• 検索結果がありません。

Linear equivalence and identical Young tableau bijections for the conjugation symmetry of Littlewood-Richardson coefficients

N/A
N/A
Protected

Academic year: 2022

シェア "Linear equivalence and identical Young tableau bijections for the conjugation symmetry of Littlewood-Richardson coefficients"

Copied!
24
0
0

読み込み中.... (全文を見る)

全文

(1)

Linear equivalence and identical Young tableau bijections for the conjugation symmetry of

Littlewood-Richardson coefficients

O. Azenhas, A. Conflitti, R. Mamede

CMUC

Centre for Mathematics, University of Coimbra

March 31, 2008

(2)

Overview

1 The conjugation symmetry map

2 Calculus on words and tableaux

3 Hanlon-Sundaram bijectionξHS, Benkart-Sottile-Stroomer bijection ξBSS, and Azenhas-Zaballa bijectionξAZ

4 Linear equivalence

[HS] Philip Hanlon, Sheila Sundaram, On a bijection between

Littlewood-Richardson fillings of conjugate shape J. Combin. Theory Ser. A 60 (1992), no. 1, 1–18.

[BSS] Georgia Benkart, Frank Sottile, Jeffrey Stroomer, Tableau switching:

algorithms and applications, J. of Combin. Theory Ser. A 76 (1996), no.1, 11–34.

[Z] Ion Zaballa, Increasing and decreasing Littlewood-Richardson sequences and duality, preprint, University of Basque Country, 1996.

[A] Olga Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra 46 (1999), no. 1-2, 51–99.

[PV] Igor Pak, Ernesto Vallejo, Reductions of Young tableau bijections, available

(3)

1. Conjugation symmetry map

ν= (4,3,2) = partition,Y(ν) =1111222

33 Yamanouchi tableau µ= (2)⊆λ= (5,3,3), λ/µ=, (λ/µ)t :=λtt =

T =122111

233 , w(T) =111221332 lattice permutation T ≡k Y(ν)if and only ifw(T)is a lattice permutation

ξ:LR(λ/µ, ν) −→ LR(λtt, νt) T 7→ ξ(T) = [Y(νt)]k∩[bTt]d

(4)

2. Calculus on words and tableaux

λ/µ=

LR-readingλ/µ: 6 5 43 2 1

9 8 7 , column LR-readingλ/µ: 8 6 43 2 1 9 7 5 αλ/µ= (5 6 8 7)∈ S8

T =122111

233 , w(T) =111221332, wcol(T) =111232312 P(w(T)) =P(wcol(T)) =Y(ν) =1111222

33

Q(w(T)) =1236459

78 , Q(wcol(T)) =1238469 57 T tableau,

(i)w(T)≡k wcol(T).

(ii)αλ/µQ(w(T)) =Q(wcol(T))[Fulton, Young Tableaux, Appendix A.3].

(5)

Tableau switching

LetT = 2 21

3 4 , with shapeλ/µand letS =1 12 with shapeµover the alphabet{1,2}.

S∪T =1 122 21 3 4

−→s A ∪B =1 22 412 31 . Note: S =Bn andA =Tn.

Theorem (BSS) S ∪T →s A ∪B. Then:

(i)A andB are tableaux, the shape ofA is the inner shape ofB. (ii)A ∪B has the same shape asS∪T.

(iii)B ≡k S andA ≡k T. (v)A ∪B →s S∪T.

(6)

Tableau switching

LetT = 2 21

3 4 , with shapeλ/µand letS =1 12 with shapeµover the alphabet{1,2}.

S∪T =1 122 21 3 4

−→s A ∪B =1 22 412 31 . Note: S =Bn andA =Tn.

Theorem (BSS) S ∪T →s A ∪B. Then:

(i)A andB are tableaux, the shape ofA is the inner shape ofB.

(ii)A ∪B has the same shape asS∪T. (iii)B ≡k S andA ≡k T.

(v)A ∪B →s S∪T.

(7)

Dual Knuth equivalence

Two tableauxT andUof the same shape are dual equivalent,T ≡d U, if any sequence of jeu de taquin slides that can be applied to one of them can also be applied to the other, and the sequence of shape changes is the same for both.

