• 検索結果がありません。

Memoirs on Differential Equations and Mathematical Physics Volume 58, 2013, 1–24

N/A
N/A
Protected

Academic year: 2022

シェア "Memoirs on Differential Equations and Mathematical Physics Volume 58, 2013, 1–24"

Copied!
24
0
0

読み込み中.... (全文を見る)

全文

(1)

Volume 58, 2013, 1–24

L. Giorgashvili, G. Karseladze, G. Sadunishvili, and Sh. Zazashvili

THE BOUNDARY VALUE PROBLEMS

OF STATIONARY OSCILLATIONS IN THE THEORY OF TWO-TEMPERATURE ELASTIC MIXTURES

(2)

equations of stationary oscillations in the theory of elastic mixtures, which enable us to prove the uniqueness theorems for solutions of the boundary value problems. The jump formulas for single and double-layer potentials are derived. Using the theories of potentials and integral equations the existence of solutions is proved.

2010 Mathematics Subject Classification. 74A15, 75F20, 74H25, 74B10.

Key words and phrases. Composite body, theory of mixtures, funda- mental matrix, metaharmonic function.

æØ . Ø æŁ Æ Æ Œ ª º ø ºŒ Łæ-

ª Æ Œø Łæ Œ ºŁ Ø ª Œ º ØæŁ -

, ºØ Ł Æ Ø Æ Ø ø æŁ ª º غø Œ غŒ Œ

Æ º º Ø . Ø æŁ Ø ª Æ º Ø Œ º Œø -

Ł ßıª º ØæŁ . º Œø Ł Æ Œ Łæ Œ ºŁ

º غı Œ Æ Ø ø æŁ Øºø Œ غŒ Œ º -

º Ø .

(3)

1. Introduction

Elastic composite materials with complex structures, as well as with structures composed of substantially differing materials are widely applied in the modern technological processes. Hemitropic elastic materials, mix- tures produced from two or more elastic materials, etc., belong to the class of such composite materials and structures. The study of practical problems of mechanical properties of such materials naturally results in the necessity to develop mathematical models, which would allow to get more precise description of actual processes ongoing during the experiments. Mathemat- ical modeling for such materials commenced as early as in the sixties of the past century. The first mathematical model of an elastic mixture (solid with solid), the so-called diffuse model, was developed by A. Green and T. Steel in 1966. In this model, the interaction force between components depends upon the difference of displacement vectors of components. In the same year they have developed the single-temperature thermoelasticity the- ory diffuse model of the elastic mixtures. Mathematical model of the linear theory of thermoelasticity of two-temperature elastic mixtures for the com- posites of granular, fibrous and layered structures was developed in 1984 by L. Khoroshun and N. Soltanov. Normally, the study of processes ongoing in the body is reduced, in the relevant mathematical model described by the system of differential equations with partial derivatives, to the study of boundary value problems (BVPs), mixed type BVPs and boundary-contact problems, and also the fundamental matrix for solving the system of dif- ferential equations playing a substantial role. For the diffuse and displace- ment models of the two-component mixtures (single-temperature) thermoe- lasticity theory, the issue of steadiness and correctness, identification of the asymptotic behavior of problem solution, proving of the uniqueness and existence theorems, solution of the BVPs for the domains bounded by the specific surfaces, as absolutely and uniformly convergent series, are studied by many scientists, among them: Alves, Munoz Rivera, Quin- tanilla [2], Basheleishvili [3], Basheleishvili, Zazashvili [4], Burchuladze, Svanadze [6], Gales [9], Giorgashvili, Skhvitaridze [13], [12], Giorgashvili, Karseladze, Sadunishvili [11], Iesan [18], Nappa [29], Natroshvili, Jagh- maidze, Svanadze [36], Svanadze [42], Quintanilla [41], Pompei [40], etc.

In this paper we derive Green’s formulas for the system of differential equations of stationary oscillations in the theory of elastic mixtures, which enable us to prove the uniqueness theorems for solutions of the boundary value problems. Further, we establish mapping properties and jump for- mulas for the single and double-layer potentials, and analyse the Fredholm properties of the corresponding boundary operators. Using the potential method and the theory of singular integral equations, the existence of solu- tions to the basic boundary value problems is proved.

