆ0r㹼90r㸪ᕥഃࢆ 0r

㹼㸫90r࡜ࡍࡿ㸬ᅗ୰࡟♧ࡉࢀࡿࢥࢧ࢖ࣥศᕸࡣ㸪 ゅᗘศᕸࡢᆶ┤ᡂศ࡜୍⮴ࡍࡿࡼ࠺࡟つ᱁໬ࡋ࡚

࠶ࡿ㸬ᅗ࡟♧ࡉࢀࡿࡼ࠺࡟㸪ධᑕ࢚ࢿࣝࢠ࣮ࡀ1 keV ࡢሙྜࡣ㸪࡯ࡰࢥࢧ࢖ࣥศᕸ࡜୍⮴ࡋ࡚࠸ࡿࡢ࡟ᑐ ࡋ࡚㸪100 eV ࡢሙྜࡣ㸪ゅᗘศᕸࡢᆶ┤ᡂศࡀᢚ

࠼ࡽࢀࡓ࢔ࣥࢲ࣮࣭ࢥࢧ࢖ࣥศᕸࢆ♧ࡋ࡚࠸ࡿ㸬ࡇ

ࢀࡣධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ࡓࡵ࡟㸪ᅛయෆ࡛⾪✺࢝

ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡏࡎ㸪ධᑕ᪉ྥࡢ㐠ື㔞ᡂศࡀ ከࡃṧࡗ࡚࠸ࡿࡓࡵ࡛࠶ࡿ㸬

Fig. 4. Calculated angular distributions of sputtered Cu atoms bombarded by 100 eV Ar+ions at 0°.

ධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ࡓࡵ࡟㸪⾪✺࢝ࢫࢣ࣮

ࢻࡀⓎ㐩ࡋ࡞࠸ࡇ࡜ࡢᙳ㡪ࡣ㸪ࢫࣃࢵࢱ࣮⢏Ꮚࡢ࢚

ࢿࣝࢠ࣮ศᕸ࡟ࡶ⌧ࢀࡿ㸬ゅᗘศᕸ࡜ྠᵝ࡟ධᑕ࢚

ࢿࣝࢠ࣮100 eV࡜1 keVࡢAr+࢖࢜ࣥࢆ㖡ࢱ࣮ࢤ

ࢵࢺ࡟ᆶ┤࡟ධᑕࡉࡏࡓሙྜࡢࢫࣃࢵࢱ࣮ࡉࢀࡓ 㖡ཎᏊࡢ࢚ࢿࣝࢠ࣮ศᕸࢆ ACAT ࢥ࣮ࢻ࡛ゎᯒࡋ

ࡓ⤖ᯝࢆFig. 6㸪7࡟♧ࡍ㸬༑ศⓎ㐩ࡋࡓ⾪✺࢝ࢫ

ࢣ࣮ࢻ࡟ࡼࡗ࡚ࢫࣃࢵࢱ࣮ࡉࢀࡓ⢏Ꮚࡣ⌮ㄽⓗ࡟

ᑟ࠿ࢀࡿࢺࣥࣉࢯࣥࡢබᘧ 12)࡟ᚑ࠺ࡇ࡜ࡀ▱ࡽࢀ

࡚࠾ࡾ㸪ࢺࣥࣉࢯࣥࡢබᘧࡣ

(32)

)

( 3

Us

E dE E E

Y v

࡜࡞ࡿ㸬ࡇࡇ࡛㸪Eࡣࢫࣃࢵࢱ࣮⢏Ꮚࡢ࢚ࢿࣝࢠ࣮㸪

Usࡣࢱ࣮ࢤࢵࢺཎᏊࡢ⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮࡛࠶ࡿ㸬

Fig. 5. Calculated angular distributions of sputtered Cu atoms bombarded by 1 keV Ar+ions at 0°.