T = 2 1 3 6

4 5 7 −→ 1 32 6 4 5 7

U= 1 2 2 2

3 3 4 −→ 2 21 2 3 3 4

Theorem

LetT andUbe tableaux of the same shape. Then,T ≡d Uif and only if Q(w(T)) =Q(w(U)).

Corollary

Two tableaux of the same normal shape are dual equivalent.

(8)

Theorem (Haiman1992)

LetT andQ be tableaux with the same normal shape and letW be a tableau whose inner shape is the shape ofT. Then,

T∪W →s Z∪X Q∪W→s Z ∪Y









⇒ X ≡d Y

(9)

Knuth and dual Knuth equivalence

Theorem (Haiman1992)

LetDbe a dual Knuth equivalence class andK be a Knuth equivalence class, both corresponding to the same normal shape. Then, there is a unique tableau inD ∩ K.

Algorithm to constructD ∩ K:

LetU ∈ Dand letV ∈ K be the only tableau with normal shape in this class.

W∪U W∪X

s↓ ↑s

Un∪Z → V∪Z X ≡d UandX ≡k V.

D ∩ K ={X}.

(10)

BSS bijection

ξBSS : LR(λ/µ, ν) → LR(λtt, νt) T 7→ ξBSS(T)∈[Y(νt)]K∩[bTt]d

(1) T =1 2 21 1 1

2 3 3 →bT =1 6 72 3 4

5 8 9 →bTt = 1 5 6 8 2 7 9 3 4

, ν= (4,3,2) (2)

W∪bTt = 11 5 26 8 2 7 9 34

11 1 22 2 1 3 3 24

=W∪ξBSS(T)

s↓ ↑s

(bTt)n∪Z = 1 5 8 2 6 9 3 71 4 2

−→

1 1 1 2 2 2 3 31 4 2

=Y(νt)∪Z

(11)

Evacuation and reversal

λ/µ=

rotate

←→ (λ/µ)=

Dual word: givenw =w1w2· · ·w` ∈ {1, . . . ,t}letw:=w`· · ·w2w1, wherei=t −i+1.

w =1113213↔ w=1321333

S = 1 2 31 1 1 3

rotate

←→ 3 2 13 1 1 1

S= 1 2 31 3 3 3

T =1 1 22 3 3

rotate

←→

3 3 2 2 1 1

T= 1 21 2 3 3

Evacuation: T tableau of normal shape,TE:=T∗n

TE =Ta

Sch ¨utzenberger involution

(12)

Evacuation and reversal

λ/µ=

rotate

←→ (λ/µ)=

Dual word: givenw =w1w2· · ·w` ∈ {1, . . . ,t}letw:=w`· · ·w2w1, wherei=t −i+1.

w =1113213↔ w=1321333

S = 1 2 31 1 1 3

rotate

←→ 3 2 13 1 1 1

S= 1 2 31 3 3 3

T =1 1 22 3 3

rotate

←→

3 3 2 2 1 1

T= 1 21

2 3 3→T∗n =1 1 32 2 3

Evacuation: T tableau of normal shape,TE:=T∗n

TE =Ta

Sch ¨utzenberger involution

(13)

Evacuation and reversal

λ/µ=

rotate

←→ (λ/µ)=

Dual word: givenw =w1w2· · ·w` ∈ {1, . . . ,t}letw:=w`· · ·w2w1, wherei=t −i+1.

w =1113213↔ w=1321333

S = 1 2 31 1 1 3

rotate

←→ 3 2 13 1 1 1

S= 1 2 31 3 3 3

T =1 1 22 3 3

rotate

←→

3 3 2 2 1 1

T= 1 21

2 3 3→T∗n =1 1 32 2 3

Evacuation: T tableau of normal shape,TE:=T∗n TE =Ta

Sch ¨utzenberger involution

(14)

Reversal: T tableau of any shape,Teis the only tableau in[T]k ∩[T]d Note: [T]k∩[T]d = [TnE]k∩[T]d. IfT has normal shape thenTE =Te. Reversal in the case of LR tableaux:

•Crystal reflection operators on lattice permutations

w =1(1(12)2)(1332)→σ1 σ1(w) =211221332 Q(w) =Q(σ1(w))

σ0(w) =σ1σ2σ1(w) =311222333 σ0(Y) =YE

T =1 2 21 1 1 2 3 3

−→e 2 2 21 1 3 3 3 3 =Te

Note: In general,σ0(w).k w

(15)