(4)

We treat here only the classical setting of basic boundary value problems for smooth domains, however applying the results obtained in the refer- ences: Agranovich [1], Buchukuri, Chkadua, Duduchava, Natroshvili [5], Duduchava, Natroshvili [8], Gao [10], Jentsch, Natroshvili [19–21], Jentsch, Natroshvili, Wendland [22, 23], Kupradze, Gegelia, Basheleishvili, Burchu- ladze [25], Mitrea, Mitrea, Pipher [28], Natroshvili [30–32], Natroshvili, Giorgashvili, Stratis [33], Natroshvili, Giorgashvili, Zazashvili [34], Natro- shvili, Kharibegashvili, Tediashvili [37], Natroshvili, Sadunishvili [38], Na- troshvili, Stratis [39], and using the same type approaches and reasonings, one can analyze the generalized basic and mixed type boundary value prob- lems, as well as crack type and interface problems in Sobolev–Slobodetskii and Bessel potential spaces for smooth and Lipschitz domains.

2. Basic Differential Equations

The basic dynamical relationships for the two-component elastic mix- tures, taking two-temperature thermal field into consideration, are math- ematically described by the following system of partial differential equa- tions [24]

a1∆u0(x, t) +b1grad divu0(x, t) +c∆u00(x, t)+

+dgrad divu00(x, t)κ£

u0(x, t)−u00(x, t)¤

−η1gradϑ1(x, t)−η2gradϑ2(x, t) +ρ1F0(x, t) =ρ1tt2u0(x, t), c∆u0(x, t) +dgrad divu0(x, t) +a2∆u00(x, t)+

+b2grad divu00(x, t) +κ£

u0(x, t)−u00(x, t)¤

−ζ1gradϑ1(x, t)−ζ2gradϑ2(x, t) +ρ2F00(x, t) =ρ2tt2u00(x, t), κ1∆ϑ1(x, t) +κ2∆ϑ2(x, t)−α£

ϑ1(x, t)−ϑ2(x, t)¤

−η1divtu0(x, t)−ζ1divtu00(x, t) +G0(x, t) =κ0tϑ1(x, t), κ2∆ϑ1(x, t) +κ3∆ϑ2(x, t) +α£

ϑ1(x, t)−ϑ2(x, t)¤

−η2divtu0(x, t)−ζ2divtu00(x, t) +G00(x, t) =κ00tϑ2(x, t),

(2.1)

where ∆ is the three-dimensional Laplace operator,u0= (u01, u02, u03)>,u00= (u001, u002, u003)>are partial displacement vectors,ϑ1andϑ2are temperatures of each component of the mixture,F0 = (F10, F20, F30)>,F00= (F100, F200, F300)>are the mass forces,G0,G00 are the thermal sources located in the components, aj,bj,c,dare the elasticity coefficients,κ,ηj,ζjj3000,α,j= 1,2, are the mechanical and thermal constants of the elastic mixture,ρ1,ρ2 are the densities of mixture components,tis a time variable,x= (x1, x2, x3) is a point in the three-dimensional Cartesian space,>denotes transposition.

In the system (2.1), aj, bj, c, d, j = 1,2, are the constants given as follows [15, 17]

a1=µ1−λ5, b1=µ1+λ5+λ1−ρ2

ρ α0,

(5)

a2=µ2−λ5, b2=µ2+λ5+λ2+ρ1

ρ α0, c=µ3+λ5, d=µ3−λ5+λ3−ρ1

ρ α0, α0=λ3−λ4, ρ=ρ1+ρ2, where λ1, λ2, . . . , λ5, µ1, µ2, µ3 are elastic constants satisfying the condi- tions