ࡲࡓ㸪ࢺࣥࣉࢯࣥࡢබᘧ࡛୚࠼ࡽࢀࡿ࢚ࢿࣝࢠ࣮

ศᕸࡢࣆ࣮ࢡ࢚ࢿࣝࢠ࣮ࡣ㸪ࢺࣥࣉࢯࣥࡢබᘧࢆ࢚

ࢿࣝࢠ࣮࡟㛵ࡋ࡚ᚤศࡋ࡚ᴟ್ࢆồࡵࡿࡇ࡜࡛ᚓ

ࡽࢀ㸪ࡑࡢ್ࡣUs 2࡜࡞ࡿ㸬ࢱ࣮ࢤࢵࢺࡀ㖡ࡢሙ

ྜ㸪⾲㠃⤖ྜ࢚ࢿࣝࢠ࣮ࡣ3.49 eV࡛࠶ࡾ㸪⌮ㄽⓗ

࡟ண ࡉࢀࡿࣆ࣮ࢡ࢚ࢿࣝࢠ࣮ࡣ1.75 eV࡛࠶ࡿ㸬

Fig. 6࡟♧ࡉࢀࡿࡼ࠺࡟㸪ධᑕ࢚ࢿࣝࢠ࣮1 keVࡢ

ሙྜࡣ㸪ࢺࣥࣉࢯࣥࡢබᘧ࡟ࡼࡃྜ⮴ࡋ࡚࠸ࡿࡇ࡜

ࡀศ࠿ࡿ㸬

Fig. 6. Calculated energy distributions of sputtered Cu atoms bombarded by 1 k eV Ar+ions at 0°.

୍᪉㸪100 eV ࡢሙྜࡣ㸪ࢫࣃࢵࢱ࣮⢏Ꮚࡢ㧗࢚

ࢿࣝࢠ࣮㒊ศࡢ཰㔞ࡀ㸪ࢺࣥࣉࢯࣥࡢබᘧ࠿ࡽண  ࡉࢀࡿࡶࡢ࡟ẚ࡭࡚ᑡ࡞࠸㸬ࡇࡢ㐪࠸ࡣ㸪ゅᗘศᕸ

࡜ྠᵝ࡟⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡚࠸࡞࠸ࡇ࡜࡟

(7)

㉳ᅉࡍࡿ㸬ࡲࡓ㸪࢚ࢿࣝࢠ࣮ศᕸࡢࣆ࣮ࢡ࢚ࢿࣝࢠ

࣮ࡣ㸪100 eV㸪1 keVࡢධᑕ࢚ࢿࣝࢠ࣮ඹ㸪ࢺࣥࣉ

ࢯࣥࡢබᘧ࠿ࡽண ࡉࢀࡿ1.75 eV࡟㏆࠸್ࢆ♧ࡍ㸬 ࡋࡓࡀࡗ࡚㸪⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡞࠸ࡇ࡜࡟ࡼ

ࡿ࢚ࢿࣝࢠ࣮ศᕸࡢᙳ㡪ࡣ㸪㧗࢚ࢿࣝࢠ࣮㒊ศࡢ཰

㔞࡟⌧ࢀࡿ㸬

Fig. 7. Calculated energy distributions of sputtered Cu atoms bombarded by 1 00eV Ar+ions at 0°.

