• 検索結果がありません。

Stationary measures for the three-state Grover walk with one defect in one dimension (Mathematical Aspects of Quantum Fields and Related Topics)

N/A
N/A
Protected

Academic year: 2021

シェア "Stationary measures for the three-state Grover walk with one defect in one dimension (Mathematical Aspects of Quantum Fields and Related Topics)"

Copied!
11
0
0

読み込み中.... (全文を見る)

全文

(1)45. 数理解析研究所講究録 第2010巻 2016年 45-55. Stationary. measures. with. one. of. defect in. Endo1,2,. Takako. ’Department. 2‐1‐1. Kawai3,. dimension. Norio. Konno4. Ohtsuka, Bunkyo, Tokyo, 112‐0012, Japan of. Physics and Astronomy, Monash University. 19 Rainforest. 4Department. Hikari. one. Physics, Graduate School of Humanities and Sciences, Ocllanornizu University. 2School. 3,. for the three‐state Grover walk. of. Watk, Clayton VIC 3800, Australia. Applied Mathematics, Faculty of Engineering, Yokohama 79‐5 Tokiwadai,. National. University. Hodogaya, Yokohama, 240.8501, Japan. Abstract. We obtain stationary measures for the one‐dimensional three‐state Grover walk with one defect by solving the corresponding eigenvalue problem. We clarify a relation between stationary and limit measures of the walk.. Introduction. 1. The quantum walk (QW) was introduced as a quantum version of the classical random walk. The QW has attracted much attention in various fields. The review and books on QWs are Venegas‐Andraca [16], Konno. [9],. Cantero et al.. [1], Portugal [14],. Manouchehri and. Wang [13], for examples.. The present paper deals with stationary measures of the discrete‐time case QWs on \mathb {Z} where \mathrm{Z} is the set of integers. The stationary measures of Markov chains have been intensively investigated, however, the ,. corresponding study for.QW has not been given sufficiently. As for stationary measures of two‐state QWs, [11] treated QWs with one defect at the origin and showed that a stationary measure with exponential deca\mathrm{y}^{} with respect to the position for the QW starting from infinite sites is identical to a time‐ averaged limit measure for the same QW starting from just the olugin. Konno [10] investigated stationary measures for various cases. Endo et al. [6] got a stationary measure of the QW with one defect whose quantum coins are defined by the Hadamard matrix at x\neq 0 and the rotation matrix at x=0 Endo and Konno [3] calculated a stationary measure of QW with one defect which was introduced and studied by Wójcik et al. [15]. Moreover, Endo et al. [5] and Endo et al. [2] obtained stationary measures of the two‐phase QW without defect and with one defect, respectively. Konno and Takei [12] considered stationary measures of QWs and gave non‐uniform stationary measures. They proved that the set of the stationary measures contains uniform measure for the QW in general. As for stationary measures of three‐state QWs, Konno [10] obtained stationary measures of the three‐state Grover walk. Furthermore, Wang et al. [17] investigated stationary measures of the three‐state Grover walk with one defect at the origin. Endo et al. [4] got stationary measures for the three‐state diagonal quantum walks without defect or with one defect.. ‘Konno et al.. .. In this paper, we consider stationary measures for the three‐state Grover walk with one defect introduced by Wang et al. [17] by clarifying their argument. Moreover, we find out a relation between stationary and limit. measures. of the walk.. The rest of the paper is organized as follows. Section 2 gives the definition of our model. In \mathrm{S}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{\backslash }3 , we present solutions of eigenvalue problem by a generating function method. In Section 4, we obtain stationary measures. and. clarify. a. relation between. stationary and limit. summary.. Keywords:. Quantum walk, stationary. measure, Grover walk. measures. for the walk. Section 5 is devoted to.