µ1>0, λ5<0, µ1µ2−µ23>0, λ1+2

3µ1−ρ2

ρ α0>0,

³ λ1+2

3µ1−ρ2 ρ α0

´³ λ2+2

3µ2−ρ1 ρ α0

´

>

³ λ3+2

3µ3−ρ1 ρ α0

´2 . From these inequalities it follows that

a1>0, a1+b1>0,

d1:=a1a2−c2>0, d2:= (a1+b1)(a2+b2)(c+d)2>0. (2.2) In addition, from physical considerations it follows that

ρ1>0, ρ2>0, α >0, κ>0, κ0>0, κ00>0,

κj >0, j= 1,2,3, d3:=κ1κ3κ22>0. (2.3) If all the functions involved in the system (2.1) are harmonic time depen- dent, i.e.,u0(x, t) =u0(x) exp(−iσt),u00(x, t) =u00(x) exp(−iσt),ϑ1(x, t) = ϑ1(x) exp(−iσt), ϑ2(x, t) = ϑ2(x) exp(−iσt), F0(x, t) = F0(x) exp(−iσt), F00(x, t) = F00(x) exp(−iσt), G0(x, t) = G0(x) exp(−iσt), G00(x, t) = G00(x) exp(−iσt), whereσ∈Ris oscillation frequency,i=

−1, then from the system (2.1) we obtain the following system of differential equations of the theory of stationary oscillations of two-temperature elastic mixture:

a1∆u0(x) +b1grad divu0(x) +c∆u00(x) +dgrad divu00(x)−

−κ£

u0(x)−u00(x)¤

−η1gradϑ1(x)−η2gradϑ2(x)+

1σ2u0(x) =−ρ1F0(x),

c∆u0(x) +dgrad divu0(x) +a2∆u00(x) +b2grad divu00(x)+

+κ£

u0(x)−u00(x)¤

−ζ1gradϑ1(x)−ζ2gradϑ2(x)+

2σ2u00(x) =−ρ2F00(x), κ1∆ϑ1(x) +κ2∆ϑ2(x)−α£

ϑ1(x)−ϑ2(x)¤

+iση1divu0(x)+

+iσζ1divu00(x) +iσκ0ϑ1(x) =−G0(x), κ2∆ϑ1(x) +κ3∆ϑ2(x) +α£

ϑ1(x)−ϑ2(x)¤

+iση2divu0(x)+

+iσζ2divu00(x) +iσκ00ϑ2(x) =−G00(x);

(2.4)

here u0, u00, F0, F00 are the complex vector-functions andϑ1, ϑ2, G0, G00, are the complex scalar functions.

Ifσ=σ1+2 is a complex parameter and σ26= 0, then (2.4) is called the system of differential equations of pseudooscillations, and ifσ= 0, then (2.4) is the system of differential equations of statics.

(6)

Let us introduce the matrix differential operator of order 8×8, generated by the left hand side expressions in system (2.4),

L(∂, σ) :=



L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ) L(6)(∂, σ) L(3)(∂, σ) L(4)(∂, σ) L(7)(∂, σ) L(8)(∂, σ) L(9)(∂, σ) L(10)(∂, σ) L(13)(∂, σ) L(14)(∂, σ) L(11)(∂, σ) L(12)(∂, σ) L(15)(∂, σ) L(16)(∂, σ)



8×8

,

where

L(1)(∂, σ) := (a1∆ +α0)I3+b1Q(∂), L(2)(∂, σ) =L(3)(∂, σ) := (c∆ +κ)I3+dQ(∂),

L(4)(∂, σ) := (a2∆ +α00)I3+b2Q(∂),

L(4+j)(∂, σ) :=−ηj>, L(6+j)(∂, σ) =−ζj>, j= 1,2, L(9)(∂, σ) :=iση1∇, L(10)(∂, σ) :=iσζ1∇,

L(11)(∂, σ) :=iση2∇, L(12)(∂, σ) :=iσζ2∇, L(13)(∂, σ) :=κ1∆ +α1, L(16)(∂, σ) :=κ3∆ +α2, L(14)(∂, σ) =L(15)(∂, σ) :=κ2∆ +α;

here α0 =−κ+ρ1σ2,α00=−κ+ρ2σ2 α1=−α+iσκ0,α2 =−α+iσκ00,

∇ ≡ ∇(∂) := [∂1, ∂2, ∂3], = (∂1, ∂2, ∂3), j =∂/∂xj, j= 1,2,3,I3 is the 3×3 unit matrix,Q(∂) := [∂kj]3×3.