㸬+

+㸫

㸫&

&X

ࢫ ࢫࣃࢵࢱࣜࣥࢢ

⾪✺࢝ࢫࢣ࣮ࢻࡀᮍⓎ㐩࡜࡞ࡿࡢࡣ㸪Ỉ⣲࢖࢜

ࣥ࡞࡝ࡢ㍍࢖࢜ࣥ࡟ࡼࡿࢫࣃࢵࢱࣜࣥࢢࡢሙྜࡶ

ྠᵝ࡛࠶ࡿ㸬Fig. 8㸪9࡟100 eV H+࢖࢜ࣥࢆ㖡ࢱ

࣮ࢤࢵࢺ࡟ᆶ┤࡟ධᑕࡉࡏࡓሙྜࡢࢫࣃࢵࢱ࣮ࡉ

ࢀࡓ㖡ཎᏊࡢゅᗘศᕸ࡜࢚ࢿࣝࢠ࣮ศᕸࢆ♧ࡍ㸬

Fig. 8࡛♧ࡉࢀࡿࡼ࠺࡟㸪㍍࢖࡛࢜ࣥࢫࣃࢵࢱ࣮ࡉ

ࢀࡓࢱ࣮ࢤࢵࢺཎᏊࡢゅᗘศᕸࡣ㸪100 eV ࡢప࢚

ࢿࣝࢠ࣮࡟ࡶ㛵ࢃࡽࡎࢥࢧ࢖ࣥ࡟㏆࠸ศᕸࢆ♧ࡍ㸬 ࡇࡢゎᯒ⤖ᯝࡣ㸪Ar+࢖࢜ࣥධᑕࡢሙྜ࡜␗࡞ࡿഴ

ྥ࡛࠶ࡿ㸬ࡇࢀࡣFig. 10࡟♧ࡉࢀࡿࡼ࠺࡟㸪㍍࢖

࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡢ࣓࢝ࢽࢬ࣒ࡀᑡᩘᅇ⾪✺࡟

ࡼࡿࡶࡢ࡛࠶ࡿࡇ࡜࡟㉳ᅉࡍࡿ㸬

㍍࢖࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡢሙྜ㸪ධᑕ⢏Ꮚࡢ㉁

㔞ࡀࢱ࣮ࢤࢵࢺཎᏊ࡟ẚ࡭࡚㍍࠸ࡓࡵ࡟ࢱ࣮ࢤࢵ

ࢺཎᏊ࡜⾪✺ࡋࡓ㝿࡟ᚋ᪉࡟ᩓ஘ࡉࢀࡿ⋡ࡀ㧗ࡃ

࡞ࡿ㸬ࡇࡢᚋ᪉࡟ᩓ஘ࡉࢀࡓ㍍࢖࢜ࣥࡢ᪉ྥࡣ㸪ࢱ

࣮ࢤࢵࢺཎᏊ࡜ࡢ⾪✺఩⨨ࡼࡗ࡚኱ࡁࡃᙳ㡪ࡉࢀ

ࡿࡓࡵ࡟㸪ഹ࠿࡞⾪✺఩⨨ࡢ㐪࠸࡟࠾࠸࡚ࡶ㸪ᩓ஘

ゅࡀ␗࡞ࡿ㸬⤖ᯝ࡜ࡋ࡚㸪ᚋ᪉ᩓ஘ࡉࢀࡿ㍍࢖࢜ࣥ

ࡢ᪉ྥࡣࣛࣥࢲ࣒࡟࡞ࡾ㸪➼᪉ⓗ࡟࡞ࡿ࡜⪃࠼ࡽࢀ

ࡿ㸬ࡋࡓࡀࡗ࡚㸪ᚋ᪉ᩓ஘ࡉࢀࡓ㍍࢖࢜ࣥ࡟ࡼࡗ࡚

ࢫࣃࢵࢱ࣮ࡉࢀࡓࢱ࣮ࢤࢵࢺཎᏊࡣప࢚ࢿࣝࢠ࣮

࡛࠶ࡗ࡚ࡶ㸪ゅᗘศᕸࡢᆶ┤᪉ྥᡂศࡢῶᑡࡣぢࡽ

ࢀ࡞࠸㸬ࡇࡢഴྥࡣධᑕ࢖࢜ࣥ࡜ࢱ࣮ࢤࢵࢺཎᏊࡢ

㉁㔞ᕪࡀ኱ࡁ࠸ሙྜࡸ㸪ධᑕ࢚ࢿࣝࢠ࣮ࡀప࠸ሙྜ

࡟㢧ⴭ࡟࡞ࡿ㸬

Fig. 8. Calculated angular distributions of sputtered Cu atoms bombarded by 100 eV H+ions at 0°.

Fig. 9. Calculated energy distributions of sputtered Cu atoms bombarded by 100 eV H+ions at 0°.

㍍࢖࢜ࣥࢫࣃࢵࢱࣜࣥࢢࡢሙྜࡢ࢚ࢿࣝࢠ࣮

ศᕸࡣࢺࣥࣉࢯࣥࡢබᘧ࡜኱ࡁࡃ␗࡞ࡿ㸬࢚ࢿࣝࢠ

࣮ศᕸࡢࣆ࣮ࢡࢆ୚࠼ࡿ࢚ࢿࣝࢠ࣮ࡣࢺࣥࣉࢯࣥ

ࡢබᘧ࡛ࡣ1.75 eV࡛࠶ࡿࡢ࡟ᑐࡋ࡚㸪ACATࡢ⤖

ᯝࡣప࢚ࢿࣝࢠ࣮ഃ࡟ࢩࣇࢺࡋ࡚࠾ࡾ㸪0.5 eV㏆ഐ

(8)

