• 検索結果がありません。

Analysis of Stability and Chaos concerning Difference Equations

N/A
N/A
Protected

Academic year: 2022

シェア "Analysis of Stability and Chaos concerning Difference Equations "

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

_________________________________

*Department of Mathematical Sciences, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan, TEL:+81-774-65-6702, E-mail: ssaito@mail.doshisha.ac.jp.

Analysis of Stability and Chaos concerning Difference Equations

Seiji SAITO*

(Received 10 May, 2010)

In this paper we deal with difference equations arising from economics models with the Walras’ law, mathematical models in biology, red blood density models and the Lotka-Volterra’s equations. Moreover we discuss the stability and chaos of the systems by applying the Liapunov’s second method and chaos criteria.

aadifference equationȈstabilityȈchaosȈLiapunov’ s second methodȈordinary differential equation

. +. aěÄŊƛĥȈąĆIJȈbalȈ‘[{€IƢ ŊŮȈĞĭÄŊƛĥ

ě

ěÄŊƛĥIąĆIJEbal LJś

ȆƼ Ǐķ*

…swIŪ2ź;UXWŏȈš›IŪŵIě2 ü3-EčŰIžĸ2džČ7XWȉüũH0-C RčŰƃǖJdžČ7XWȉčŰZljǥ9WĭÄŊ ƛĥJ Ġ¨HȈE”˜“–tHTVƧƌ7 X>”˜“–tƨJȈh–Œ˜qIłŀHTV Ǎ84ƔƟ7X>ȉ

<ILjƤŤłŀI[”˜rTV¿HȈH… [–b“HTW*ý±ÏăIʼn8-ŊŮ+

ĠHJȈąĆûޱEœąĆûޱHǶ9WƓDž Z/Ȉ*¦ŋbalEìKXWƃǖIȈŒÆIņ ăƐÃƃD,A>EıYXW+EǀƃR,Wȉ üũIĥSȈý±IǪÔZǀ9ĥJȈǧƮDzI ŏÊHǶ8CżƅŮËZǭİ8CĬUXWĭÄŊ ƛĥD,Wȉ<IĭÄŊƛĥIÁ±LJJȈūƞŮ HTVĎÃ2ðǽD,VȈLjƤŤHTVĽÔZdž

Č9W6E2œÓD,Wȉ9GY@ȈĭÄŊƛĥ IŏÊZěÄÕ8ȈěÄŊƛĥHǤ®8Ȉ<Iě ÄŊƛĥILJZǑNȈ<IĽÔÂĈ1U¾IĭÄ ŊƛĥILJHǶ9WƓDžZĬW6E2D3Wȉ ™ŊȈżƅŮËIǭƈZƪ:HƑĿȈƃǖZdž Č9W6E1UĆĥÕIƫŜȈěÄŊƛĥ2Ďà 7XW6E2,Wȉ³/KȈǛƽƄċĢŠv’G FƢ ơȉ

ŗõéDJȈťIÂĈZšǐ9WȎ

—‡f”ƪųăIƠöDǕǒ7XW•’lƅ ǒH05WşėI³DƘí7X>ąĆIJEba lƢ ơȏ

—ņƅƇżăH05W·Ŧyh’o–—‚]‘˜

Šv’H05WąĆIJEbalƢ ơȏ

—ǛƽƄċĢŠv’IœąĆIJĆƅ(Ƣ4ơ);

—a]˜Ǥ®HTW”wb—„’uěÄŊƛ

(2)

ĥIbal(Ƣ5ơ)ȉ

\

\[1DU>93@L;

BYQR/EAMKGW67=7J şėJȈťIµŝǑŇěÄŊƛĥ xj

(

n+1

)

= max[xj(n)+vEj(n),0]

max[xk(n)+vEk(n),0]

k=1 m

j #m

HǶ8Ȉņºj‡Œ“˜jŽ–1UąĆIJEba lIĂóZƘí8>ȉ EJſƠD, A>ȉ•’lƅǒH0-CĜöHJȈm¹I ǘ2,VȈŏÊn #<IƒčµŝZ ' xj(n)'Ȉ xj(n)=1

j=1 m

E9WȉO>ȈEj(n), j

m,Zǘ IǜǫǾǃǶņǾǃDzE´Ƭ DzIǶņE8ȈťI•’lËZªĆ9WȎ Ej(n)xj(n)=0

j=1 m

(n = 0,1,2,…).