Applying these notation, the system (2.4) can be written as L(∂, σ)U(x) = Φ(x),

whereU = (u0, u00, ϑ1, ϑ2)>, Φ = (−ρ1F0,−ρ2F00,−G0,−G00)>. In what follows, we apply the following differential operators:

L0(∂) :=





L(1)0 (∂) L(2)0 (∂) [0]3×1 [0]3×1

L(3)0 (∂) L(4)0 (∂) [0]3×1 [0]3×1

[0]1×3 [0]1×3 κ1∆ κ2∆ [0]1×3 [0]1×3 κ2∆ κ3





8×8

, (2.5)

Le0(∂) :=

"

L(1)0 (∂) L(2)0 (∂) L(3)0 (∂) L(4)0 (∂)

#

6×6

, where

L(1)0 (∂) :=a1I3∆ +b1Q(∂), L(2)0 (∂) =L(3)0 (∂) :=cI3∆ +dQ(∂),

L(4)0 (∂) :=a2I3∆ +b2Q(∂).

(7)

Further let us introduce the operators T(∂, n) :=

·T(1)(∂, n) T(2)(∂, n) T(3)(∂, n) T(4)(∂, n)

¸

6×6

, T(l)(∂, n) =h

Tkj(l)(∂, n)i

3×3, l= 1,4,

(2.6)

where [15, 16]

Tkj(1)(∂, n) := (µ1−λ5kjn+ (µ1+λ5)njk+ +

³ λ1−ρ2

ρ α0

´ nkj,

Tkj(2)(∂, n) =Tkj(3)(∂, n) := (µ3+λ5kjn+ (µ3−λ5)njk+ +

³ λ3−ρ1

ρ α0

´ nkj,

Tkj(4)(∂, n) := (µ2−λ5kjn+ (µ2+λ5)njk+ +

³ λ2+ρ1

ρ α0

´ nkj, wheren=∂/∂n is the normal derivative,n= (n1, n2, n3);

Te(∂, n) :=





T(1)(∂, n) T(2)(∂, n) [0]3×1 [0]3×1

T(3)(∂, n) T(4)(∂, n) [0]3×1 [0]3×1

[0]1×3 [0]1×3 κ1n κ2n [0]1×3 [0]1×3 κ2n κ3n





8×8

,

P(∂, n) :=





T(1)(∂, n) T(2)(∂, n) −η1n> −η2n>

T(3)(∂, n) T(4)(∂, n) −ζ1n> −ζ2n>

[0]1×3 [0]1×3 κ1n κ2n

[0]1×3 [0]1×3 κ2n κ3n





8×8

,

P(∂, n) :=





T(1)(∂, n) T(2)(∂, n) −iση1n> −iση2n>

T(3)(∂, n) T(4)(∂, n) −iσζ1n> −iσζ2n>

[0]1×3 [0]1×3 κ1n κ2n

[0]1×3 [0]1×3 κ2n κ3n





8×8

, (2.7)

whereT(l)(∂, n),l= 1,2,3,4, are given by (2.6),n>= (n1, n2, n3)>. 3. Green’s Formulas

Let Ω+ be a finite three-dimensional region bounded by the Lyapunov surface∂Ω; Ω:=R3\+.

Definition 3.1. A vector U = (u0, u00, ϑ1, ϑ2)> will be called regular in a domainR3 if U ∈C2(Ω)∩C1(Ω).

(8)

Let

U = (u, ϑ)>, V = (v, ϑ0)>, u= (u0, u00)>, v= (v0, v00)>, ϑ= (ϑ1, ϑ2)>, ϑ0= (ϑ01, ϑ02)>.