㸬+㸫&X

ࢫࣃࢵࢱࣜࣥࢢ

࡛࠶ࡿ㸬ࡲࡓ㸪࢚ࢿࣝࢠ࣮ศᕸࡢ㧗࢚ࢿࣝࢠ࣮㒊ศ

࡟ࡘ࠸࡚ࡶ㸪ACATࢥ࣮ࢻࡢゎᯒ࠿ࡽᚓࡽࢀࡿศᕸ ࡣ㸪ࢺࣥࣉࢯࣥࡢබᘧࡀ⦆ࡸ࠿࡟ῶᑡࡍࡿࡢ࡟ᑐࡋ㸪 ᛴ⃭࡟0࡬࡜཰᮰ࡍࡿ㸬

Fig. 10. Undeveloped collision cascade.

⤖ㄽ

ࢫࣃࢵࢱࣜࣥࢢゎᯒࢥ࣮ࢻACATࢆ⏝࠸࡚㸪⾪

✺࢝ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡋ࡞࠸ሙྜ㸪ࡍ࡞ࢃࡕᑡᩘ

ᅇ⾪✺࡛⏕ࡌࡿࢫࣃࢵࢱࣜࣥࢢᐤ୚ࡀ኱ࡁ࠸ሙྜ

ࡢゎᯒࢆ⾜ࡗࡓ㸬ලయⓗ࡟ࡣ㸪పධᑕ࢚ࢿࣝࢠ࣮㸪 ཬࡧ㍍࢖࢜ࣥධᑕ᫬ࢫࣃࢵࢱࣜࣥࢢ⌧㇟ࢆᑐ㇟࡜

ࡋࡓ㸬ࡲࡎ⾪✺࢝ࢫࢣ࣮ࢻࢆࡶ࡜࡟ࡋࡓ⌮ㄽ࡜ࡢ㐪

࠸ࢆゎᯒࡋࡓ㸬ࢫࣃࢵࢱ࣮⢏Ꮚࡢゅᗘศᕸ࡟ᑐࡋ࡚

ࡣ㸪Ⓨ㐩ࡋࡓ⾪✺࢝ࢫࢣ࣮ࢻ࡟ࡼࡗ࡚ࢫࣃࢵࢱ࣮ࡉ

ࢀࡓࢱ࣮ࢤࢵࢺཎᏊࡢゅᗘศᕸࡣࢥࢧ࢖ࣥศᕸ࡜

࡞ࡿࡇ࡜ࡀ⌮ㄽⓗ࡟ண ࡉࢀࡿࡀ㸪ప࢚ࢿࣝࢠ࣮

Ar+࢖࢜ࣥࡢ㖡ࢱ࣮ࢤࢵࢺᆶ┤ධᑕࡢሙྜࡣ⾪✺࢝

ࢫࢣ࣮ࢻࡀ༑ศⓎ㐩ࡋ࡞࠸ࡓࡵ࡟㸪ධᑕ᪉ྥࡢ㐠ື

㔞ᡂศࡀከࡃṧࡿ㸬ࡑࡢ⤖ᯝ㸪⾲㠃ᆶ┤ᡂศࡢ཰㔞 ࡀᑡ࡞࠸࢔ࣥࢲ࣮ࢥࢧ࢖ࣥศᕸࢆ♧ࡍ㸬୍᪉㸪H+

࢖࢜ࣥࡢప࢚ࢿࣝࢠ࣮㖡ࢱ࣮ࢤࢵࢺᆶ┤ධᑕࡢሙ

ྜࡣ㸪ᑡᩘᅇ⾪✺ᶵᵓࡀᨭ㓄ⓗ࡟࡞ࡾ㸪⤖ᯝⓗ࡟ゅ ᗘศᕸࡣࢥࢧ࢖ࣥศᕸ࡟㏆࠸ศᕸࢆ♧ࡍ㸬

ࢫࣃࢵࢱ࣮⢏Ꮚࡢ࢚ࢿࣝࢠ࣮ศᕸ࡟ࡘ࠸࡚ࡣ㸪 ప࢚ࢿࣝࢠ࣮Ar+࢖࢜ࣥࡢሙྜࡣ㸪࢚ࢿࣝࢠ࣮ศᕸ ࡢࣆ࣮ࢡ࢚ࢿࣝࢠ࣮ࡣ⌮ㄽⓗ࡟ண ࡉࢀࡿࢺࣥࣉ

ࢯࣥࡢබᘧ࡜ࡼࡃ୍⮴ࡍࡿࡀ㸪㧗࢚ࢿࣝࢠ࣮㒊ศࡢ

཰㔞ࡀࢺࣥࣉࢯࣥࡢබᘧ࡟ẚ࡭࡚ᑡ࡞࠸㸬ࡇࡢഴྥ

ࡣ㍍࢖࢜ࣥప࢚ࢿࣝࢠ࣮ධᑕࡢሙྜ࡛≉࡟㢧ⴭ࡛㸪

㍍࢖࢜ࣥࡢሙྜࡣ㸪ศᕸࡢࣆ࣮ࢡࢆ୚࠼ࡿ࢚ࢿࣝࢠ

࣮ࡶ㸪⌮ㄽⓗ࡟ண ࡉࢀࡿ್ࡢ༙ศ௨ୗ࡜࡞ࡿ㸬

㍍࢖࢜ࣥධᑕ᫬ࡢࢫࣃࢵࢱ࣮⢏Ꮚࡢゅᗘศᕸ

࡟ࡘ࠸࡚ࡣ㸪⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡞ࡃ࡚ࡶ㸪ᚋ ᪉ᩓ஘ࡉࢀࡿධᑕ⢏Ꮚࡢ㐠ື㔞ࡀ༑ศ࡟ࣛࣥࢲ࣐

