• 検索結果がありません。

S INGULARITIES IN POSITIVE CHARACTERISTIC

N/A
N/A
Protected

Academic year: 2022

シェア "S INGULARITIES IN POSITIVE CHARACTERISTIC "

Copied!
92
0
0

読み込み中.... (全文を見る)

全文

(1)

S INGULARITIES IN POSITIVE CHARACTERISTIC

A. Benito, A. Bravo and O. Villamayor U.

Universidad Autónoma de Madrid

RIMS Kyoto, December 2008

(2)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(3)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(4)

Multiplicity and theτ-invariant

k[x 1 , . . . , x n ]

g(x 1 , . . . , x n ) = G b (x 1 , . . . , x n )+G b+1 (x 1 , . . . , x n )+· · ·+G N (x 1 , . . . , x n ) G b 6= 0 ⇐⇒ ν x (g) = b at a local ring of the origin.

Spec(k [x 1 , . . . , x n ]), X = {g = 0} ⊃ F b set of b − fold points.

X X 1 X s

V ←− V 1 ←− . . . ←− V s

F b F b 1 F b s

(1)

Problem: Given F b ⊂ X ⊂ V find a sequence as (1) so that F b s = ∅.

(5)

k[x 1 , . . . , x n ]

g(x 1 , . . . , x n ) = G b (x 1 , . . . , x n )+G b+1 (x 1 , . . . , x n )+· · ·+G N (x 1 , . . . , x n ) G b 6= 0 ⇐⇒ ν x (g) = b at a local ring of the origin.

Spec(k [x 1 , . . . , x n ]), X = {g = 0} ⊃ F b set of b − fold points.

X X 1 X s

V ←− V 1 ←− . . . ←− V s

F b F b 1 F b s

(1)

Problem: Given F b ⊂ X ⊂ V find a sequence as (1) so that F b s = ∅.

(6)

Multiplicity and theτ-invariant

k[x 1 , . . . , x n ]

g(x 1 , . . . , x n ) = G b (x 1 , . . . , x n )+G b+1 (x 1 , . . . , x n )+· · ·+G N (x 1 , . . . , x n ) G b 6= 0 ⇐⇒ ν x (g) = b at a local ring of the origin.

Spec(k [x 1 , . . . , x n ]), X = {g = 0} ⊃ F b set of b − fold points.

X X 1 X s

V ←− V 1 ←− . . . ←− V s

F b F b 1 F b s

(1)

Problem: Given F b ⊂ X ⊂ V find a sequence as (1) so that F b s = ∅.

(7)

k[x 1 , . . . , x n ]

g(x 1 , . . . , x n ) = G b (x 1 , . . . , x n )+G b+1 (x 1 , . . . , x n )+· · ·+G N (x 1 , . . . , x n ) G b 6= 0 ⇐⇒ ν x (g) = b at a local ring of the origin.

Spec(k [x 1 , . . . , x n ]), X = {g = 0} ⊃ F b set of b − fold points.

X X 1 X s

V ←− V 1 ←− . . . ←− V s

F b F b 1 F b s

(1)

Problem: Given F b ⊂ X ⊂ V find a sequence as (1) so that F b s = ∅.

(8)

Multiplicity and theτ-invariant

V (d) smooth scheme of dimension d over k X ⊂ V (d) hypersurface, b the highest multiplicity of X

F b := {x ∈ X | mult x (X ) = b}

x ∈ F b if and only ν x (I(X )) = b

Notation: ν x denotes the order in the local regular ring O V

(d)

,x

(9)

Fix X , I(X ) ⊂ O V

(d)

,x

{x 1 , . . . , x d } r.s.p.

gr M

x

(O V

(d)

) ∼ = k 0 [X 1 , . . . , X d ] I X ,x initial ideal of I(X ) in gr M

x

(O V

(d)

)

τ x : least number of variables needed to express a generator of I X,x .

Notation: τ X = τ

(10)

Local presentation

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(11)

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (I (s) )) ≥ s}

(12)

Local presentation

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (I (s) )) ≥ s}

(13)

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (I (s) )) ≥ s}

(14)

Local presentation

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (I (s) )) ≥ s}

(15)

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (I (s) )) ≥ s}

(16)

Local presentation

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (I (s) )) ≥ s}

(17)

L OCAL PRESENTATION AND PERMISSIBLE TRANSFORMATIONS

Y ⊂ F b permissible center, Y ∼ = β(Y )

X X 1

Y ⊂ (V (d) , x )

β

(V 1 (d) , x 0 )

oo π

β

1

β(Y ) ⊂ (V (d−τ) , x τ ) oo e π (V 1 (d−τ) , x τ 0 ) I (s) O

V

1(d−τ)

= I(H 1 (d−τ) ) s · I 1 (s) ,

where H 1 (d−τ) is the exceptional locus of e π

(18)

Local presentation

Since

β : (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) the blow-up induces

β 1 : (V 1 (d) , x 0 ) −→ (V 1 (d−1) , x 1 0 ) −→ . . . −→ (V 1 (d−τ) , x τ 0 )

(1)’ Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ as before.

(2)’ Monic polynomials, g i (p

ei

) for i = 1, . . . , τ (the strict transforms of the monic polynomials f i (p

ei

) ).