Reversal: T tableau of any shape,Teis the only tableau in[T]k ∩[T]d Note: [T]k∩[T]d = [TnE]k∩[T]d. IfT has normal shape thenTE =Te. Reversal in the case of LR tableaux:

•Crystal reflection operators on lattice permutations

w =1(1(12)2)(1332)→σ1 σ1(w) =211221332 Q(w) =Q(σ1(w))

σ0(w) =σ1σ2σ1(w) =311222333≡k w=211322333 σ0(Y) =YE

T =1 2 21 1 1 2 3 3

−→e 2 2 21 1 3 3 3 3 =Te

Note: In general,σ0(w).k w

(16)

Jeu de taquin on two row/column tableaux

1 3

1 2 3 4 ! 13 1 2 3 4

←→θ 1 1 3 3

24 !1 1 3 3 2 4

T =1 2 21 1 1

2 3 3 , LR-reading:

3 2 1 6 5 4

9 8 7 , Q(w(T)) =L =1 2 3 64 5 9 7 8

θ0(L) =θ1θ2θ1(L) =La = 4 5 62 3

1 7 8 9↔Te =2 2 21 1 3 3 3 3

T ↔ σ0(T) ↔ Te

l l l

L ↔ θ0(L) ↔ La

(17)

λ/µ=

rotate

−→ (λ/µ)=

−→t (λ/µ) := (λ/µ)∗t =

Zaballa map: operationon lattice permutation words:

w =111221332−→ w =123124123

U= 1 1 12 2 2 1 3 3

3 2 13 2 1 4 2 1

−→t rotate

1 12 2 1 3 3 2 4

=U

wcol(U) =w(U) Lemma

[Y(ν)]k [Y(νt)]k

w 7→ w such thatwk Y(νt)andQ(w) =Q(w)t.

(18)

ξ

HS

and ξ

AZ

T −→ Te −→ Te∗=U −→ U

Q(T) =L −→ La −→ LE −→ (α(λ/µ)LE)t

where(La)=LE =Q(U)and

Q(U)=Q(wcol(U))t = (α(λ/µ)Q(U))t =(α(λ/µ)Q(T)E)t

(λ/µ)Q(T)E)t = ((αλ/µQ(T))E)t = (Q(wcol(T))E)t = (Q(wcol(bT))E)t = Q(wcol(bT)rev) =Q(bTt)

Theorem

Given the LR tableauT of shapeλ/µand weightν,ξSH(T) =ξAZ(T)is the unique tableau Knuth equivalent toY(νt)and dual equivalent tobTt,

ξX :LR(λ/µ, ν) −→ LR(λtt, νt) T 7→ ξX(T)∈[Y(νt)]k∩[bTt]d

(19)

Linear equivalence

I. Pak, E. Vallejo, Reductions of Young tableau bijections, available at arXiv:math/0408171

We view a bijectionτ:A −→ Bas an algorithm which inputsA ∈ Aand outputsB =τ(A)∈ B. The computational complexity is, roughly, the number of steps in the bijection.

αreduces linearly toβ: α ,→β⇔C(α)≤aC(β) +b αlinear equivalent toβ: α∼β⇔α ,→β ,→α

D = (d1, . . . ,dn)array of integers,m=m(D) :=maxidi. Thebit–sizeof D, denoted byhDi, is the amount of space required to storeD; for simplicity from now on we assume thathDi=ndlog2m+1e.

(20)

Elementary circuits

Supposeδ1 :A1 −→ X1,γ:X1−→ X2andδ2 :X2−→ B, such that δ1andδ2have linear cost, and considerχ=δ2◦γ◦δ1 :A −→ B. We call this circuittrivialand denote it byI(δ1, γ, δ2).

Supposeγ1 :A −→ Xandγ2 :X −→ B, and let

χ=γ2◦γ1 :A −→ B. We call this circuitsequentialand denote it by S(γ1, γ2).

Supposeδ1 :A −→ X1× X21 :X1 −→ Y12 :X2 −→ Y2, and δ1:Y1× Y2 −→ B, such thatδ1andδ1have linear cost. Consider χ=δ2◦(γ1×γ2)◦δ1:A −→ B: we call this circuitparalleland denote it byP(δ1, γ1, γ2, δ2).