࢖ࢬࡉࢀࡿࡇ࡜࡟ࡼࡗ࡚Ⓨ㐩ࡋࡓ⾪✺࢝ࢫࢣ࣮ࢻ

࡜ྠࡌ⤖ᯝࢆ♧ࡍ㸬ࡋ࠿ࡋ࡞ࡀࡽ㸪࢚ࢿࣝࢠ࣮ศᕸ

࡟ᑐࡋ࡚ࡣ㸪⾪✺࢝ࢫࢣ࣮ࢻࡀⓎ㐩ࡋ࡞࠸ᙳ㡪ࡀ㢧 ⴭ࡟⌧ࢀ㸪⌮ㄽⓗ࡟ண ࡉࢀࡿࢺࣥࣉࢯࣥࡢබᘧ࠿

ࡽ኱ࡁࡃእࢀࡓࡶࡢ࡟࡞ࡿ㸬

ᮏ◊✲ࡢ୍㒊ࡣࠕ2008 ᖺᗘྠᚿ♫኱Ꮫ⌮ᕤᏛ◊✲

ᡤ◊✲ຓᡂ㔠㸦ಶே㸧ࠖࡢᨭ᥼ࢆཷࡅࡓ㸬ࡇࡇ࡟㸪 グࡋ࡚ㅰពࢆ⾲ࡍࡿ㸬

ཧ⪃ᩥ⊩

1) ᑠᯘ᫓ὒ㸪ⷧ⭷㸦ᇶ♏ࡢࡁࡑ㸧㸪㸦᪥หᕤᴗ᪂⪺♫㸪ᮾ

ி㸪2006㸧㸪p. 51.

2) R. F. K. Herzog and F. P. Viehböck, “Ion Source for Mass Spectrography”, Phys. Rev. 76, 855-856 (1949).

3) R. Behrisch, B. M. U. Scherzer, “He wall bombardment and wall erosion in fusion devices”, Radiat. Eff. 78, 393-403 (1988).

4) ᑠᯘ᫓ὒ㸪ⷧ⭷㸦ᇶ♏ࡢࡁࡑ㸧㸪㸦᪥หᕤᴗ᪂⪺♫㸪ᮾ

ி㸪2006㸧㸪p. 52.

5) P. Sigmund, “Theory of Sputtering . I. Sputtering Yield of Amorphous and Polycrystalline Targets”, Phys. Rev., 184, 384-416 (1969).

6) Y. Yamamura and H. Tawara, “Energy Dependence of Ion-Induced Sputtering Yields from Monoatomic Solids at Normal Incidence”, Atomic Data and Nuclear Data Tables, 62, 149-253 (1996).