(2) 46. Definition of Our Model. 2. This section. gives. the definition of. three‐state. our. QW. with. one. defect at the. origin. on. \mathb {Z} The discrete‐time .. quantum version of the classical random walk with additional degree of freedom caned chirality. The chirality takes values left, stay, or right, and it means the motion of the walker. At each time step, if the walker has the left chirality, it moves one step to the left, and if it has the right chirality, it moves one step to the right. If it has the stay chirality, it stays at the same position.. QW. is. a. Let. where. us. define. L, O and. |L\rangle=\left\{ begin{ar y}{l 1\ 0\ 0 \end{ar y}\right\},|O)=\left\{ begin{ar y}{l 0\ 1\ 0 \end{ar y}\right\}|R\rangle=\left\{ begin{ar y}{l 0\ 0\ 1 \end{ar y}\right\}. R refer to the. left, stay. and. right chirality states, respectively. by a sequence of 3\times 3 unitary matrices \{U_{x} : x\in \mathbb{Z}\} where. The time evolution of the walk is determined. with. u_{x,jk}\in \mathbb{C}(x\in \mathbb{Z}jk=123). model,. we. ,. U_{x}=\left{\begin{ar y}{l u_{x,\mathrm{l}\ athrm{l}&u_{x,\mathrm{l}2&u_{x,\mathrm{l}3\ u_{x,21|}&u_{x,2}&u_{x,23}\ u_{x,31}&u_{x,32}&u_{x,3} \end{ar y}\right\}. and \mathb {C} is the set of complex numbers. To define the. dynamics of. U_{x}^L_{\overline{\neg} \left\{ begin{ar y}{l u_{x,\mathrm{l}\mathrm{l} &u_{x,12}&\primeu_{x,13}\ 0& 0\ 0& 0 \end{ar y}\right\}, U_{x}^o=\left\{ begin{ar y}{l 0&0&0\ \mathrm{u}_x,2\mathrm{l} &u_{x,2 }&u_{x,23}\ 0&0&0 \end{ar y}\right\} U_{x}^{R}=\left\{ begin{ar y}{l 0&0&0\ 0&0&0\ u_{x,3\mathrm{l} &u_{x,32}&u_{x,3 } \end{ar y}\right\}. with. U_{x}=U_{x}^{L}+U_{x}^{O}+U_{x}^{R}. the left. (resp. right). at. .. The. important point. position. x. at each time. U_{x}^{L} (resp. U_{x}^{R} ) represents that the walker moves U_{x}^{O} represents that the walker stays at position x.. is that. step.. The model considered here is. where. $\omega$=e^{i $\theta$}( $\theta$\in[02 $\pi$. If $\theta$=0 , that. is,. Here. $\omega$=1 then. U_{G}. given by. U_{G}=\displaystyle \frac{1}{3}[_{2}^{-1}2 -12 -212].. on. $\Psi$_{n} denote the amplitude. to. U_{x}=\left\{ begin{ar ay}{l} $\omega$U_{G}&(x=0)\ U_{G}&(x=\pm1\pm2. \end{ar ay}\right.. is the Grover matrix. U_{x}=U_{G} for. usual three‐state Grover walk Let. our. divide U_{x} into three matrices:. any x\in \mathbb{Z}. .. So this. space‐homogeneous. model is. equivalent. to the. \mathbb{Z}. at time. n. of the. QW. as. follows.. $\Psi$_{n}= $\eta$\ldots$\Psi$_{n}^{L}(-1)$\Psi$_{n}^{O}(-1)$\Psi$_{n}^{R}(-1)$\Psi$_{n}^{L}(0)$\Psi$_{n}^{O}(0) , $\Psi$_{r $\iota$}^{R}(0)$\Psi$_{n}^{L}(1)$\Psi$_{n}^{O}(1)$\Psi$_{n}^{R}(1)\cdots]. where T. =^{T}[\cdots[_{$\Psi$_{n}^{R}(-1)}^{$\Psi$_{n}^{L}(-1)}$\Psi$_{n}^{o}(-1)][_{$\Psi$_{n}^{R}(0)}^{$\Psi$_{n}^{L}(0)}$\Psi$_{n}^{O}(0)][$\Psi$_{n}0_{(1)]\cdots]}$\Psi$_{n}^{L}(1). means. the. transposed operation. Then. the time evolution of the walk is defined. $\Psi$_{n+1}(x)=U_{x+1}^{L}$\Psi$_{n}(x+1)+U_{x}^{O}$\Psi$_{n}(x)+U_{x-1}^{R}$\Psi$_{n}(x-1). .. Now let. U^{(s)}=. U_{\frac}2 {o:OR}2 U_{\frac}O1 {oR}U_\frac:L1O U_{0}^R o {L}O^:. U_{1}^R OU_{1}^Lo: U_{2}^O Lo^{:}O :. :. :. with. 0=\left{\begin{ar y}{l 0& 0\ 0& 0\ 0& 0 \end{ar y}\right\}. by. (2.1).