(21)

Parallel-sequencial circuits

For a fixed bijectionα, we say thatiis anα–based ps–circuitif one of the following holds:

i=δ, whereδis a bijection having linear cost.

i=I(δ1, α, δ2), whereδ1, δ2are bijections having linear cost.

i=P(δ1, γ1, γ2, δ2), whereγ1, γ2 areα–based ps–circuits andδ1, δ2 are bijections having linear cost.

i=S(γ1, γ2), whereγ1, γ2 areα–based ps–circuits.

A mapβislinearly reducibletoα, writeβ ,→α, if there exist a finite α–based ps-circuitiwhich computesβ. We say that mapsαandβare linearly equivalent, writeα∼β, ifαis linearly reducible toβ, andβis linearly reducible toα.

(22)

Theorem (PV)

The following maps are linearly equivalent:

(1)RSK correspondence.

(2)Jeu de Taquin map.

(3)Littlewood-Robinson map.

(4)Tableau switching maps.

(5)Evacuation for normal shapes (Sch ¨utzenberger involution)E.

(6)Reversale.

(7)First and Second Fundamental Symmetry mapsρ1 andρ2.

Theorem

(8)First and Second Fundamental Symmetry mapsρ1 andρ2are identical [Danilov-Koshevoy].

(9)First and Third Fundamental Symmetry mapsρ1andρ3are identical [A.].

(10)ξAZBSSHSare identical and ξAZ ,→E :T RSK→ L →E LE RSK

−1

→ U→Uk ◦ · · · ◦U1 RSK→ Q(wcol(U))→ Q(wcol(U))t RSK

−1

→ U.

(23)

Theorem (PV)

The following maps are linearly equivalent:

(1)RSK correspondence.

(2)Jeu de Taquin map.

(3)Littlewood-Robinson map.

(4)Tableau switching maps.

(5)Evacuation for normal shapes (Sch ¨utzenberger involution)E.

(6)Reversale.

(7)First and Second Fundamental Symmetry mapsρ1 andρ2. Theorem

(8)First and Second Fundamental Symmetry mapsρ1 andρ2are identical [Danilov-Koshevoy].

(9)First and Third Fundamental Symmetry mapsρ1andρ3are identical [A.].

(10)ξAZBSSHSare identical and

ξAZ ,→E :T RSK→ L →E LE RSK

−1

→ U→Uk ◦ · · · ◦U1 RSK→ Q(wcol(U))→ Q(wcol(U))t RSK

−1

→ U.

(24)

Theorem (PV)

The following maps are linearly equivalent:

(1)RSK correspondence.

(2)Jeu de Taquin map.

(3)Littlewood-Robinson map.

(4)Tableau switching maps.

(5)Evacuation for normal shapes (Sch ¨utzenberger involution)E.

(6)Reversale.

(7)First and Second Fundamental Symmetry mapsρ1 andρ2. Theorem

(8)First and Second Fundamental Symmetry mapsρ1 andρ2are identical [Danilov-Koshevoy].

(9)First and Third Fundamental Symmetry mapsρ1andρ3are identical [A.].

(10)ξAZBSSHSare identical and ξAZ ,→E :T RSK→ L →E LE RSK

−1

→ U→Uk ◦ · · · ◦U1 RSK→ Q(wcol(U))→

−1

参照

関連したドキュメント

The method employed to prove indecomposability of the elements of the Martin boundary of the Young lattice can not be applied to Young-Fibonacci lattice, since the K 0 -functor ring

Keywords: Convex order ; Fréchet distribution ; Median ; Mittag-Leffler distribution ; Mittag- Leffler function ; Stable distribution ; Stochastic order.. AMS MSC 2010: Primary 60E05

W ang , Global bifurcation and exact multiplicity of positive solu- tions for a positone problem with cubic nonlinearity and their applications Trans.. H uang , Classification

Keywords and Phrases: moduli of vector bundles on curves, modular compactification, general linear

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

We describe the close connection between the linear system for the sixth Painlev´ e equation and the general Heun equation, formulate the Riemann–Hilbert problem for the Heun

As explained above, the main step is to reduce the problem of estimating the prob- ability of δ − layers to estimating the probability of wasted δ − excursions. It is easy to see

Next, we prove bounds for the dimensions of p-adic MLV-spaces in Section 3, assuming results in Section 4, and make a conjecture about a special element in the motivic Galois group