(3)’ The ideal I 1 (s) in O

V

1(d−τ)

with the same positive integer s.

(1)’+(2)’+(3)’ define a local presentation.

(19)

Since

β : (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) the blow-up induces

β 1 : (V 1 (d) , x 0 ) −→ (V 1 (d−1) , x 1 0 ) −→ . . . −→ (V 1 (d−τ) , x τ 0 )

(1)’ Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ as before.

(2)’ Monic polynomials, g i (p

ei

) for i = 1, . . . , τ (the strict transforms of the monic polynomials f i (p

ei

) ).

(3)’ The ideal I 1 (s) in O

V

1(d−τ)

with the same positive integer s.

(1)’+(2)’+(3)’ define a local presentation.

(20)

Local presentation

A sequence of permissible transformations

X X 1 X r

V (d) oo π

1

V 1 (d) oo . . . oo π

τ

V r (d) induces

V (d)

β

V 1 (d)

π

1

oo

β

1

. . .

oo V (d) r π

τ

oo

β

τ

V (d−τ) oo e π

1

V 1 (d−τ) oo . . . oo e π

τ

V r (d−τ) and

V (d−τ) oo V 1 (d−τ) oo . . . oo V r (d−τ)

I (s) I 1 (s) I r (s)

(21)

A sequence of permissible transformations

X X 1 X r

V (d) oo π

1

V 1 (d) oo . . . oo π

τ

V r (d) induces

V (d)

β

V 1 (d)

π

1

oo

β

1

. . .

oo V (d) r π

τ

oo

β

τ

V (d−τ) oo e π

1

V 1 (d−τ) oo . . . oo e π

τ

V r (d−τ) and

V (d−τ) oo V 1 (d−τ) oo . . . oo V r (d−τ)

I (s) I 1 (s) I r (s)

(22)

Local presentation

A sequence of permissible transformations

X X 1 X r

V (d) oo π

1

V 1 (d) oo . . . oo π

τ

V r (d) induces

V (d)

β

V 1 (d)

π

1

oo

β

1

. . .

oo V (d) r π

τ

oo

β

τ

V (d−τ) oo e π

1

V 1 (d−τ) oo . . . oo e π

τ

V r (d−τ) and

V (d−τ) oo V 1 (d−τ) oo . . . oo V r (d−τ)

I (s) I 1 (s) I r (s)

(23)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(24)

Strategy in characteristic zero

S TRATEGY IN CHARACTERISTIC ZERO

A local presentation of X (at x ) when char (k) = 0 is (1) Positive integers 0 = e 1 = e 2 = · · · = e τ . (2) Regular parameters

f 1 (1) (z 1 ) = z 1 ∈ O V

(d−1)

[z 1 ] .. .

f τ (1) (z τ ) = z τ ∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

(25)

Stage A): Reduction to the monomial case.

X X 1 X r

V (d) oo V 1 (d) oo . . . oo V r (d) is defined so that, setting

V (d−τ ) ←− V 1 (d−τ) ←− . . . ←− V r (d−τ) and I (s) as above, then

I r (s) = I(H 1 (d−τ) ) α

1

· I(H 2 (d−τ) ) α

2

. . . I(H r (d−τ) ) α

r

⊂ O

V

r(d−τ)

.

(26)

Strategy in characteristic zero

Stage B): Resolution of the monomial case.

X r X r+1 X N

V r (d) oo V r+1 (d) oo . . . oo V N (d) is defined so that setting

V r (d−τ) oo V r (d−τ) +1 oo . . . oo V N (d−τ) I r (s) I r+1 (s) I N (s) and I i (s) ⊂ O

V

i(d−τ)

as before, then

{x ∈ V N (d−τ) | ν x (I N (s) ) ≥ s} = ∅ (easy).

(27)

Key Point

The local presentation in char zero will allow us to lift sequence V r (d−τ) oo V r (d−τ) +1 oo . . . oo V N (d−τ)

I r (s) I r+1 (s) I N (s) to a resolution

X r X r+1 X N

V r (d) oo V r+1 (d) oo . . . oo V N (d) Since f i = x i and

{x ∈ V (d) | ν x (x i ) ≥ 1} = {x 1 = 0, . . . , x τ = 0}

is naturally identified with V (d−τ ) .

(28)

Strategy in positive characteristic

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(29)

S TRATEGY IN POSITIVE CHARACTERISTIC

β : V (d) −→ V (d−1) −→ . . . −→ V (d−τ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

eτ

+ a (τ) 1 z τ p

eτ

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

(30)

Strategy in positive characteristic

T HEOREM (S TAGE A): R EDUCTION TO THE MONOMIAL CASE .

X X 1 X r

V (d) ←− V 1 (d) ←− . . . ←− V r (d)

is defined so that, setting

V (d−τ ) ←− V 1 (d−τ) ←− . . . ←− V r (d−τ) and I (s) as above, then

I r (s) = I(H 1 (d−τ) ) α

1

· I(H 2 (d−τ) ) α

2

. . . I(H r (d−τ) ) α

r

⊂ O

V

r(d−τ)

.

(31)

T HEOREM (S TAGE B’): T HE MONOMIAL CASE .