(3) 47. Then the state of the. QW. at time. n. is. given by. $\Psi$_{n}=(U^{(s)})^{n}$\Psi$_{0}, for any n\geq 0. \mathbb{R}+=[0\infty ).. Let. .. Here. introduce. we. a. map. $\phi$. :. (\mathb {C}^{3})^{\mathrm{z} \rightar ow \mathb {R}_{+}^{\mathrm{Z}. such that if. $\Psi$=^{T}[\cdots[_{$\Psi$^{R}(-1)}^{$\Psi$^{L}(-1)}$\Psi$^{O}(-1)][_{$\Psi$^{R}(0)}^{$\Psi$^{L}(0)}$\Psi$^{O}(0)][_{$\Psi$^{R}(1)}^{$\Psi$^{L}(1)}$\Psi$^{O}(1)]\cdots]\in(\mathb {C}^{3})^{\mathrm{z}. then. $\phi$( $\Psi$)=^{T}[\ldots |$\Psi$^{L}(-1)|^{2}+|$\Psi$^{O}(-1)|^{2}+|$\Psi$^{R}(-1)|^{2}|$\Psi$^{L}(0)|^{2}+|$\Psi$^{O}(0)|^{2}+|$\Psi$^{R}(0)|^{2} |$\Psi$^{L}(1)|^{2}+|$\Psi$^{O}(1)|^{2}+|$\Psi$^{R}(1)|^{2} .]\in \mathb {R}_{+}^{\mathb {Z} . ... ,. That. is, for. any x\in \mathbb{Z}. $\phi$( $\Psi$)(x)= $\phi$( $\Psi$(x))=|$\Psi$^{L}(x)|^{2}+|$\Psi$^{O}(x)|^{2}+|$\Psi$^{R}(x)|^{2}. Moreover. we. define the. measure. of the. QW. at. position. x. by. $\mu$(x)= $\phi$( $\Psi$(x)) (x\in \mathrm{Z}) Now. we are. ready. to introduce the set of. \mathcal{M}_{8}=\mathcal{M}_{s}(U)=\{ $\phi$($\Psi$_{0})\in \mathb {R}_{+}^{\mathrm{Z} \backslash \{0\} where 0 is the Next. we. zero. :. stationary. measure:. there exists $\Psi$_{0} such that. vector. We call the element of. consider the. \mathcal{M}_{s} eigenvalue problem of the QW:. the. Remark that Let. | $\lambda$|=1. on. $\mu$_{n}(x). since. eigenvalue. be the. $\lambda$. .. measure. U^{( $\epsilon$)} Then. is. unitary.. we see. of the. QW. that. at. $\phi$( U^{(s)})^{n^{\triangleright} $\Psi$_{0})= $\phi$($\Psi$_{0}). stationary. U^{(s)} $\Psi$ 1= $\lambda \Psi$ ( $\lambda$\in \mathbb{C}) dependence. .. \displaystyle \lim_{n\rightar ow\infty}$\mu$_{n}(x). exists for any x\in \mathbb{Z} then. we. and at time. define the limit. n. Splitted Generating. In this. method. in order to. emphasize. the. i.e.,. .. measure. $\mu$_{\infty}(x)=\displaystyle \lim_{n\rightar ow\infty}$\mu$_{n}(x) (x\in \mathbb{Z}) 3. $\Psi$=$\Psi$^{( $\lambda$)}. We sometime write x. n\geq 0\}, (2.2). $\phi$($\Psi$^{( $\lambda$)})\in \mathcal{M}_{ $\epsilon$}.. position. any. QW.. .. $\mu$_{n}(x)= $\phi$($\Psi$_{n}(x)) (x\in \mathbb{Z}) If. measure. of the. for. $\mu$_{\infty}(x) by. .. Function Method. we give solutions of eigenvalue problem, U^{(s)} $\Psi$= $\lambda \Psi$ by the splitted generating function developed in the previous stndies [11, 3]. First we see that U^{(s)} $\Psi$= $\lambda \Psi$ is equivalent to the following. section,. relations:. $\lambda$[_{$\Psi$^{1\mathrm{i}(1)}^{$\Psi$^{L}(1)}$\Psi$^{O}(1)]=\displaystyle\frac{1}{3}[2$\Psi$^{L}2(1)-$\Psi$^{O}(1)+2$\Psi$^{R}(1)] $\lambda$\displayst le\left\{ begin{ar y}{l $\alpha$\ $\beta$\ $\gam a$ \end{ar y}\right\}= frac{1}3[2$\omega\ lpha$- \omega$\sqrt{}+2$\omega\gam a$] $\lambda$[_{ \Psi$^{R}(-1)}^{$\Psi$^{L}(-1)}$\Psi$^{O}(-1)]=\displaystle\frac{1}3[_{2} _{$\Psi$^{L}(-2)+ $\Psi$^{O}(-2)$\Psi$^{R}(-2)}^{-$\omega\lpha$+2$\omega\beta$+2$\omega\gam a$} \Psi$^{L}(-1)$\Psi$^{O}(-1)+2$\Psi$^{R}(-1)].

(4) 48. and for. x\neq-101. $\lambda$[_{$\Psi$^{R}(x)^{$\Psi$^{L}(x)$\Psi$^{O}(x)]=\displayst le\frac{1}3[_{2$\Psi$^{L}(x-1)+2$\Psi$^{O}(x-1)$\Psi$^{R}(x-1)}^{-$\Psi$^{L}(x+1) 2$\Psi$^{O}(x+1) 2$\Psi$^{R}(x+1)}2$\Psi$^{L}(x)-$\Psi$^{O}(x)+2$\Psi$^{R}(x)] where. $\Psi$^{L}(0)= $\alpha \Psi$^{O}(0)= $\beta$, $\Psi$^{R}(0)= $\gamma$. Here. we. introduce six. with. generating functions. | $\alpha$|^{2}+| $\beta$|^{2}+| $\gamma$|^{2}>0. as. follows:. f_{+}^{j}\displaystyle \langle z)=\sum_{x=1}^{\infty}$\Psi$^{j}(x)z^{x}, f_{-}^{j}(z)=\sum_{x=-1}^{-\infty}$\Psi$^{j}(x)z^{x} (j=L. OR) Then the. following lemma. LEMMA3.1. was. given Uy Wang. et al.. [17].. We put. A=[-\displayte\frac{2}3.$\lambd$+\frac{1}3-\frac{2z}3-\frac{2}3z where. .. -\displayst le\frac{2}3z}. f_{\pm}(z)=\left{bginary}{l f_\pm}^{L(z)\ f_{pm}^O(z)\ f_{pm}^R(z) \end{ary}\ight,. -\displaystle\frac{2}3 $\lambda$+\displaystyle\frac{z}3. a_{+}(z)=\left{bginary}{l -$\ambd\alph$\el 0\frac{$omega$z(2\alph$+2\beta$-\gma$)}{3 \end{ary}\ight a_{-}(z)=[\displaystle\frac{$\omega$(- \alph$+2\sqrt{}+2$\gam a$)}{3z0]. | $\alpha$|^{2}+| $\beta$|^{2}+| $\gamma$|^{2}>0. .. Then. we. have. Af_{\pm}(z)=a\pm(z). .. We should remark that. \displaystyle \det A=\frac{ $\lambda$( $\lambda$-1)}{3z}\{z^{2}+3( $\lambda$+\frac{4}{3}+\frac{1}{ $\lambda$}.)z+1\}. Then. $\theta$_{s}. and. $\theta$_{l}(\in \mathbb{C}). are. defined. by. \displaystyle \det A=\frac{ $\lambda$( $\lambda$-1)}{3z}(z+$\theta$_{s})(z+$\theta$_{l}) where. Wang. |$\theta$_{s}|\leq 1\leq|$\theta$_{l}| [17].. et al.. .. Note that. $\theta$_{s}$\theta$_{l}=1 Lemma .. 3.1. gives the following lemma which. was. also shown. by.