"JǾǃE´ƬI|–lHč9WµŝI­ư¶

ņD,WȉŽHȈşėJȈab" E 8CťIǜǫǾǃǶņI³ZǕǒ8>Ȏ

E1=x1+1 ax2.

}‰˜qa = 0.6E8Ȉ0 < b < 2 ZţǠȈƯǠ

Zx(n)E8CȈ25,000 ' n ' 30,000 Z”s

w9W(Fig 1.ÝŹ)ȉǞǬIÆŕºHTU:Ȉ-:

XJœÔŷ0.625Ȉ2êŕŷȈ4êŕŷȈ8êŕŷ ƣHÞŘ9W6EZşėJƘí8>ȉ

Fig 1. Stability orbits.

ŗõéDJȈ<I¢ĵZnjō9WœǷǁDŽ™Ţ

ŒƩƐŶǤąĆIJIĆƅZĬ>ȉ™ƺHťIm¾ ěÄŊƛĥZƵ/Wȉ

x(n+1)= f(n,x(n))ȉ (1) 66Dn = 0,1,2,… Hč8Ȉx(n) Jmť¾‚fw

’DȈI = [0,1] E8C x(n) ImD,Wȉĥ(1)Ik êŕŷǻå P(k) ZťHĆƳ9WȎ

P(k) = {x1, x2, …, xk

>?8Ȉxp+1 = f (n,xp), xp xq, x1 = f (n,xk), (1' p < q ' k ; n = 0,1,2,…)D,Wȉĥ(1)I êŕŷǻå P(k) JȈÆȁ1UÃƏ8C1UŐ4 JœąĆD,W2ȈŒƩƐHŶǤąĆEGWE3Ȉ P(k)JœǷǁDŽ™ŢŒƩƐŶǤąĆD,WE-.ȉ ěÄĥ(1)I<IŶǤĽÔHǶ9WĆƳJȈĞĭ ÄŊƛĥEçŢHĆƳ9W 8,19,22)ȉ<IĆƳZǥ NW>QHȈZ+ ZǿǗŇņIǻåȈP(k) IǤ¼ Z > 0 , xp %P(k)E8C

S(P(k), ) = U1qk { y Im: y – xq < } E04ȉ y Jy ImI{’ˆD,Wȉ ǻåP(k)ExIǝǼZ

d(P(k), x) = inf{ y – x : y P(k) } Dǀ9ȉ

êŕŷǻåP(k)JȈ[EV-UA.FC](œǷǁDŽ™Ţ ŒƩƐèĦƐ)Ȉ9GY@Ȉ¬ĶIǁDŽ { Cq Im : U1qQ Cq Im } E¬ĶI > 0Hč8Ȉ ,Wƍã N0 % Z+ ET0 %Z+ ZEXKȈ¬ĶIǻå CqȈ

¬ĶIÆŕŷx0 % CqȈ¬ĶIÆŕŏÊn0 ( N0

1UÃƏ9W¬ĶILJ(ǞǬ) x(n; n0, x0) JȈŏÊn ( n0 + T0IE3ȈêŕŷǻåIǤ¼S(P(k), ) H Ăó9WȈ9GY@Ȉ

d(x(n; n0, x0), P(k)) < .

êŕŷǻåP(k) J[EV-US](™ŢŒƩƐąĆ) D,WEJȈ¬ĶI > 0 Hč8CȈ,WƍãN0

% Z+E > 0ZEXKȈ¬ĶIÆŕŷx0

S(P(k),)E¬ĶIÆŕŏÊn0 ( N01UÃƏ9 W¬ĶILJ(ǞǬ) x(n; n0, x0) JȈŏÊn ( n0 I E3ȈêŕŷǻåIǤ¼S(P(k), ) D,WȈ9G Y@Ȉ

d(x(n; n0, x0), P(k)) < .