It can be proved that for regular vectorsuandv, the following Green’s formula is valid [36]

Z

+

v·Le0(∂)u dx= Z

∂Ω

[v(z)]+·[T(∂, n)u(z)]+ds− Z

+

E(u, v)dx, (3.1)

where the differential operatorT(∂, n) is given by formula (2.6),n(z) is the outward unit normal vector w.r.t. Ω+ at the point z∈∂Ω,a·b= P3

j=1

ajbj

is the scalar product of vectors a and b, and E(u, v) is a quatratic form defined as follows:

E(u, v) =

³ λ1−%2

% α0

´

divv0divu0+

³ λ2+%1

% α0

´

divv00divu00+ +³

λ3−%1

% α0

´

(divv0divu00+ divv00divu0)+

+µ1

2 X3

k,j=1

(∂jvk0 +kvj0)(∂ju0k+ku0j)+µ2

2 X3

k,j=1

(∂jv00k+kv00j)(∂ju00k+ku00j)+

+µ3

2 X3

k,j=1

h

(∂jv0k+∂kv0j)(∂ju00k+∂ku00j)+(∂jvk00+∂kvj00)(∂ju0k+∂ku0j) i

−λ5

2 X3

k,j=1

(∂jvk0−∂kvj0−∂jv00k+∂kv00j)(∂ju0k−∂ku0j−∂ju00k+∂ku00j). (3.2)

Rewrite the vectorL(∂, σ)U as

L(∂, σ)U =L0(∂)U +L00(∂, σ)U, (3.3) where

L00(∂, σ)U =





α0u0+κu00−η1>ϑ1−η2>ϑ2

κu0+α00u00−ζ1>ϑ1−ζ2>ϑ2

iση1∇u0+iσζ1∇u00+α1ϑ1+αϑ2

iση2∇u0+iσζ2∇u00+αϑ1+α2ϑ2





8×1

. (3.4)

Note that

V·L0(∂)U =v·Le0(∂)u+ϑ011∆ϑ12∆ϑ2)+ϑ022∆ϑ13∆ϑ2). (3.5)

(9)

The following equality is valid [43]

Z

+

ϑ0k∆ϑjdx=

= Z

∂Ω

£ϑ0k(z)∂nϑj(z)¤+ ds−

Z

+

¡>ϑ0k· ∇>ϑj¢

dx, k, j= 1,2. (3.6)

Using equalities (3.1) and (3.6), from (3.5) we have Z

+

V ·L0(∂)U dx= Z

∂Ω

£V(z)·Te(∂, n)U(z)¤+ ds−

Z

+

E(U, V)dx, (3.7)

where

E(U, V) =E(u, v) +κ1(∇>ϑ01· ∇>ϑ1)+

2

¡>ϑ01· ∇>ϑ2+>ϑ02· ∇>ϑ1

¢+κ3(∇>ϑ02· ∇>ϑ2) andE(u, v) is given by (3.2).

Multiplying both sides of equality (3.4) by vectorV = (v, ϑ0)>and taking into consideration the equality

Z

+

v0·∇>ϑjdx= Z

£ϑj(z)(n(z)·v0(z))¤+

ds−

Z

+

ϑj∇v0dx, j= 1,2, (3.8)

we obtain Z

+

V·L00(∂, σ)U dx= Z

∂Ω

h

1ϑ12ϑ2)(n·v0)+(ζ1ϑ12ϑ2)(n·v00) i+

ds+

+ Z

+

h

v00u0+κu00) +v00(κu0+α00u00)+

+¡

η1ϑ01∇u0+ζ1ϑ01∇u00+η2ϑ02∇u0+ζ2ϑ02∇u00¢ + +ϑ011ϑ1+αϑ2) +ϑ02(αϑ1+α2ϑ2) i

dx. (3.9) Combining equalities (3.7) and (3.9) we get

Z

+

V ·L(∂, σ)U dx= Z

∂Ω

h

V(z)· P(∂, n)U(z)i+ ds−

Z

Ω+

h

E(U, V)−v0·0u0+κu00)−v00·(κu000u00)−iσϑ011∇u01∇u00)

−iσϑ022∇u0+ζ2∇u00)−ϑ011ϑ1+αϑ2)−ϑ02(αϑ1+α2ϑ2) i

dx. (3.10)

(10)

With the help of equality (3.10), we derive Z

+

h

V ·L(∂, σ)U−U·L(∂, σ)V i

dx=

= Z

∂Ω

h

V(z)· P(∂, n)U(z)−U(z)· P(∂, n)V(z) i+

ds, (3.11)

whereL(∂, σ) =£

L(−∂, σ)¤>

andP(∂, n) is given by (2.7). The formulas (3.10) and (3.11) are Green’s formulas.