(5) 49. LEMMA 3.2. Here. $\Psi$^{L}(x)=\left\{ begin{ar y}{l $\alpha$(- \thea$_{s}^L(+)^{x}&(x\geq1)\ -\frac{(3$\lambda$+1)$\Delta$(-) \omega$-6($\lambda$+1)$\gam a$}{3($\lambda$-1)}($\thea$_{s}^L(-)^{x}&(x\leq-1), \end{ar y}\right. $\Psi^{O}(x)=\left{\begin{ar y}{l -\frac{2($\Delta$(+) \omega$-3 \alph$)}{3($\lambd$-1)}($\thea$_{s}^O(+)^{x}&(\geq1)\ -frac{2($\Delta$\ngle-)$\omega$-3 \gam $)}{3($\lambd$-1\rangle}(-$\thea$_{s}^O(-)^{x}&(\leq-1) \end{ar y}\right. $\Psi$^{R}(x)=\left\{begin{ar y}{l -\frac{(3$\lambda$+1)\triangle(+)$\omega$-6($\lambda$+1)$\alph$}{3($\lambda$-1)}($\thea$_{s}^R(+)^{x}&(x\geq1)\ $\gam a$(-\thea$_{s}^R(-)^{x}&(x\leq-1). \end{ar y}\right.. \triangle(+)=2 $\alpha$+2\sqrt{}- $\gamma \Delta$. =- $\alpha$+2\sqrt{}+2 $\gamma$ and. $\theta$_{s}^{L}(+)=-\displaystyle \frac{2( $\lambda$+1)\triangle(+) $\omega$-3$\lambda$^{2}(3 $\lambda$+1) $\alpha$}{3 $\lambda$( $\lambda$-1) $\alpha$} $\theta$_{s}^{L} =\frac{( $\lambda$-1) $\Delta$(-) $\omega$}{ $\lambda$\{(3 $\lambda$+1) $\Delta$(-) $\omega$-6( $\lambda$+1) $\gam a$\} ) $\theta$_{s}^{O}(+)=\displaystyle\frac{$\Delta$(+)$\omega$-3$\lambda$^{2}$\alpha$}{$\lambda$(\triangle(+)$\omega$-3$\alpha$)}$\theta$_{8}^{O}=\frac{$\Delta$(-)$\omega$-3$\lambda$^{2}$\gam a$}{$\lambda$( \Delta$(-)$\omega$-3$\gam a$)} $\theta$_{s}^{R}(+)=\displaystyle \frac{( $\lambda$-1) $\Delta$(+) $\omega$}{ $\lambda$\{(3 $\lambda$+1) $\Delta$(+) $\omega$-6( $\lambda$+1) $\alpha$\} $\theta$_{s}^{R} =-\frac{2( $\lambda$+1) $\Delta$(-) $\omega$-3$\lambda$^{2}(3 $\lambda$+1) $\gam a$}{3 $\lambda$( $\lambda$-1) $\gam a$}. From. now. on,. find out. we. a. necessary and sufficient condition for. $\theta$_{s}^{L}(+).=$\theta$_{s}^{o}(+)=$\theta$_{s}^{R}(+)=$\theta$_{8}^{L} =$\theta$_{8}^{o} =$\theta$_{s}^{R} First. we see. that. $\theta$_{S}^{L}(+)=$\theta$_{ $\epsilon$}^{R}. and. $\theta$_{s}^{R}(+)=$\theta$_{s}^{L}. give. ( $\alpha$- $\gamma$)( $\alpha$+ $\gamma$-2 $\beta$)=0. In. a. similar. Moreover. \mathrm{f}\mathrm{a}s\mathrm{h}\mathrm{i}\mathrm{o}\mathrm{n}$\theta$_{s}^{O}(+)=$\theta$_{s}^{O}. $\theta$_{8}^{L}(+)=$\theta$_{8}^{O}(+). implies. ( $\alpha$- $\gamma$)( $\alpha$+ $\gamma$-2 $\beta$)( $\lambda$+1)( $\lambda$-1), =0.. and. $\theta$_{ $\epsilon$}^{O}(+)=$\theta$_{\dot{s} ^{R}(+). give. ( $\lambda$+1)\{9 $\alpha$( $\omega \Delta$(+)-2 $\alpha$)$\lambda$^{2}-6 $\alpha \omega \Delta$(+) $\lambda$-w $\Delta$(+)(2 $\omega \Delta$(+)-9 $\alpha$)\}=0. Similarly combining. $\theta$_{S}^{L}. =$\theta$_{ $\delta$}^{o}. with. $\theta$_{$\delta$}^{o}. =$\theta$_{ $\epsilon$}^{R}. implies. ( $\lambda$+1)\{9 $\gamma$( $\omega \Delta$(-) 2 $\gamma$)$\lambda$^{2}-6 $\gamma \omega \Delta$(-) $\lambda$- $\omega \Delta$(-)(2 $\omega$\triangle(-) 9 $\gamma$)\}=0. From. $\theta$_{s}^{L}(+)=$\theta$_{S}^{R}(+). we. get. (3 $\lambda$+1)( $\lambda$+.1)\{9 $\alpha$( $\omega \Delta$(+)-2 $\alpha$)$\lambda$^{2}-6 $\alpha \omega \Delta$(+) $\lambda$- $\omega \Delta$(+)(2 $\omega \Delta$(+)-9 $\alpha$)\}=0. \mathrm{F}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}$\theta$_{s}^{L}. =$\theta$_{s}^{R}. gives. (3 $\lambda$+1)( $\lambda$+1)\{9 $\gamma$( $\omega$\triangle(-) 2 $\gamma$)$\lambda$^{2}-6 $\gamma \omega \Delta$(-) $\lambda$- $\omega \Delta$(-)(2 $\omega \Delta$(-) 9 $\gamma$)\}=0. Therefore. we. have.