(3)

êŕŷǻåP(k) J[EV-UAS.FC](œǷǁDŽ™ŢŒ ƩƐŶǤąĆ)D,WEJ[EV-UA.FC]Ȉ1BȈ

[EV- US]D,W6EZ-.ȉ

êŕŷǻåP(k)JȈżƅăH05W`z’e˜

ǶņZ™ƺÕ8>‘[{€ǶņZİƈ8CȈť IĆƅJnjōD3>2,19)ȉ

ǿǗćņǻåR+ = { 0' x < +}E8Ȉ

CIP = {a: R+$R+JŦĆºȈƀƳÙǑøÐGǧ

ƮǶņ}ȈěǻåA – B = { x A : x B}E9Wȉ

ĆĆƅƅ 11ȉêŕŷǻåP(k) JȈťIř«(a), (b) Z P>9V: Z+Im$R+2Ăó9XKȈ[EV-UAS.FC]

D,WȎ

(a) ¬ĶIr > 0 Hč8Ȉ,Wƍã N0 (0Ȉar,

br % CIP ZEXKȈ¬ĶIn ( N0 E

x Im & S(P(k),r)Hč8C

ar(d(P(k),x)) 'V(n,x)' br(d(P(k),x)) 2ĹVƠBȏ

(b) kV(n,x) = V(n+k, f k(n, x))&V(n,x)E04ȉ

¬ĶIr > 0 Hč8Ȉ,Wƍã N0 (0Ȉcr % CIP ZEXKȈ¬ĶIn ( N0 E

x Im & S(P(k),r)Hč8C

kV(n,x) ' &cr(d(P(k),x)) 2ĹVƠBȉ

(.-&.7J

şėJĥ(1)HǶ8Ȉa = 0.5IE3ņºj‡Œ

“˜jŽ–ZĬCȈbalIÃƃZƘí8>ȉţ ǠZ0 < b < 2 DȈƯǠZx(n)E8CȈ25,000 ' n ' 30,000 Z”sw9W(Fig 2. ÝŹ)ȉ ŗõéDJb =0.7E8CȈťĥZÁ±ƐHƵ/

W7).

x(n+1)= f(x(n)), (2)

>?8Ȉ f(x)= 11x225x+14

42x259x+24, n = 0,1,2,…

Fig 2. Chaotic orbits.

Ȋť¾ÏăƨHǶ9W‘˜—˜fIĆƅJťI E0VD,WȎ

ĆĆƅ 22.(‘˜—˜f)ěÄŊƛĥ(2)JȈ3êŕ ŷZRBE3ȈǶņf IǿêŕŷIǿÐƤǻå S 2Ăó8ȈťI(I),(II)ZP>9Ȏ

(I)SI¬ĶIŷxEfI¬ĶIêŕŷpHč8, lim

n fn(x) fn(p)>0; (II) SI¬ĶI2ŷx, yHč8C,

lim

n

f

n

(x) f

n

(y) > 0

,

lim

n

f

n

(x) f

n

(y) = 0.

šljIǶ¶ĥ(I),(II)2ĹVƠBE3Ȉĥ(2)J‘

˜—˜fIbal(ZRB)E-.ȉ

ǧƮǶņy = f (x),0'x, y'1J3êŕŷZRCKȉ bal2Ăó9WȉćǹȈ0.6'x'0.61H0-CȈ 3êŕŷ2Ăó9W.<I>QHJȈťI2œƣĥ 2ĹVƠB6EZƘ;KT-Ȏ

{f(0.6)&0.6}{f(0.61)&0.61} < 0ȏ f (x) & x > 0 on[0.6, 0.61]ȉ

][2F!),-"(.%) 67=SC

ƸŸƋH05W[mdp^ˆjEh†|rJȈ ä)Ȉĉ (host)EŁĊƇ(Parasitoid)IǶ¶H, WȉĪƶJȈÌƶZȃ-đ49Ƕ¶H,W 1,5,10). ǼŅŏǵt = 0,1,2,…Hč8ĉ I¹±ņ(,W- JċĢ)Z Nt, ŁĊƇIZ Pt Eǀ9(Fig 3.ZÝ

(4)

Ź)ȉ

NtȎž¨DIĉ IċĢ.