Assume that a vectorU= (u, ϑ)> is e solution of equationL(∂, σ)U = 0.

According to (3.3) we obtain

L0(∂)U+L00(∂, σ)U = 0, (3.12) where L0(∂) is given by formula (2.5) andL00(∂, σ)U is defined by equal- ity (3.4).

Let us multiply the first equation of (3.12) by the vectoru0, the second one by the vector u00 and the complex conjugates of the third and fourth equations, respectively, by the functions 1ϑ1 and 1ϑ2 and sum up. In addition, taking into consideration equalities (3.1) and (3.8), we obtain

Z

+

·

−E(u, u)+ i κ3σ

³

d3|∇>ϑ1|2+|κ2>ϑ13>ϑ2|2

´

−κ|u0−u00|2+

+ρ1σ2|u0|2+ρ2σ2|u00|2+αi

σ 1−ϑ2|2¡

κ01|2002|2¢¸ dx+

+ Z

∂Ω

·

u(z)T(∂, n)u(z)1ϑ1+η2ϑ2)(n·u0)1ϑ1+ζ2ϑ2)(n·u00)−

i κ3σ

³

d3ϑ1nϑ1+ (κ2ϑ13ϑ2)(κ2nϑ13nϑ2)

´¸+

ds= 0. (3.13) Hereuis the complex conjugate ofuand

E(u, u) = d2

a1+b1|divu00|2+ 1 a1+b1

¯¯(a1+b1) divu0+(c+d) divu00¯

¯2+

+ d4

1

X3

k6=j=1

|∂ju00k+∂ku00j|2+ 1 2µ1

X3

k6=j=1

¯¯µ1(∂ju0j+∂ku0j)+µ3(∂ju00k+∂ku00j

¯2

−λ5 2

X3

k,j=1

¯¯ju0k−∂ku0j−∂ju00k+ku00j¯

¯2>0, (3.14) whered4=µ1µ2−µ23>0. The sesquilinear form E(u, u) is obtained from formula (3.2) by substituting the vectorsv0 andv00by the vectorsu0 andu00, respectively, and taking into consideration thatλ1ρρ2α0=a1+b11, λ2+ρρ1α0=a2+b22, λ3ρρ1α0=c+d−3.

(11)

4. Formulation of Problems. Uniqueness Theorems Problem (I(σ))± (Dirichlet’s problem). Find a regular vector U = (u0, u00, ϑ1, ϑ2)> satisfying the system of differential equations

L(∂, σ)U(x) = Φ±(x), x±, (4.1) and the boundary conditions

{U(z)}±=f(z), z∈∂Ω; (4.2) Problem (II(σ))± (Neumann’s problem). Find a regular vector U = (u0, u00, ϑ1, ϑ2)> satisfying (4.1) and the boundary conditions

{P(∂, n)U(z)}±=F(z), z∈∂Ω; (4.3) here Φ± are eight-component given vectors in Ω±, respectively while

f = (f(1), f(2), f(3), f(4))>, F = (F(1), F(2), F(3), F(4))>, f(j)= (f1(j), f2(j), f3(j))>, F(j)= (F1(j), F2(j), F3(j))>, j= 1,2, with f(j), F(j), j = 3,4, being scalar function are assumed to be given on the boundary∂Ω±;n(z) is the outward unit normal vector w.r.t. Ω+ at the pointz∈∂Ω.

In the case of the exterior problems for the domain Ω, a vectorU(x) in a neighbourhood of infinity has to satisfy some sufficient vanishing conditions allowing one to write Green’s formula (3.13) for the domain Ω.