Given I r (s) = I(H 1 (d−τ) ) α

1

· I(H 2 (d−τ) ) α

2

. . . I(H r (d−τ) ) α

r

⊂ O

V

r(d−τ)

, there exists (a τ -monomial):

I r 0(s) = I(H 1 (d−τ) ) h

1

· I(H 2 (d−τ) ) h

2

. . . I(H r (d−τ) ) h

r

with exponents 0 ≤ h i ≤ α i , so that a combinatorial resolution:

V p (d−τ) oo V p+1 (d−τ) oo . . . oo V N (d−τ) I r 0(s) I r+1 0(s) I N 0(s)

can be lifted to a permissible sequence

X X 1 X N

V (d) oo V 1 (d) oo . . . oo V N (d) .

(32)

Strategy in positive characteristic

T HEOREM (S TAGE B’): T HE MONOMIAL CASE .

Given I r (s) = I(H 1 (d−τ) ) α

1

· I(H 2 (d−τ) ) α

2

. . . I(H r (d−τ) ) α

r

⊂ O

V

r(d−τ)

, there exists (a τ -monomial):

I r 0(s) = I(H 1 (d−τ) ) h

1

· I(H 2 (d−τ) ) h

2

. . . I(H r (d−τ) ) h

r

with exponents 0 ≤ h i ≤ α i , so that a combinatorial resolution:

V p (d−τ) oo V p+1 (d−τ) oo . . . oo V N (d−τ) I r 0(s) I r+1 0(s) I N 0(s) can be lifted to a permissible sequence

X X 1 X N

V (d) oo V 1 (d) oo . . . oo V N (d) .

(33)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(34)

Rees algebras and main invariants

B smooth over k ; V = Spec (B)

G = B[f 1 W n

1

, f 2 W n

2

, . . . , f s W n

s

] = ⊕ n≥0 I n W n ⊂ B[W ]; I 0 = O V Sing(G) = {x ∈ V | ν x (I n ) ≥ n}

D EFINITION (H IRONAKA )

ord : Sing(G) → Q ord(x ) = min n ν x (I k )

k o

Remark: ord(x ) = min n ν

x

(f

i

)

n

i

, i = 1, . . . , s o

(35)

B smooth over k ; V = Spec (B)

G = B[f 1 W n

1

, f 2 W n

2

, . . . , f s W n

s

] = ⊕ n≥0 I n W n ⊂ B[W ]; I 0 = O V Sing(G) = {x ∈ V | ν x (I n ) ≥ n}

D EFINITION (H IRONAKA )

ord : Sing(G) → Q ord(x ) = min n ν x (I k )

k o

Remark: ord(x ) = min n ν

x

(f

i

)

n

i

, i = 1, . . . , s o

(36)

Rees algebras and main invariants

B smooth over k ; V = Spec (B)

G = B[f 1 W n

1

, f 2 W n

2

, . . . , f s W n

s

] = ⊕ n≥0 I n W n ⊂ B[W ]; I 0 = O V Sing(G) = {x ∈ V | ν x (I n ) ≥ n}

D EFINITION (H IRONAKA )

ord : Sing(G) → Q ord(x ) = min n ν x (I k )

k o

Remark: ord(x ) = min n ν

x

(f

i

)

n

i

, i = 1, . . . , s o

(37)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(38)

Resolution of Rees algebras

Smooth center Y ⊂ Sing(G) = {x ∈ V | ν x (I n ) ≥ n}

V ←− π V 1 H = π −1 (Y ) I n O

V

1(d)

= I(H) n I n 0 D EFINITION (T RANSFORMATION )

G 1 = ⊕ n≥0 I n 0 W n is the transform of G = ⊕ n≥0 I n W n

(V , G) oo (V 1 , G 1 )

Y ⊂ Sing(G)

(39)

Smooth center Y ⊂ Sing(G) = {x ∈ V | ν x (I n ) ≥ n}

V ←− π V 1 H = π −1 (Y ) I n O

V

1(d)

= I(H) n I n 0 D EFINITION (T RANSFORMATION )

G 1 = ⊕ n≥0 I n 0 W n is the transform of G = ⊕ n≥0 I n W n

(V , G) oo (V 1 , G 1 )

Y ⊂ Sing(G)

(40)

Resolution of Rees algebras

R ESOLUTION

V smooth /k , G = ⊕I k W k ⊂ O V

(d)

Find a sequence of permissible transformations:

(V , G) ←− (V 1 , G 1 ) ←− . . . ←− (V n , G n )

with

Sing(G n ) = ∅

(41)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(42)

Rees algebras and integral closure

R EES A LGEBRAS AND INTEGRAL CLOSURE

G 1 = ⊕ n≥0 I n W n , G 2 = ⊕ n≥0 J n W n , ⊂ O V

(d)

[W ] G 1 ∼ G 2 if same integral closure in O V

(d)

[Z ] Then:

G 1 ∼ O V

(d)

[I s W s ] for some s.

Sing(G 1 ) = Sing(G 2 ).

Hironaka’s functions coincide.

Equivalence is stable by transformations.

(43)

R EES A LGEBRAS AND INTEGRAL CLOSURE

G 1 = ⊕ n≥0 I n W n , G 2 = ⊕ n≥0 J n W n , ⊂ O V

(d)

[W ] G 1 ∼ G 2 if same integral closure in O V

(d)

[Z ] Then:

G 1 ∼ O V

(d)

[I s W s ] for some s.