( t = 0 , 1 , 2 , )

PtȎž¨DIŁĊƇIċĢ.

f

ȎŁĊƇHǮǩ8G-ĉ IÍå.

Ȏĉ IƇŧƂ.

c

Ȏĉ HŁĊƇ8>ÛIĄÕƂ.

HostȎ

Eggs $Larvae$Pupae$Adults eggs

ParasitoidȎAdults $ Larvae

Fig 3. Host and parasitoid.

ŒÆȈyh’o–E‚]‘˜JȈĉ EŁĊ ƇIǮǩ9WIJ1ï?5E8…[o–ÄĝZ ªĆ8ȈťIěÄŊƛĥZĬ>ȉ

Nt+1 =

NteaPt,Pt+1 =cNt

(

1eaPt

)

ȉ ņºj‡Œ“˜jŽ–ƫŜ1UȈ0TLąĆIJř

«EŨǡ8CȈťIŠv’H·Ŧ7X>1,12). Nt+1=Nter1

Nt K aPt

, Pt+1=Nt

(

1eaPt

)

(3)

>?8Ȉt = 0,1,2,…, K > 0J2ƝZEVO4Ɔ

÷1UŬOW}‰˜qD,Wȉ‚fw’ x = (N, P)T, f(x)=(Ne

r1Nt

K aP

, N(1eaP))TE03, TJǟƱIĶë9Wȉĥ(3)JťĥEGWȎ

x

t+1

= f (x

t

) (t = 0,1, 2,...).

(4)

ĥ(4)IœÔŷxe=

(

Ne,Pe

)

TJ

Pe=r

(

1q

)

a ȈNe= Pe 1eaPe

ZP>9ȉ}‰˜qJ3Ɲr, q, a D,Wȉ }‰˜qIßVŊHTVȈ4 }q˜–2ĬU XWȉ

1) r = 0.5, q = 0.4, a = 0.2 (Fig 4.ÝŹ) 2) r = 2.0, q = 0.4, a = 0.2 (Fig 5.ÝŹ) 3) r = 2.2, q = 0.4, a = 0.2 (Fig 6.ÝŹ) 4) r = 2.65, q = 0.4, a = 0.2 (Fig 7.ÝŹ)

Fig 4. Case with r = 0.5, q = 0.4, a = 0.2.

Fig 5. Case with r = 2.0, q = 0.4, a = 0.2.

Fig 6. Case with r = 2.2, q = 0.4, a = 0.2.

Fig 7. Case with r = 2.65, q = 0.4, a = 0.2.

(5)

ĥ(3)IœÔŷ xe = (Ne, Pe)T IąĆIJZƘ9H JȈťI™ŢŶǤąĆIJĆƅ2œÓD,W 6)ȉœ

Ôŷxe 2™ŢŶǤąĆD,WEJȈ

x = xe J™ŢèĦƐ[UA],9GY@Ȉ×Äď

I>02Ăó8Ȉ¬ĶI > 0Hč8Ȉ ,WŦ

ņT0 > 0 ZEXKȈ¬ĶIÆŕŷx0 : x0 – xe <

E¬ĶIÆŕŏÊn0 ( 01UÃƏ9W¬ĶI LJ(ǞǬ) x(n; n0, x0) JȈŏÊn ( n0 + T0IE3Ȉ x(n; n0, x0) & xe < ȏ