7) Y. Yamamura and Y. Mizuno, “Low-Energy Sputterings with the Monte Carlo Program ACAT, IIPJ-AM-40, Inst.

Plasma Physics, Nagoya Univ., 1985.

8) J. P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets”, Nucl. Instr. and Meth., 174, 257-269 (1980).

9) W. Eckstein, “Computer Simulation of Ion-Solid Interaction”, (Springer-Verlag, Berlin, 1991), p. 17.

10) W. Eckstein, “Computer Simulation of Ion-Solid Interaction”, (Springer-Verlag, Berlin, 1991), p. 40.

11) O. B. Firsov, ”Calculation of the interaction potential of atoms” , Sov. Phys. JETP 6, 534-537 (1958).

12) G.. Molière, “Therorie der Streuung schneller

(9)

geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld “, Z. Naturforsch. A2, 133-145 (1947).

13) J. F. Ziegler, J. P. Biersack, U. Littmark, “The Stopping and Range of Ion in Solids: The Stopping and Range of Ions in Matter”, Vol.1, ed. by J. F. Ziegler (Pergamon, New York, 1985).

14) W. D. Wilson, L. G. Haggmark, J. P. Biersac, “Calculations of nuclear stopping, ranges, and straggling in the low-energy region”, Phys. Rev. 15, p. 2458 (1977).

15) A. Sommerfeld, “Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms,” Z.

Phys. 78,283(1932).

16) S. T. Nakagawa and Y. Yamamura, “Interatomic potential in solids and its applications to range calculations”, Radiat.

Eff. 105,239-256 (1988) .

17) J. Lindhard, M. Scharff and H. E. Schiott, “ Range Concepts and Heavy Ion Ranges”, K. Dan. Vidensk. Selsk.

Mat. Fyz. Medd., 33 No. 14, 1-41 (1963).

18) H. H. Andersen and J. F. Ziegler, “Hydrogen Stopping Powers and Ranges in All Elements”, (Pergamon, New York, 1977), pp. 1-16.

19) F. Keywell, “Measurements and Collision—Radiation Damage Theory of High-Vacuum Sputtering”, Phys. Rev., 97, 1611-1619 (1955).

20) M. Bader, F. C. Winterborn and T. W. Snouse, NASA Tech.

Report R105 (1961).

11) N. Laegreid and G. K. Wehner, “Sputtering Yields of Metals for Ar+and Ne+Ions with Energies from 50 to 600 eV”, J. Appl. Phys., 32, 365-369 (1961).

21) G. Falcone and P. Sigmund, “Depth of Origin of Sputtered Atoms”, Appl. Phys., 25, 307-310 (1981).

参照

関連したドキュメント

Wro ´nski’s construction replaced by phase semantic completion. ASubL3, Crakow 06/11/06

Aphid species 2,3 Armyworm Beet Armyworm 1,3 Corn Earworm Diamondback Moth 3 Fall Armyworm 1 Flea Beetle species Grasshopper species Japanese Beetle (Adult) Leafhopper species

• MUSTANG MAXX Insecticide has also given plant protection from symphylans when applied to the transplant row with two shanks four inches apart and six inches deep. • MUSTANG

• DO NOT apply a total of more than 0.4 lb ai per acre per calendar year including all application types (seed treatment, soil, foliar) of cyantraniliprole-containing products

Aphid species 2,3 Beet Armyworm 1,3 Blister Beetle species Colorado Potato Beetle 3 Cucumber Beetle species (Adult) European Corn Borer 4 Fall Armyworm 1 Flea Beetle species

Aphid species 2,3 Beet Armyworm 1,3 Blister Beetle species Colorado Potato Beetle 3 Cucumber Beetle species (Adult) European Corn Borer 4 Fall Armyworm 1 Flea Beetle species

Crop Weeds Use Pattern Rate/Acre Spray Per Acre Interval (Days) ALFALFA.. Dormant season on established

• Maximum Endigo ZC Allowed per Growing Season: Do not exceed a total of 19.0 fl oz/Acre of Endigo ZC or 0.24 lb ai of lambda-cyhalothrin-containing products or 0.172 lb ai