Sing(G 1 ) = Sing(G 2 ).

Hironaka’s functions coincide.

Equivalence is stable by transformations.

(44)

Rees algebras and integral closure

R EES A LGEBRAS AND INTEGRAL CLOSURE

G 1 = ⊕ n≥0 I n W n , G 2 = ⊕ n≥0 J n W n , ⊂ O V

(d)

[W ] G 1 ∼ G 2 if same integral closure in O V

(d)

[Z ] Then:

G 1 ∼ O V

(d)

[I s W s ] for some s.

Sing(G 1 ) = Sing(G 2 ).

Hironaka’s functions coincide.

Equivalence is stable by transformations.

(45)

R EES A LGEBRAS AND INTEGRAL CLOSURE

G 1 = ⊕ n≥0 I n W n , G 2 = ⊕ n≥0 J n W n , ⊂ O V

(d)

[W ] G 1 ∼ G 2 if same integral closure in O V

(d)

[Z ] Then:

G 1 ∼ O V

(d)

[I s W s ] for some s.

Sing(G 1 ) = Sing(G 2 ).

Hironaka’s functions coincide.

Equivalence is stable by transformations.

(46)

Rees algebras and integral closure

R EES A LGEBRAS AND INTEGRAL CLOSURE

G 1 = ⊕ n≥0 I n W n , G 2 = ⊕ n≥0 J n W n , ⊂ O V

(d)

[W ] G 1 ∼ G 2 if same integral closure in O V

(d)

[Z ] Then:

G 1 ∼ O V

(d)

[I s W s ] for some s.

Sing(G 1 ) = Sing(G 2 ).

Hironaka’s functions coincide.

Equivalence is stable by transformations.

(47)

R EES A LGEBRAS AND INTEGRAL CLOSURE

G 1 = ⊕ n≥0 I n W n , G 2 = ⊕ n≥0 J n W n , ⊂ O V

(d)

[W ] G 1 ∼ G 2 if same integral closure in O V

(d)

[Z ] Then:

G 1 ∼ O V

(d)

[I s W s ] for some s.

Sing(G 1 ) = Sing(G 2 ).

Hironaka’s functions coincide.

Equivalence is stable by transformations.

(48)

Multiplicity of Hypersurfaces

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(49)

A smooth/k, V = Spec(A[Z ]) f = Z n + a 1 Z n−1 + · · · + a n ∈ A[Z ]

G = O V [fW n ], Sing(G) = F n = n-fold points of f.

Spec(A[Z ]) β // Spec(A)

Spec(A[Z ]/hf i)

OO 88 r r r r r r r r r r

β(F n )?

(50)

Multiplicity of Hypersurfaces

A smooth/k, V = Spec(A[Z ]) f = Z n + a 1 Z n−1 + · · · + a n ∈ A[Z ]

G = O V [fW n ], Sing(G) = F n = n-fold points of f.

Spec(A[Z ]) β // Spec(A)

Spec(A[Z ]/hf i)

OO 88 r r r r r r r r r r

β(F n )?

(51)

A smooth/k, V = Spec(A[Z ]) f = Z n + a 1 Z n−1 + · · · + a n ∈ A[Z ]

G = O V [fW n ], Sing(G) = F n = n-fold points of f.

Spec(A[Z ]) β // Spec(A)

Spec(A[Z ]/hf i)

OO 88 r r r r r r r r r r

β(F n )?

(52)

Multiplicity of Hypersurfaces

U NIVERSAL SETTING

(Z − Y 1 )(Z − Y 2 ) · · · (Z − Y n ) ∈ k [Y 1 , . . . , Y n ][Z ] F n (Z ) = Z n − s 1 Z n−1 + · · · + (−1) n s n ∈ k [s 1 , . . . , s n ][Z ] k [s 1 , . . . , s n ][Z ]/hF n (Z )i // A[Z ]/hZ n + a 1 Z n−1 + · · · + a n i

k [s 1 , . . . , s n ] //

OO

A

OO

s i // (−1) i a i .

(53)

U NIVERSAL SETTING

(Z − Y 1 )(Z − Y 2 ) · · · (Z − Y n ) ∈ k [Y 1 , . . . , Y n ][Z ] F n (Z ) = Z n − s 1 Z n−1 + · · · + (−1) n s n ∈ k [s 1 , . . . , s n ][Z ] k [s 1 , . . . , s n ][Z ]/hF n (Z )i // A[Z ]/hZ n + a 1 Z n−1 + · · · + a n i

k [s 1 , . . . , s n ] //

OO

A

OO

s i // (−1) i a i .