x = xe J™ŢąĆ[US],9GY@Ȉ¬ĶI

> 0 Hč8CȈ,W > 0ZEXKȈ¬ĶIÆŕ

ŷx0 : x0 – xe < E¬ĶIÆŕŏÊn0 ( 01 UÃƏ9W¬ĶILJx(n; n0, x0) JȈŏÊn ( n0

IE3Ȉ

x(n; n0, x0) & xe <

2ĹVƠB6EZ-.ȉǝǼd(x,xe) = x – xe

E9Wȉ

ĆĆƅ 33.(Halanay etc.) ĥ(4)JȈœÔŷ xe ZR@Ȉ

<IǤ¼ZBe = { x Rm : x– xe < c } (c > 0)ȉ ťIř«(i), (ii) ZP>9V: Be$R+2Ăó9XKȈ

œÔŷxeJ™ŢŶǤąĆD,WȎ (i) ,Wa, b % CIP ZEXKȈ a(d(x,xe)) 'V(x)' b(d(x,xe)) 2ĹVƠBȏ

(ii) V(x) = V(f(x)) & V(x)E04ȉ,Wc %

CIP ZEXKȈ

V(x) ' &c(d(x,xe)) 2ĹVƠBȉ

}q˜–Ȋȇ2™ŢŶǤąĆD,W1JŖ?Ƙ 7XC-G-ȉ‘[{€ǶņIŊŮZİƈ9X KȈ<I×Äř«(³/Ker<(qr+1)eqr)ZP>9 }‰˜qr, q 2ūQUXWȉ

}q˜–ȋȇȈȌȇJä)Ȉ‘‡swi]f’Ȉ êŕLJIĂóZƘí9Wȉ¦ĪIƔƟ2ŕĩ7X Wȉ

/O4$*7J

·Ŧyh’o–—‚]‘˜Šv’(3)I}q˜–

ȍȇJȈbalD,WE¢ĵ7X> 1)ȉŗõéD JȈťI™ƺՆ”sw13,17)IĆƅZƈ-CȈć ǹHȍȇIE3Ȉbal2Əƃ8C-W6EZǥ NWȉ

ĆĆ ƅ (™ƺՆ”sw) ĥ(4)JȈœÔŷ xe

ZRBȉťIř«(i) – (iii)2ĹƠ9WE3Ȉĥ(4) J‘˜—˜fIbalD,WȎ

(i) Ƕņf (x)xeIǤ¼ Be DǧƮĭÄáƷȏ

(ii) ‹h~ƾÅ Df (xe) Iòœº!J9NC

! >1ȏ

(iii) ,Wz Be z xe D,WŇņMHB 3åĹ fM(z) = xe, 1BȈƾÅĥDf M(z) 0.

}‰˜qr = 2.65, q = 0.4, a = 0.2IE3Ȉšlj

Iř«(i),(ii)JĈŎHĹƠ2ƗǎD3W20)ȉ

Fig 8. The Graph of y = h(N).

ř«(iii)HB3Ȉz = (N,P)T E04EȈxe=

(

Ne,Pe

)

T

TVȈťĥZĬWȎ Pe =NNeer(1

N K)

ȉ

6IĥILJNIĂóZƘ;KT-ȉâIǶņZ h(N)=NNeer(1

N K)

E03Ȉh(N) = PeJLJZRB6EJøŴǀE Pe

Iº1UƗǎD3W(Fig8.ÝŹ)ȉĆƅ4Iř«(iii)

(6)

Iř«IĹƠRƗǎD3Wȉ©š1UȈ™ƺՆ

”swIĆƅ1UȈĥ(3)J}q˜–ȍȇIE3Ȉ balD,Wȉ

^[ VPI8:%)

»ģG¥ǵIǛƽƄIċĢJȈŦĞGžĸD, WNJĈƦñIǵDúÔ9WȉƊIJDJ6IƦñJ (5.4±0.8)106 ¹/m2 D,VȈĀIJDJ(4.8±0.6) 106 ¹/m2D,WȉǙƽƎIT.GöåȈ6I MWO-JŏHÎƐHúÕ9Wȉ