Theorem 4.1. If σ=σ1+2, where σ1∈R, σ2 >0, then the homo- geneous problems (I(σ))+0 and (II(σ))+0+ = 0, f = 0, F = 0) have only the trivial solution.

Proof. If in equation (3.13) we take into consideration the homogeneous boundary conditions, we obtain

Z

+

·

−E(u, u)+ i κ3σ

³

d3|∇>ϑ1|2+|κ2>ϑ13>ϑ2|2

´

−κ|u0−u00|2+

+ρ1σ2|u0|22σ2|u00|2+αi

σ 1−ϑ2|2¡

κ01|2002|2¢¸

dx= 0. (4.4) Separating the imaginary part of the equation (4.4), we obtain

σ1

Z

+

· 1 κ3|σ|

³

d3|∇>ϑ1|2+2>ϑ13>ϑ2|2

´ +

+ 2ρ1σ2|u0|2+ 2ρ2σ2|u00|2+ α

|σ|21−ϑ2|2

¸

dx= 0. (4.5)

(12)

Assuming that σ1 6= 0, from (4.5) we get u0(x) = 0, u00(x) = 0, ϑ1(x) = ϑ2(x) =const,x∈+. Taking these data into account in (4.4), we obtain ϑ1(x) =ϑ2(x) = 0,x∈+. Ifσ1= 0, then from (4.4) we have

Z

+

·

E(u, u)+ 1 κ3σ2

³

d3|∇>ϑ1|2+|κ2>ϑ13>ϑ2|2´

+κ|u0−u00|2+

+ρ1σ22|u0|22σ22|u00|2+α

σ21−ϑ2|2

κ01|2002|2¢¸ dx= 0.

From this equation we easily deduce u0(x) = 0, u00(x) = 0, ϑ1(x) = 0,

ϑ2(x) = 0,x∈+. ¤

5. Integral Representation Formulas

The fundamental matrix of solutions of the homogeneous system of differ- ential equations of pseudo-oscillations of the two-temperature elastic mix- tures theory reads as ( [14, 42]):

Γ(x, σ) =

= 1

4πd1d2d3





Ψe1(x, σ) Ψe2(x, σ) >Ψ13(x, σ) >Ψ14(x, σ) Ψe3(x, σ) Ψe4(x, σ) >Ψ15(x, σ) >Ψ16(x, σ)

∇Ψ17(x, σ) ∇Ψ18(x, σ) Ψ5(x, σ) Ψ6(x, σ)

∇Ψ19(x, σ) ∇Ψ20(x, σ) Ψ7(x, σ) Ψ8(x, σ)





, (5.1)

whered1,d2are given by (2.2) and d3is given by (2.3), Ψe1(x, σ) = Ψ1(x, σ)I3+Q(∂)Ψ9(x, σ), Ψe2(x, σ) = Ψ2(x, σ)I3+Q(∂)Ψ10(x, σ), Ψe3(x, σ) = Ψ3(x, σ)I3+Q(∂)Ψ11(x, σ), Ψe4(x, σ) = Ψ4(x, σ)I3+Q(∂)Ψ12(x, σ), Ψl(x, σ) =

X2

j=1

pjβljeikj|x|

|x| , l= 1,2,3,4, Ψl−8(x, σ) =

X6

j=3

pjβljeikj|x|

|x| , l= 13,14,15,16, Ψl+8(x, σ) =

X6

j=1

pjγljeikj|x|

|x| , l= 1,2,3,4, Ψl+8(x, σ) =i

X6

j=3

pjδljeikj|x|

|x| , l= 5,6, . . . ,12.