(54)

Multiplicity of Hypersurfaces

I NVARIANTS UNDER CHANGE OF VARIABLES

F n (Z ) = (Z − Y 1 )(Z − Y 2 ) · · · (Z − Y n ) ∈ k [Y 1 , . . . , Y n ][Z ] L = V (Y i − Y j , 1 ≤ i, j, ≤ n)

k[Y 1 , . . . , Y n ] L = k [Y i − Y j ; 1 ≤ i, j, ≤ n]

S n acts linearly on k [Y 1 , . . . , Y n ] L ⊂ k [Y 1 , . . . , Y n ] (k [Y 1 , . . . , Y n ] L ) S

n

⊂ (k [Y 1 , . . . , Y n ]) S

n

(k[Y 1 , . . . , Y n ] L ) S

n

= k [H 1 , . . . , H r ]

H j = H j (Y 1 , . . . , Y n ) homog of degree d j

H j = H j (s 1 , . . . , s n ) w. homog. of degree d j

(55)

I NVARIANTS UNDER CHANGE OF VARIABLES

F n (Z ) = (Z − Y 1 )(Z − Y 2 ) · · · (Z − Y n ) ∈ k [Y 1 , . . . , Y n ][Z ] L = V (Y i − Y j , 1 ≤ i, j, ≤ n)

k[Y 1 , . . . , Y n ] L = k [Y i − Y j ; 1 ≤ i, j, ≤ n]

S n acts linearly on k [Y 1 , . . . , Y n ] L ⊂ k [Y 1 , . . . , Y n ] (k [Y 1 , . . . , Y n ] L ) S

n

⊂ (k [Y 1 , . . . , Y n ]) S

n

(k[Y 1 , . . . , Y n ] L ) S

n

= k [H 1 , . . . , H r ]

H j = H j (Y 1 , . . . , Y n ) homog of degree d j

H j = H j (s 1 , . . . , s n ) w. homog. of degree d j

(56)

Multiplicity of Hypersurfaces

I NVARIANTS UNDER CHANGE OF VARIABLES

F n (Z ) = (Z − Y 1 )(Z − Y 2 ) · · · (Z − Y n ) ∈ k [Y 1 , . . . , Y n ][Z ] L = V (Y i − Y j , 1 ≤ i, j, ≤ n)

k[Y 1 , . . . , Y n ] L = k [Y i − Y j ; 1 ≤ i, j, ≤ n]

S n acts linearly on k [Y 1 , . . . , Y n ] L ⊂ k [Y 1 , . . . , Y n ] (k [Y 1 , . . . , Y n ] L ) S

n

⊂ (k [Y 1 , . . . , Y n ]) S

n

(k[Y 1 , . . . , Y n ] L ) S

n

= k [H 1 , . . . , H r ]

H j = H j (Y 1 , . . . , Y n ) homog of degree d j

H j = H j (s 1 , . . . , s n ) w. homog. of degree d j

(57)

k [s 1 , . . . , s n ][Z ]/hF n (Z )i A[Z ]/hZ n + a 1 Z n−1 + · · · + a n i

k [s 1 , . . . , s n ]

OO

φ // (A, M)(loc., reg.)

OO

s i // (−1) i a i ∈ M i . φ(H j ) = H j (a 1 , . . . , a n ) = h j ∈ M d

i

hh j i invariant by Z → uZ + a u ∈ U(A); a ∈ A.

p ∈ V (hh 1 , . . . , h n

i

i) ⊂ Spec(A) iff B ⊗ k (p) is local.

∩{P ∈ Spec (A) : ν P (h i ) ≥ d i } = β(F n ) if n 6= 0 in k .

(58)

Multiplicity of Hypersurfaces

k [s 1 , . . . , s n ][Z ]/hF n (Z )i A[Z ]/hZ n + a 1 Z n−1 + · · · + a n i

k [s 1 , . . . , s n ]

OO

φ // (A, M)(loc., reg.)

OO

s i // (−1) i a i ∈ M i . φ(H j ) = H j (a 1 , . . . , a n ) = h j ∈ M d

i

hh j i invariant by Z → uZ + a u ∈ U(A); a ∈ A.

p ∈ V (hh 1 , . . . , h n

i

i) ⊂ Spec(A) iff B ⊗ k (p) is local.

∩{P ∈ Spec (A) : ν P (h i ) ≥ d i } = β(F n ) if n 6= 0 in k .

(59)

k [s 1 , . . . , s n ][Z ]/hF n (Z )i A[Z ]/hZ n + a 1 Z n−1 + · · · + a n i

k [s 1 , . . . , s n ]

OO

φ // (A, M)(loc., reg.)

OO

s i // (−1) i a i ∈ M i . φ(H j ) = H j (a 1 , . . . , a n ) = h j ∈ M d

i

hh j i invariant by Z → uZ + a u ∈ U(A); a ∈ A.

p ∈ V (hh 1 , . . . , h n

i

i) ⊂ Spec(A) iff B ⊗ k (p) is local.

∩{P ∈ Spec (A) : ν P (h i ) ≥ d i } = β(F n ) if n 6= 0 in k .

(60)

Multiplicity of Hypersurfaces

k [s 1 , . . . , s n ][Z ]/hF n (Z )i A[Z ]/hZ n + a 1 Z n−1 + · · · + a n i

k [s 1 , . . . , s n ]

OO

φ // (A, M)(loc., reg.)

OO

s i // (−1) i a i ∈ M i . φ(H j ) = H j (a 1 , . . . , a n ) = h j ∈ M d

i

hh j i invariant by Z → uZ + a u ∈ U(A); a ∈ A.

p ∈ V (hh 1 , . . . , h n

i

i) ⊂ Spec(A) iff B ⊗ k (p) is local.