ŏÊnIǛƽƄIċĢZxnȈŏǵÖǵ[n,n+1]I ǵDƕù7XWċĢZdn = axnȈƽƥŸHŃÃ7X WċĢZpn=b(xn)resxnE9WEȈǛƽƄċĢŠv

’JťĥEGW4,14)ȉ

xn+1=xnaxn+b(xn)resxn (5)

(n=0,1,2,…). O>ȈťĥZ04ȉ

F(x)=(1a)x+b(x)resx

ĥJȈa = 0.6, b = 1, r = 6, s = 1.5IE3Ȉ3

œÔŷx1 = 0 < x2 < x3ZRBFig 9.ÝŹȉ

Fig 9. The Graph y = F(x) has 3-fixed points.

œÔŷx1 J™ŢŶǤąĆD,WȉǛƽƄċ Ģ2Ȉn”§ǤHGWEn”HÞŘ9W1UȈ6 XJ¥±HÚǸGžĸZĶë9WȉĭÄIƭčº

F’(0) < 1 1URōU1D,Wȉ

œÔŷx2 DJȈF’(x2) > 1 IE3œąĆD,Wȉ

ǛƽƄċĢJȈx2§ǤDJn”HÞŘ9W1Ȉš

Ō9W1I-:X1D,Wȉ

œÔŷx3 DJȈF’(x3) > 1IE3œąĆD,Wȉ

ĥJ ť¾ÏăƨD,W>QHȈąĆ—œąĆ IJIÇĆJŨǡƐĈŎD,Wȉ

ÝƵňƁ ȇDJȈr =8, s =16, b =1.1106a IE3Ȉ êŕŷIĂóp1, p2, p3, p4, p5, p6 êŕŷǻå2 BZƘ8Ȉ‘˜—˜fIĆƅT VȈĥJbalD,W6EZǥNC-WFig

10. ÝŹȉ

Fig 10. The Graph y = F3(x) with a=0.78 indicates the Li-Yorke’s chaos.

ĥ2 êŕŷZRCKbalD,VȈħŸœ

ąĆDR,Wȉ ť¾ÏăƨIöåȈÇĆJĈŎ D,Wȉûť¾ÏăƨD,WEȈ êŕŷ2Ăó 8CRƑ@HȈbalD,WEJǷUG-ȉTA Cûť¾ÏăƨDJȈbalD,W6EEœąĆ D,W6EJÖÈ9N3E-/Wȉ

ŗõéDJȈûť¾ěÄŊƛĥHǶ9WœąĆ IJĆƅZnjō8>6EZǥNWȉťIǿƸÒƨě ÄŊƛĥZƵ/WȎ

x(n+1)= f(n,x(n)) (n=0,1,2,...)ȉ (6)

ĆĆ ƅ œąĆIJĆƅ ĥJœÔŷ xe fn, xen #ZRBȉœÔŷxeJťI ř«(a) - (c) ZP>9V: Z+Bc(xe)$R+2Ăó9 XKȈąĆDG-Ȉ9GY@œąĆD,W.>?8Ȉ Bc(xe) ={ x : x & xe < c }Ȉ

E(xe ;p) = { x: 0 < x & xe < p } (0 < p < c) E9Wȉ

(a) ,Wa% CIP ZEXKȈ¬ĶIn ( 0 E

x E(xe;p) Hč8C V(n,x)' a(d(x, xe)) 2ĹVƠBȏ

(7)

(b) V(n,x) = V(n+1, f (n, x)) & V(n,x)E04ȉ

,Wb % CIP ZEXKȈ¬ĶIn ( 0 E

x E(xe ;p) Hč8C

V(n,x) ( b(d(x, xe)) 2ĹVƠBȏ

(c) V(n, xe) = 0 (n ( 0).

njōJȈňƁ IĞĭÄŊƛĥHč9W‘[

{€IœąĆIJĆƅEçŢD,Wȉ

_[*-#)'93@L;