(5.2)

(13)

k2j, j = 1,2, and kj2, j = 3,4,5,6, are, respectively, the solutions of the following equations

a(z) :=d1z2(a1α00+a2α02cκ)z+α0α00κ2= 0, Λ(z) :=£

d3z21κ3+α2κ12ακ2)z+α1α2−α2¤

(a(z) +zb(z))−

−iσz£

3ε1(z) +κ1ε3(z)2ε2(z))z+ 2αε2(z)−α2ε1(z)−

−α1ε3(z)¤

−σ21ζ2−η2ζ1)2z2= 0, where

b(z) := (d2−d1)z(b1α00+b2α02κd),

ε1(z) :=η1δ001(z) +ζ1δ10(z), ε3(z) :=η2δ002(z) +ζ2δ20(z), ε2(z) :=η1δ002(z) +ζ1δ20(z) =η2δ001(z) +ζ2δ10(z),

δ0j(z) :=ηj

£κ(c+d)z¤ +ζj

£(a1+b1)z−α0¤

, j= 1,2, δj00(z) :=ζj

£κ(c+d)z¤ +ηj

£(a2+b2)z−α00¤

, j= 1,2;

β1j := Λj00−a2kj2), β2j =β3j := Λj(ck2jκ), β4j := Λj0−a1kj2), β13j :=aj

h

iσk2jε3j+(α2−κ3kj2)(aj+bjk2j) i

, β14j=β15j :=−aj

h

iσk2jε2j+ (ακ2k2j)(aj +bjk2j) i

, β16j :=aj£

iσk2jε1j+ (α1κ1k2j)(aj+bjk2j, γ1j :=a2Λj£

aj(a2+b2) +bjα00¤

Hj−α00σ21ζ2−η2ζ1)2kj2

−iσ h

(ajζ12+α00ε1j)(α2κ3k2j) + (ajζ22+α00ε3j)(α1κ1k2j)−

−2(ajζ1ζ2+α00ε2j)(ακ2k2j) i

, γ2j =γ3j :=−cΛj

aj(c+d) +bjκ¤

Hjκσ21ζ2−η2ζ1)2k2j+ +iσ

h

(ajη1ζ1+κε1j)(α2κ3k2j) + (ajη2ζ2+κε3j)(α1κ1k2j)+

2κε2j+ (η1ζ2+η2ζ1)aj¢

κ2k2j) i

, γ4j :=a1Λj£

aj(a1+b1) +bjα0¤

Hj+α0σ21ζ2−η2ζ1)2k2j

−iσh

(ajη21+α0ε1j)(α2κ3k2j) + (ajη22+α0ε3j)(α1κ1kj2)−

−2(ajη1η2+α0ε2j)(ακ2k2j)i , δ5j:=iajh

iσζ21ζ2−η2ζ1)kj21j002−κ3kj2)−δ2j00(α−κ2k2j)i , δ6j:=iaj

h

−iσζ11ζ2−η2ζ1)kj2−δ1j00(α−κ2k2j)+δ002j1−κ1k2j) i

, δ7j :=iaj

h

−iση21ζ2−η2ζ1)k2j01j2−κ3k2j)−δ02j(α−κ2kj2) i

, δ8j :=iaj

h

iση11ζ2−η2ζ1)k2j−δ01j(α−κ2k2j)+δ2j01−κ1k2j) i

,

参照

関連したドキュメント

Problems of a contact between finite or infinite, isotropic or anisotropic plates and an elastic inclusion are reduced to the integral differential equa- tions with Prandtl

We apply generalized Kolosov–Muskhelishvili type representation formulas and reduce the mixed boundary value problem to the system of singular integral equations with

His monographs in the field of elasticity testify the great work he made (see, for instance, [6–9]). In particular, his book Three-dimensional Prob- lems of the Mathematical Theory

In this context the Riemann–Hilbert monodromy problem in the class of Yang–Mills connections takes the following form: for a prescribed mon- odromy and a fixed finite set of points on

Analogous and related questions are investigated in [17–24] and [26] (see also references therein) for the singular two-point and multipoint boundary value problems for linear

The main goal of the present paper is the study of unilateral frictionless contact problems for hemitropic elastic material, their mathematical mod- elling as unilateral boundary

(6) It is well known that the dyadic decomposition is useful to define the product of two distributions.. Proof of Existence Results 4.1. Global existence for small initial data..

Piezo-elasticity, strongly elliptic systems, variable coefficients, boundary value problem, localized parametrix, local- ized boundary-domain integral equations,