∩{P ∈ Spec (A) : ν P (h i ) ≥ d i } = β(F n ) if n 6= 0 in k .

(61)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(62)

Elimination and differential operators

T AYLOR MORPHISM

Tay : A[Z ] → A[Z , T ] Z → Z + T Tay(f (Z )) = P

r ∈ N b r (X )T r ; ∆ r (f (X )) = b r (X )

p ∈ Spec(S[Z ]), if ν p (f (Z )) ≥ n, then ν p (∆ r (f (Z ))) ≥ n − r A[Z ][fW n ] ⊂ A[Z ][∆ n−1 (f )W 1 , . . . , ∆ 1 (f )W n−1 , fW n ]

Sing(A[Z ][fW n ]) = Sing(A[Z ][∆ k (f )W n−k , fW n ])

(63)

T AYLOR MORPHISM

Tay : A[Z ] → A[Z , T ] Z → Z + T Tay(f (Z )) = P

r ∈ N b r (X )T r ; ∆ r (f (X )) = b r (X )

p ∈ Spec(S[Z ]), if ν p (f (Z )) ≥ n, then ν p (∆ r (f (Z ))) ≥ n − r A[Z ][fW n ] ⊂ A[Z ][∆ n−1 (f )W 1 , . . . , ∆ 1 (f )W n−1 , fW n ]

Sing(A[Z ][fW n ]) = Sing(A[Z ][∆ k (f )W n−k , fW n ])

(64)

Elimination and differential operators

I NVARIANTS AND DIFFERENTIAL OPERATORS

F n (Z ) = Q

(Z − Y i ) = Z n − s 1 Z n−1 + . . . s n ∈ k [s 1 , . . . , s n ] k [Y 1 , . . . , Y n ] k [s 1 , . . . , s n ]

∪ −→ S

n

k [Y i − Y j ] k[H 1 , . . . , H n

i

]

k [Z − Y 1 , . . . , Z − Y n ] k [∆ r F n , F n ]

∪ −→ S

n

k [Y i − Y j ] k [H 1 , . . . , H n

i

]

Each H i is weighted hom. on the ∆ r F n (weight n − r ).

(65)

I NVARIANTS AND DIFFERENTIAL OPERATORS

F n (Z ) = Q

(Z − Y i ) = Z n − s 1 Z n−1 + . . . s n ∈ k [s 1 , . . . , s n ] k [Y 1 , . . . , Y n ] k [s 1 , . . . , s n ]

∪ −→ S

n

k [Y i − Y j ] k[H 1 , . . . , H n

i

]

k [Z − Y 1 , . . . , Z − Y n ] k [∆ r F n , F n ]

∪ −→ S

n

k [Y i − Y j ] k [H 1 , . . . , H n

i

]

Each H i is weighted hom. on the ∆ r F n (weight n − r ).

(66)

Elimination and differential operators

W EIGHTED P ULL - BACKS OF ALGEBRAS

Set k [Z − Y 1 , . . . , Z − Y n ] S

n

= k [∆ r F n , F n ]. The weighted pull-back k [∆ r F n W n−r , F n W n ] is

A[Z ][f n W n , ∆ r f n W n−r ].

The weighted-Pull-Back ofk [H 1 W d

1

, . . . , H s W d

s

] is A[h 1 W d

1

, . . . , h s W d

s

] ⊂ A[W ].

A[h 1 W d

1

, . . . , h s W d

s

] ⊂ A[Z ][f n W n , ∆ r f n W n−r ] D EFINITION

A[h 1 W d

1

, . . . , h s W d

s

] elimination alg. of A[Z ][f n W n , ∆ r f n W n−r ].

(67)

W EIGHTED P ULL - BACKS OF ALGEBRAS

Set k [Z − Y 1 , . . . , Z − Y n ] S

n

= k [∆ r F n , F n ]. The weighted pull-back k [∆ r F n W n−r , F n W n ] is

A[Z ][f n W n , ∆ r f n W n−r ].

The weighted-Pull-Back ofk [H 1 W d

1

, . . . , H s W d

s

] is A[h 1 W d

1

, . . . , h s W d

s

] ⊂ A[W ].

A[h 1 W d

1

, . . . , h s W d

s

] ⊂ A[Z ][f n W n , ∆ r f n W n−r ] D EFINITION

A[h 1 W d

1

, . . . , h s W d

s

] elimination alg. of A[Z ][f n W n , ∆ r f n W n−r ].

(68)

Elimination and differential operators

W EIGHTED P ULL - BACKS OF ALGEBRAS

Set k [Z − Y 1 , . . . , Z − Y n ] S

n

= k [∆ r F n , F n ]. The weighted pull-back k [∆ r F n W n−r , F n W n ] is

A[Z ][f n W n , ∆ r f n W n−r ].

The weighted-Pull-Back ofk [H 1 W d

1

, . . . , H s W d

s

] is A[h 1 W d

1

, . . . , h s W d

s

] ⊂ A[W ].

A[h 1 W d

1

, . . . , h s W d

s

] ⊂ A[Z ][f n W n , ∆ r f n W n−r ] D EFINITION

A[h 1 W d

1

, . . . , h s W d

s

] elimination alg. of A[Z ][f n W n , ∆ r f n W n−r ].