(6) 50. LEMMA 3.3 A necessary and. sufficient. condition. for. $\theta$_{s}^{L}(+)=$\theta$_{s}^{O}(+)=$\theta$_{s}^{R}(+)=$\theta$_{8}^{L} =$\theta$_{s}^{O} =$\theta$_{8}^{R} is that. $\alpha \beta \gamma$. and. $\lambda$(\in \mathbb{C}). with. |\mathrm{a}|^{2}+| $\beta$|^{2}+| $\gamma$|^{2}>0. and. | $\lambda$|=1 satisfy. $\beta$=\displayst le\frac{2$\omega$( \alpha$+ \gam a$)}{3$\lambda$+ \omega$}. (3.3) (3.4). ( $\alpha$- $\gamma$)( $\alpha$+ $\gamma$-2 $\beta$)=0. ( $\lambda$+1)\{9 $\alpha$( $\omega \Delta$(+)-2 $\alpha$)$\lambda$^{2}-6 $\alpha \omega \Delta$(+) $\lambda$- $\omega$\triangle(+)(2 $\omega \Delta$(+)-9 $\alpha$)\}=0 ( $\lambda$+1)\{9 $\gamma$( $\omega \Delta$(-\rangle-2 $\gamma$)$\lambda$^{2}-6 $\gamma \omega \Delta$(-) $\lambda$- $\omega \Delta$(-)(2 $\omega \Delta$(-) 9 $\gamma$)\}=0. (3.5). (3.6). .. is missing in Wang et al. [17]. eigenvalue $\lambda$ for U^{(8)} $\Psi$= $\lambda \Psi$ as follows. spaceinhomogeneous.. We should note that. By is,. our. Lemma. QW. )(\mathrm{i})a= $\gamma$. is. 3.3,. We. case.. (a) $\alpha$\neq $\beta$. relation. a. we. that. see. case.. (3.3). obtain the. Eq. (3.5). If $\alpha$=0 then. is. equivalent. to. Here. we assume. Eq. (3.6), since $\Delta$(+)= $\Delta$. Eq. (3.3) gives $\beta$=0 So .. we assume. that. $\omega$\neq 1. that. = $\alpha$+2 $\beta$.. $\alpha \beta \gamma$\neq 0. .. Then. Eq. (3.5) implies. \displaystyle \frac{27$\alpha$^{2} {(3 $\lambda$+ $\omega$)^{2} ( $\lambda$+1)\{3( $\omega$-2)$\lambda$^{4}+2(5 $\omega$-3) $\omega \lambda$^{3} +(3$\omega$^{2}-8 $\omega$+3) $\omega \lambda$^{2}+2(5-3 $\omega$)$\omega$^{2} $\lambda$+3$\omega$^{3}(1-2 $\omega$)\}=0. One solution of this. explicitly. So. (b) $\alpha$= $\beta$. $\lambda$= $\omega$. case. .. we. equation is $\lambda$_{1}=-1 The rest of ggt stationary measures. .. $\lambda$_{2}$\lambda$_{3}$\lambda$_{4}$\lambda$_{5}. solutions. are. not obtained. do not. If $\alpha$=0 then. Eq. (3.5) gives. Eq. (3.3) gives $\beta$=0 So .. we assume. $\alpha$\sqrt{} $\gamma$\neq 0. .. Then. Eq. (3.3) implies. 27 $\lambda \alpha$^{2}( $\lambda$+1)( $\lambda$-1)^{2}=0. Then. (ii). $\beta$=\displaystyle\frac{$\alpha$+$\gam a$}{2}. we. have $\lambda$=-1 , since. $\omega$\neq 1.. case.. (a) $\beta$=0. case.. $\alpha$=- $\gamma$. we. Combining Eq. (3.3) with $\beta$=( $\alpha$+ $\gamma$)/2 gives. $\alpha$=- $\gamma$. .. Eq. (3.5) and. Then from. have. 9$\alpha$^{2}($\lambda$+1)($\lambda$-\displaystyle\frac{$\omega$+\sqrt{6$\omega$( \omega$-1)^{2} {3$\omega$-2})($\lambda$-\frac{$\omega$-\sqrt{6$\omega$( \omega$-1)^{2} {3$\omega$-2})=0.. Remark that Eq.. (3.5). is. equivalent. to. Eq. (3.6). since. \triangle(+)=- $\Delta$(-)=3 $\alpha$ Thus, $\alpha$\neq 0 implies .. $\lambda$=-1,\displaystyle\frac{$\omega$\pm\sqrt{6$\omega$($\omega$-1)^{2} {3$\omega$-2} (b) $\beta$\neq 0. $\lambda$= $\omega$. case. we. Combining Eq. (3.3). with. (3.7). .. $\beta$=( $\alpha$+ $\gamma$)/2 gives. $\lambda$=.. $\omega$. have. 27$\alpha$^{2} $\lambda$( $\lambda$+1)( $\lambda$-1)^{2}=0. Similarly, combining Eq. (3.6). with $\lambda$= $\omega$. gives. 27$\gamma$^{2} $\lambda$( $\lambda$+1)( $\lambda$-1)^{2}=0. Then $\lambda$=-1 follows from above two. We note that $\alpha$= $\gamma$ and. equations.. $\beta$=( $\alpha$+ $\gamma$)/2 gives \mathrm{a}= $\beta$= $\gamma$. .. This. case. is. (i‐b).. .. Then from. Eq. (3.5) and.