ľȃ—ǁľȃŠv’EJȈƢ™ťžƋüĺŏH [x‘[űDdžČ7X>ƖȄȅI¹±ņIêŕƐ GøŴHǶ8CƵŞ7X>Šv’D,Wȉ„’u

JȅȂI¹±ņZľȃƶEǁȃƶI£BIƲH Ä5Ȉ£ƶIǮǩJľȃƶIøÐEǁľȃƶIŴ ĐHĨȀ9WE8>ȉÙ¯ŏǵħ>VHǮǩ9W ņJ<X=XIƲIņIƞHŨ³8Ȉ<XJľȃ ƶHJœÉHȈǿľȃƶHJœÉH½4EªĆ8

+

=

=

dxy dt cx

dy

bxy dt ax

dx

Dǀ7XWŊƛĥZƵ/>ȉŗõéDJȈ6IŊ ƛĥZa]˜Ǥ®HTVěÄÕ8ȈťIěÄŊ ƛ ĥ 2 b a l D , W 6 E Z ǥ N W 18ȇȉ

xn+1=rxn

(

1xnyn

)

yn+1=rxnyn (n=0,1, 2,...) (7) ƈ-WĆƅJȈƢ3ơI™ƺՆ”swIĆƅD ,Wȉĥ(7)JȈťĥ

u= x

y , F(u)= rx

(

1xy

)

rxy

HTVȈ

un+1=F(un) (8) EGWȉ™ƺՆ”swIĆƅZİƈ9Wȉĥ IœÔŷxe = F(xe)Jxe= 1

r,12 r

T( r > 2IJ:).

œÔŷxe H05W‹h~ƾÅJ

DF x

( )

e = 0 1

r2 1 D,VȈ<IòœºJ +1= 94r

2

D,Wȉ<Iƭčº29NCȊTVüD,Wř«J rD,Wȉ

ťHȈ™ƺՆ”swIĆƅIř«ZP>9 ř«ZĎ4ȉM E8ȈF(z)xeGWz = (x,y)T 2Ăó9WrIƦñZūQWȉ

( )

=

r r rxy

y x rx

1 2 1

1 .

6XTVȈrIE3x= r+(r2)

2r ZĬWȉ

6IE3ȈzI‹h~ƾÅJ⎜DF(z)⎜㱠 ZP>9.

 

©šTVȈĥJr IE3balD,Wȉ

`

`[0<TZ@X

ŗõéDJȈ•’lËHī.ƪųăŠv’Ȉņ ƅƇżăŠv’ȈǛƽƄċĢŠv’Ȉ”wb—„’

uŊƛĥ1UƇ:WěÄŊƛĥZļ-Ȉ<XUI ƨHB3Ȉ‘[{€IƢ ŊŮSbalÇĆŮZ İƈ8CȈąĆIJEbalZǕǒ8>ȉ

Ƣ ơI™ƺôƿƅǒH05WěÄŊƛĥHB 3ȈbalZ/W™ƺƐř«IĎÃ2ŕĩ7XWȉ Ƣ ơIņƅƇżăIĉ ŁĊƇŠv’DJȈ}

‰˜qIř«ZūQȈąĆ—œąĆûޱIIJǚZ Ǖǒ9W6EJƹëŲ-ȉƢ ơDIǕǒZƏē7

;ȈbalEœąĆIJř«EIǶ¶ZƵČ9WRǰ ǃD,WȉƢ ơH0-CJa]˜Ǥ®HTWě ÄŊƛĥZǕǒ8>ȉ¦ĪJȈ’–g—fsqǤ®

HTWěÄŊƛĥZƵ/Ȉ<IbalHǶ9WƓDž ZĭÄŊƛĥIǕǒHĎ4Įǃ2,Wȉ

(8)

ŗƔƟI™ǯJ ĠĢçįƙüăƅĚăƔƟĻ ƔƟÑĹdzHTACǨƾ7X>ȉ66Hlj8CǓĶ Zǀ9Wȉ

5

5N?H

L. Edelstein-Keshet, Mathematical Models in Biology, Random House (1988).

2) S.N. Elaydi, Discrete Chaos 2nd, Chapman & Hall/CRC (2008).