(69)

O UTLINE

1 I NTRODUCTION .

Multiplicity and the τ -invariant Local presentation

Strategy in characteristic zero Strategy in positive characteristic

2 R EES A LGEBRAS

Rees algebras and main invariants Resolution of Rees algebras Rees algebras and integral closure

3 E LIMINATION

Multiplicity of hypersurfaces Elimination and differentials

Absolute and relative differential structure

4 T HE MONOMIAL CASE .

Stage B’

(70)

Elimination: Absolute and relative differential structure

β d,d−τ : V (d) −→ V (d−τ) smooth τ ≤ d Diff β r

d,d−τ

sheaf of relative differential operators.

D EFINITION

G = ⊕ n≥0 I n W n ⊂ O V

(d)

[W ] is a relative Diff-algebra if Diff β r

d,d−τ

(I n ) ⊂ I n−r . Properties:

There is a smallest extension G ⊂ G β

d,d−τ

(G), where G β

d,d−τ

(G) is a relative (or absolute) Diff-algebra.

Sing(G) = Sing(G β

d,d−τ

(G)).

G β

d,d−τ

compatible with integral closure.

(71)

β d,d−τ : V (d) −→ V (d−τ) smooth τ ≤ d Diff β r

d,d−τ

sheaf of relative differential operators.

D EFINITION

G = ⊕ n≥0 I n W n ⊂ O V

(d)

[W ] is a relative Diff-algebra if Diff β r

d,d−τ

(I n ) ⊂ I n−r . Properties:

There is a smallest extension G ⊂ G β

d,d−τ

(G), where G β

d,d−τ

(G) is a relative (or absolute) Diff-algebra.

Sing(G) = Sing(G β

d,d−τ

(G)).

G β

d,d−τ

compatible with integral closure.

(72)

Elimination: Absolute and relative differential structure

β d,d−τ : V (d) −→ V (d−τ) smooth τ ≤ d Diff β r

d,d−τ

sheaf of relative differential operators.

D EFINITION

G = ⊕ n≥0 I n W n ⊂ O V

(d)

[W ] is a relative Diff-algebra if Diff β r

d,d−τ

(I n ) ⊂ I n−r . Properties:

There is a smallest extension G ⊂ G β

d,d−τ

(G), where G β

d,d−τ

(G) is a relative (or absolute) Diff-algebra.

Sing(G) = Sing(G β

d,d−τ

(G)).

G β

d,d−τ

compatible with integral closure.

(73)

β d,d−τ : V (d) −→ V (d−τ) smooth τ ≤ d Diff β r

d,d−τ

sheaf of relative differential operators.

D EFINITION

G = ⊕ n≥0 I n W n ⊂ O V

(d)

[W ] is a relative Diff-algebra if Diff β r

d,d−τ

(I n ) ⊂ I n−r . Properties:

There is a smallest extension G ⊂ G β

d,d−τ

(G), where G β

d,d−τ

(G) is a relative (or absolute) Diff-algebra.

Sing(G) = Sing(G β

d,d−τ

(G)).

G β

d,d−τ

compatible with integral closure.

(74)

Elimination: Absolute and relative differential structure

R ELATIVE DIFFERENTIALS AND E LIMINATION

Given G and V (d) −→ β V (d−1) smooth and generic.

Assume,

G = O V

(d)

[f n W n , ∆ α (f n )W n−α ] 1≤α≤n

then G is a relative Diff-algebra and there is an elimination algebra,

R G,β ⊂ O V

(d−1)

[W ].

(75)

V smooth | k G = ⊕I k W k ⊂ O V [W ] ord : Sing(G) → Q Assume: ord(x ) = 1 for any x ∈ Sing(G).

At each x ∈ Sing(G) : C G,x ⊂ T V ,x

Linear subspace L G,x ⊂ C G,x

D EFINITION (H IRONAKA ) τ (x )= codim L G,x in T V,x . D EFINITION

G is of codimensional type ≥ e if τ (x ) ≥ e for all x ∈ Sing(G)

(76)

Elimination: Absolute and relative differential structure

V smooth | k G = ⊕I k W k ⊂ O V [W ] ord : Sing(G) → Q Assume: ord(x ) = 1 for any x ∈ Sing(G).

At each x ∈ Sing(G) : C G,x ⊂ T V ,x

Linear subspace L G,x ⊂ C G,x

D EFINITION (H IRONAKA ) τ (x )= codim L G,x in T V,x . D EFINITION

G is of codimensional type ≥ e if τ (x ) ≥ e for all x ∈ Sing(G)

(77)

V smooth | k G = ⊕I k W k ⊂ O V [W ] ord : Sing(G) → Q Assume: ord(x ) = 1 for any x ∈ Sing(G).

At each x ∈ Sing(G) : C G,x ⊂ T V ,x

Linear subspace L G,x ⊂ C G,x

D EFINITION (H IRONAKA ) τ (x )= codim L G,x in T V,x . D EFINITION

G is of codimensional type ≥ e if τ (x ) ≥ e for all x ∈ Sing(G)

(78)

Elimination: Absolute and relative differential structure

V (d) smooth | k G = ⊕I k W k ⊂ O V

(d)

Assume ord(x) = 1, and G is of codimensional type ≥ τ . T HEOREM

If G is rel. Diff-alg. for β d,d−τ : V (d) → V (d−τ) generic, then:

(Local Presentation)

G ∼ O V

(d)

[f n

i

W n

i

, ∆ α

i

f n

i

W n

i

−|α

i

| ] β d,d−e (G (d−τ) ).