(7) 51. 4. Stationary Measures. First. we. Then. we see. obtain stationary. measures. for. (ii‐a). case. with respect to the. following $\lambda$ :. $\lambda$(\displaystyle\pm)=\frac{$\omega$\pm\sqrt{6$\omega$( \omega$-1)^{2} {3$\omega$-2}. that for. OR. j=L,. $\theta$_{s}^{j}(\displaystyle\pm)=\frac{-(3$\omega$+2)+2\sqrt{6}e^{\frac{$\theta$}{2}i {(2-3$\omega$)(1+2\sqrt{3(1-\cos$\theta$)}i \frac{-(3$\omega$+2)+2\sqrt{6}e^{\frac{$\theta$}{2}i {(2-3$\omega$)(1-2\sqrt{3(1-\cos$\theta$)}i \displaystyle\frac{-(3$\omega$+2)-2\sqrt{6}e\Si}{(2-3$\omega$)(1+2\sqrt{3(1-\cos$\theta$)}i)}\frac{-(3$\omega$+2)-2\sqrt{6}e^{\frac{$\theta$}{2}i {(2-3$\omega$)(1-2\sqrt{3(1-\cos$\theta$)}i)}. Note that. $\theta$_{s}^{j}(\pm)(j=L, O, R). do not. depend. on. j\mathrm{a}\mathrm{n}\mathrm{d}\pm. ,. so we. put. $\theta$_{s}=$\theta$_{s}^{j}(\pm). .. Then. we. get. |$\theta$_{s}|^{2}=\displaystyle \frac{37+12\cos $\theta$\pm 20\sqrt{6}\cos( $\theta$/2)}{(13_{:}-12\cos $\theta$)^{2} . We should remark that if. 0\leq $\theta$\leq 4 $\pi$ with. axccos. then. (1/3)=1.2309\ldots\leq $\theta$\leq 4 $\pi$-\arccos(1/3)=11.3354\ldots,. |$\theta$_{B}|^{2}=\displaystyle \frac{37+12\cos $\theta$+20\sqrt{6}\cos( $\theta$/2)}{(13-12\cos $\theta$)^{2} \leq 1. \mathrm{S}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}x1\mathrm{y}. if. 0\leq $\theta$\leq 4 $\pi$ with. 4 $\pi$ then. 0\leq $\theta$\leq 2 $\pi$-\arccos(1/3)=5.0522\ldots. and. 2 $\pi$+\arccos(1/3)=7.5141\ldots\leq $\theta$\leq. |$\theta$_{s}|^{2}=\displaystyle \frac{37+12\cos $\theta$-20\sqrt{6}\cos( $\theta$/2)}{(13-12\cos $\theta$)^{2} \leq 1. From Lemma 3.2 for this case,. we. have the. eigenvalues for $\lambda$(\pm). as. follows.. $\Psi$^{L}(x)=$\alpha$\times\left\{ begin{ar y}{l (-$\theta$_{s})^{x}&(x\geq1)\ \frac{(3$\lambda$+1)$\omega$-2($\lambda$+1)}{$\lambda$-1}(-$\theta$_{s})^{-x}&(x\leq-1) \end{ar y}\right. \backslah$\Psi$^{O}(x)=$\alpha$\times\left\{ begin{ar y}{l -2\frac{$\omega$-1}{$\lambda$-1}($\thea$_{8})^{x}&(x\geq1)\ 2\frac{$\omega$-1}{$\lambda$-1}($\thea$_{8})^{-x}&(x\leq-1), \end{ar y}\right.. $\Psi$^{R}(x)=$\alpha$\times\left\{ begin{ar y}{l -\frac{(3$\lambda$+1)$\omega$-2($\lambda$+1)}{$\lambda$-1}(-$\theta$_{s})^{x}&(x\geq1)\ -($\theta$_{s})^{-x}&(x\leq-1). \end{ar y}\right. Here. we. note that. \displaystyle\frac{(3$\lambda$(\pm)+1)$\omega$-2($\lambda$(\pm)+1)}{$\lambda$-1}.=\frac{(3e^{i$\theta$}-2)(\sqrt{6}e^{i\frac{$\theta$}{2} +2)}{\sqrt{6}e^{i\frac{$\theta$}{2} -2}\frac{(3e^{i$\theta$}-2)(\sqrt{6}e^{i\frac{$\theta$}{2} +2)}{-\sqrt{6}e^{i\frac{$\theta$}{2} -2} \displaystyle\frac{(3e^{i$\theta$}-2)(-\sqrt{6'}e^{i\frac{$\theta$}{2}+2)}{\sqrt{6}e^{i\mathrm{s}_{-2} \frac{(3e^{i$\theta$}-2)(-\sqrt{6}e^{i\frac{$\theta$}{2}+2)}{-\sqrt{6}e^{i\frac{$\theta$}{2}-2}, and. \displaystyle\frac{$\omega$-1}{$\lambda$(\pm)-1}.=\frac{3e^{i$\theta$}-2}{-2+\sqrt{6}e^{i_{E}^{$\theta$} -2\sqrt{6}e^{i_{E}^{$\theta$} 3e^{i$\theta$}-2 Therefore. we. obtain the. following. main result:.