v\[sfȈƒ˜ˆmȈ*ý±ÏăI}]ay[>@

š+ȈNjȎæƉȈjŒ‘–c˜€_[˜fŚ¤

ȉ

)¦ŭǺǂȈěÄŊƛĥIğƿŷHǶ9WœąĆIJĆƅȈ çįƙüăĚăǯƓǔĚăƚØŠǒň

Ę°ĤȈņƅƇżăÀǴȈ ÃŻĒ

A. Halanay,V. RasvanStability and Stable Oscillations in Discrete Time Systems, Gordon and Breach Sci. Publ.. (2000).

ęÜƅijāȈµŝǑŇěÄŊƛĥHǶ9WbalƃǖI ĂóȈçįƙüăĚăǯƓǔĚăƚØŠǒň 8) V. Lakshmikantham, S. Leela , Differential and Integral Inequalities I, Academic Press(1969).

T. V. Li, J. A. Yorke, Amer. Math. Monthly, 82, 985 (1975).

J. D. Logan, W. R. Wolesensky, Mathematical Methods in Biology, Wiley(2009).

11) E. N. Lorenz, J. Atmospheric Sciences, 20, 130(963).

12)ŪàƴþȈ‘[{€IŊŮHTWņƅƇżăH05 W·Ŧyh’o–—‚]‘˜ěÄŊƛĥHǶ9WĆIJLJ śȈçįƙüăĚăǯ]–u‘k_–wĴõĚăƚØŠ ǒň

F. R. Marotto,J. Math. Anal. And Appl., 63, 199(1978) 14) M. Martelli, Discrete Dynamical Systems and Chaos, CRC Press, LLC, BOCA BARTON(1992).

şėǦÿȈşėǦÿƻ²ǻȊÔăƐƪųƅǒȈĕů őġ

şėǦÿȈşėǦÿƻ²ǻ •’lƅǒȈĕůőġ

şƉî¡ȈƇżŠv’IbalȈŔ¸

18) DZàĖ¥Ȉľȃ—ǁľȃŠv’Ia]˜Ǥ®HTW

ěÄŊƛĥIbalȈçįƙüăĚăǯ]–u‘k_–

wĴõĚăƚØŠǒň

S. Saito, Advanced Studies in Pure Mathematics 53, 301(2009).

20) ǣǂǢȈ™ƺՆ”swIĆƅZİƈHTWņƅƇż ăH05W·Ŧyh’o–—‚]‘˜ěÄŊƛĥIba lȈçįƙüăĚăǯ]–u‘k_–wĴõĚăƚØŠ ǒň

ĔŗƜȈĞĭÄŊƛĥIąĆIJćńÃŻ 22) T. Yoshizawa , Stability Theory by Liapunov's Second Method, Math. Soc. Japan(1966).

参照

関連したドキュメント

The general context for a symmetry- based analysis of pattern formation in equivariant dynamical systems is sym- metric (or equivariant) bifurcation theory.. This is surveyed

We use these to show that a segmentation approach to the EIT inverse problem has a unique solution in a suitable space using a fixed point

In this paper we consider the asymptotic behaviour of linear and nonlinear Volterra integrodifferential equations with infinite memory, paying particular attention to the

In this work, we present an asymptotic analysis of a coupled sys- tem of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the

Along with the work mentioned above for the continuous case, analogous investiga- tions have recently been made for the behavior of the solutions of some classes of lin- ear

To ensure integrability, the R-operator must satisfy the Yang–Baxter equation, and the monodromy operator the so-called RM M -equation which, in the case when the auxiliary

The aim of the present paper is to establish some new linear and nonlinear discrete inequalities in two independent variables.. We give some examples in difference equations and we

Indeed, when GCD(p, n) = 2, the Gelfand model M splits also in a differ- ent way as the direct sum of two distinguished modules: the symmetric submodule M Sym , which is spanned by