(79)

L OCAL PRESENTATION

(V (d) , x) −→ β (V (d−τ) , x τ ) a composition of smooth morphisms (V (d) , x ) −→ (V (d−1) , x 1 ) −→ . . . −→ (V (d−τ) , x τ ) A local presentation of X (at x ) is defined by

(1) Positive integers 0 ≤ e 1 ≤ e 2 ≤ · · · ≤ e τ . (2) Monic polynomials,

f 1 (p

e1

) (z 1 ) = z 1 p

e1

+ a (1) 1 z 1 p

e1

−1 + · · · + a (1) p

e1

∈ O V

(d−1)

[z 1 ] .. .

f τ (p

eτ

) (z τ ) = z τ p

+ a (τ) 1 z τ p

−1 + · · · + a (τ) p

∈ O V

(d−τ)

[z τ ].

(3) I (s) : an ideal in O V

(d−τ)

and a positive integer s.

F b =

τ

\

i=1

{x ∈ V (d) | ν x f i (p

ei

)

≥ p e

i

}∩{x ∈ V (d) | ν x (β (I (s) )) ≥ s}

(80)

Elimination: Absolute and relative differential structure

V (d) smooth | k G = ⊕I k W k ⊂ O V

(d)

Assume ord(x) = 1, and G is of codimensional type ≥ e.

T HEOREM

If G is rel. Diff-alg. for β d,d−τ : V (d) → V (d−τ) generic, then:

(Local Presentation)

G ∼ O V

(d)

[f n

i

W n

i

, ∆ α

i

f n

i

W n

i

−|α

i

| ] β d,d−τ (G (d−τ) ) G (d−τ) ⊂ O V

(d−e)

[W ] (Elimination algebra).

Sing(G) = β d,d−τ (Sing(G)) ⊂ Sing(G (d−τ) )

The natural restriction ord : Sing(G (d−τ) ) → Q to Sing(G) is

independent of β d,d−τ .

(81)

V (d) smooth | k G = ⊕I k W k ⊂ O V

(d)

Assume ord(x) = 1, and G is of codimensional type ≥ e.

T HEOREM

If G is rel. Diff-alg. for β d,d−τ : V (d) → V (d−τ) generic, then:

(Local Presentation)

G ∼ O V

(d)

[f n

i

W n

i

, ∆ α

i

f n

i

W n

i

−|α

i

| ] β d,d−τ (G (d−τ) ) G (d−τ) ⊂ O V

(d−e)

[W ] (Elimination algebra).

Sing(G) = β d,d−τ (Sing(G)) ⊂ Sing(G (d−τ) )

The natural restriction ord : Sing(G (d−τ) ) → Q to Sing(G) is

independent of β d,d−τ .

(82)

Elimination: Absolute and relative differential structure

T HEOREM

If G is absolute diff. algebra: Sing(G) = Sing(G (d−τ) ) (Stability) If Y ⊂ Sing(G) smooth, Y ∼ = π(Y ) and

(V (d) , G)

β

(V 1 (d) , G 1 )

oo

β

1

(V (d−τ) , G (d−τ ) ) oo (V 1 (d−τ ) , G 1 (d−τ) )

And G 1 is relative differential.

(83)

T HEOREM

If G is absolute diff. algebra: Sing(G) = Sing(G (d−τ) ) (Stability) If Y ⊂ Sing(G) smooth, Y ∼ = π(Y ) and

(V (d) , G)

β

(V 1 (d) , G 1 )

oo

β

1

(V (d−τ) , G (d−τ ) ) oo (V 1 (d−τ ) , G 1 (d−τ) )

And G 1 is relative differential.

参照

関連したドキュメント

Let T be a reduced purely two-dimensional scheme, projective over an algebraically closed field of positive characteristic (resp. the algebraic closure of a finite field). Let L be

The paper is organized as follows: in Section 2 we give the definition of characteristic subobject and we prove some properties that hold in any semi-abelian category, like

On the other hand, recently, Sa¨ıdi-Tamagawa proved a weak version about the finiteness theorem over arbitrary algebraically closed fields of characteristic p > 0 which says

Roughly speaking, the combinatorial anabelian geometry is a kind of anabelian theory of curves over algebraically closed fields which focus on reconstructions of geometric data

By applying combinatorial Grothendieck conjecture, all the results concerning the tame anabelian geometry of smooth curves over algebraically closed fields of characteristic p >

Next, let us observe that it follows from Lemma 2.4 and [1], Proposition 3.2, that the zero divisor of the square Hasse invariant of this nilpotent indigenous bundle coincides with

In § 6, we give, by applying the results obtained in the present paper, a complete list of nilpotent/nilpotent admissible/nilpotent ordinary indigenous bundles over a projective

Kraaikamp [7] (see also [9]), was introduced to improve some dio- phantine approximation properties of the regular one-dimensional contin- ued fraction algorithm in the following