(8) 52. THEOREM 4.1. (02 $\pi$)). We consider the three‐state Grover walk with. $\alpha$=- $\gamma \beta$=0. and. .. Then. a. solution. of U^{( $\epsilon$)} $\Psi$= $\lambda \Psi$. one. defect. at the. origin. on. \mathb {Z}. .. Here. $\omega$=e^{i $\theta$}( $\theta$\in. with. $\lambda$=\displayst le\frac{$\omega$\pm\sqrt{6$\omega$( \omega$-1)^{2} {3$\omega$-2} is. given by. Moreover the. $\Psi(x)=alph-$\te_{8})^|xims\leftbgn{ary} [Mtix]&(\geq1) {[}Matrix]&(=0)\ {[}^frac3$lmbd+1)\oega$-2(lmbd+1)}{\frac2($omeg-1)\labd$}{m-1]&(x\leq). nd{ary}\ight. stationary. measure. of the. walk is. $\mu$(x)\cdot=|$\alpha$|^{2}\times\left\{ begin{ar y}{l |$\thea$_{8}|^{2x}\{1+( 3-12\cos$\thea$)(\frac{2}m_{1}+\frac{m_{2} m_{3})\}&/(x\neq0)\ 2&(x=0). \end{ar y}\right. Here. |$\theta$_{s}|^{2}=\displaystyle \frac{37+12\cos $\theta$\pm 20\sqrt{6}\cos( $\theta$/2)}{(13-12\cos $\theta$)^{2} m_{k}=5+(-1)^{n_{k} 2\sqrt{6}\cos( $\theta$/2) (k=123) with. ;. n_{k}\in\{01\}.. relation between stationary and limit measures of the walk. If $\omega$=1, ,then our space‐homogeneous three‐state Grover walk on \mathb {Z} As for the hmit measure for an initial state; $\Psi$_{0}(0)= $\tau$[\overline{ $\alpha$}\sqrt{}^{\sim}\overline{ $\gamma$}] and $\Psi$_{0}(x)= $\tau$[0, 00](x\neq 0) the following result is known (see Konno As. a. corollary,. we. give. a. model becomes the usual. [10],. for. .. example).. $\mu_{infty}(x)=le\bgin{ary}l \(3+sqt{6)|2ilde$\aph}+t{bea$|^2}+(3-\sqrt{6)ilde$ba}+2\t{gma$}|^2&\ -overlin{$aph}+\tdeba$il{\gma$}|^2ties(49-0\qr{6})^x&(ge1\ frac{6-2sqt}(|\overlin{$aph}+\overlin{$bta}|^2+\overlin{$bta}+2\degma$}|^{2)&(x=0,\ 3-sqrt{6})|2\ilde$aph}+ovrline{$\bta}|^2+(3sqr{6)\tilde$ba}+2{\gma$}|^2& -\tilde{$aph}+ \beta$ild{gma$}|^2\ties(49-0qr{6})^x&(\le-1. nd{ary}\ight..

(9) 53. Combining. this with the. On the other. corresponding (ii‐a). hand, Theorem. case. (\tilde{ $\alpha$}=-\tilde{ $\gamma$}, \sqrt{}^{\sim}=0). gives. $\mu$_{\infty}(x)=\left\{ begin{ar y}{l 24|\tilde{$\alpha$}|^{2}(49-20\sqrt{6})^{X}&(x\neq0),\ 4(5-2\sqrt{6})|\tilde{$\alpha$}|^{2}.&(x=0). \end{ar y}\right.. 4.1 with. (4.8). $\theta$=0\mathrm{a}\mathrm{n}\mathrm{d}-\mathrm{p}\mathrm{a}\mathrm{l}\cdot \mathrm{t}(n_{1}=1n_{2}=0n_{3}=1) implies. $\mu$(x)=\left\{ begin{ar y}{l 12|$\alpha$|^{2}(5+2\sqrt{6})(49-20\sqrt{6})^{|x}&(x\neq0)\ 2|$\alpha$|^{2}&(x=\ve 0). \end{ar y}\right. If. we. put. $\alpha$=\pm(2-\sqrt{6})\overline{ $\alpha$}. ,. then. given by Eq. (4.8). Finally, we give stationary. (i). $\alpha$= $\gamma$. a. stationary. measures. measure. for $\lambda$=-1. .. given by Eq. (4.9). Remark that. we see. is. (4.9). equivalent. $\theta$_{8}=-1 for. case.. Therefore the. $\Psi(x)=left{bgnary} [\c$ph{omega-3}2^\l$ +)frac{ph\omeg$(3 }a-1\omeg$)&(xq {[}frac4\omeglph${a-3,\}]&(x=0) {[frc$alph\omeg-3}2_{$ a+)\frclphomeg$}{a-3,(\1omeg$)&xlq-. \nd{ary}iht. corresponding stationary. measure. is. given by. $\mu$(x)=\displayst le\frac{6|$\alpha$|^{2} 5-3\cos$\thea$}\times\left\{ begin{ar y}{l 3\cos^{2}$\thea$-3\cos$\thea$+2&(x\neq0)\ 3-2\cos$\thea$&(x=0). \end{ar y}\right. (ii). $\beta$=\displaystyle \frac{ $\alpha$+ $\gam a$}{2}. case.. (a) $\beta$=0. case.. \dot{$Psi}(x)=\left{bginary}{l [Mtrix]&(\geq1) {[}Matrix]&(=0)\ {[}Matrix]&(\leq-1). nd{ary}\ight.. to. this. a. limit. case.. measure.

(10) 54. Therefore the. corresponding stationary. measure. is. given by. $\mu$(x)=2|$\alpha$|^{2}\times\left\{ begin{ar y}{l (2-\cos$\thea$)&(x\neq0)\ 1&(x=0). \end{ar y}\right. (b) $\beta$\neq 0. case.. Therefore the. 5. $\Psi(x)=left{bgnary} [Mtix]&(\geq1) {[}frac$\lph+gma $}{\m2]&(x=0)\ .[Matri]&(xleq-1). \nd{ary}ight. corresponding stationary. measure. is. given by. $\mu(x)=\left{bginary}{l 6|$\alph|^{2}&(x\geq1) \frac{5}4(|$\alph|^{2}+$\gam $|^{2})+\frac{1}4($\alph overlin{$\gam $}+\overlin{$\aph}$\gam $)&(x=0,\ 6|$gam $|^{2}&(x\leq-1)_{:} \endary}\ight.. Summary. We obtained. stationary measures for the three‐state Grover walk with one defect at the origin on \mathb {Z} by solving the corresponding eigenvalue problem. Moreover, we found out a relation between stationary and limit measures of the walk. As a future work, it would‐ be interesting to investigate the relation between stationary measure, (time‐averaged) limit measure, and rescaled weak limit measure [78] for QWs in the more general setting. Acknowledgment. This work is partially supported by the Grant‐in‐Aid for Scientific Research (Challeng‐ ing Exploratory Research) of Japan Society for the Promotion of Science (Grant \mathrm{N}\mathrm{o}.15\mathrm{K}13443 ).. References [1] Cantero, Inf.. M. J., Grünbaum, F. A., Moral, L., Velazquez, Process., 11, 1149‐1192 (2012). L.: The CGMV method for quantum walks.. [2] Endo,. S Endo, T., Konno, N., Segawa, E., Takei, M.: Limit theorems of one‐defect, Quantum Inf. Comput., 15, 1373−13g6 (2015). [3] Endo, T., Konno, Mathematical. [4J Endo; T.,. N.: The stationary measure of Journal, 6^{\{}0 33‐47 (2014). two‐phase quantum walk with. space‐inhomogeneous quantum. walk. on. the. linc, Yokohama. ,. \mathrm{K}\mathrm{a}\grave{\mathrm{w} ai,. arXiv: 1603.08948. a. a. Quantum. H., Konno, N.:. (2016). The stationary. measure. for. diagonal quantum walk with. ope defect.

(11) 55. [5] Endo, T., Konno, N., Obuse, arXiv: 1511.04230 (2015). H.: Relation between. [6] Endo, T., Konno, N., Segawa, E., Takei, Mathematical Journal, 60, 49‐90 (2014) [7] Konno,. N.:. [8] Konno,. N.: A. [9] Konno,. N.:. Quantum random. walks in. two‐phase quantum walks and. the. M.: A one‐dimensional Hadamard walk with. one. dimension.. topological invariant, one. defect, Yokohama. Quantum \mathrm{I}\mathrm{n}\mathrm{f} Process., 1, 345‐354 (2002) .. type of limit theorems for the one‐dimensional quantum random walk. J. Math. Soc. Jpn.,. new. 57, 1179‐1195 (2005). Quantum Walks.. Quantum Potential Theory, Franz, U., and Schürmann, M., Eds., Lecture 309‐452, Springer‐Verlag, HeidelUerg (2008). In:. Notes in Mathematics: Vol. 1954, pp.. [10] Konno,. N.: The uniform. measure. for discrete‐time quantum walks in. one. dimension.. Quantum \mathrm{I}\mathrm{n}\mathrm{f} Process., 13, .. 1103-1125' (2014). [11] Konno,. N., Luczak, T., Segawa, dimension.. .. [12] Konno, N., Takei, Quantum. \mathrm{I}\mathrm{n}\mathrm{f}. R.:. Quantum. [15] Wójcik, A., Luczak, quantum walk. on. J.:. 1060‐1075. measures. 33‐53. of. inhomogeneous discrete‐time quantum walks. stationary. measure. for discrete‐time quantum walks in. one. Quantum. \mathrm{I}\mathrm{n}\mathrm{f}. .. dimension,. Physical Implementation of Quantum Walks. Springer (2013). Algorithms. Springer (2013). T. S. E.:. one. (2015). Walks and Search. Quantum walks:. [17] Wang, C., Lu, X., Wang,. in. (2013). Kurzyński, P., Grudka, A., Gdala, T., Bednarska‐Uzdega, M.: Thapping the line. Phys. Rev. \mathrm{A}, 86 012329 (2012). [16] Venegas‐Andraca, the line.. Limit. M.: The non‐uniform. Comput., 15,. .. [13] Manouchehri, K., Wang,. [14] Portugal,. E.:. Quantum \mathrm{I}\mathrm{n}\mathrm{f} Process., 12,. W.: The. a. a. particle of. a. comprehensive review. Quantum \mathrm{I}\mathrm{n}\mathrm{f} Process., 11, 1015‐1106 (2012). stationary. .. measure. Process., 14, 867‐880 (2015). of. a. space‐inhomogeneous three‐state quantum walk. on.

(12)

参照

関連したドキュメント

In section 2 we present the model in its original form and establish an equivalent formulation using boundary integrals. This is then used to devise a semi-implicit algorithm

In this paper the classes of groups we will be interested in are the following three: groups of the form F k o α Z for F k a free group of finite rank k and α an automorphism of F k

This generalized excursion measure is applied to explain and generalize the convergence theorem of Kasahara and Watanabe [8] in terms of the Poisson point fields, where the inverse

˙Ibrahim C¸anak: Department of Mathematics, Adnan Menderes University, 09010 Aydın, Turkey Email address: icanak@adu.edu.tr. Umit Totur: Department of Mathematics, Adnan

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo,

We consider the Cauchy problem for nonstationary 1D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect

We construct a sequence of a Newton-linearized problems and we show that the sequence of weak solutions converges towards the solution of the nonlinear one in a quadratic way.. In

In this paper, we established the conditions of the occurrence of local bifurcation (such as saddle-node, transcritical and pitchfork) with particular emphasis on the Hopf