• 検索結果がありません。

エ૕േ‛࠲࠷࠽ࡒࠟࠗ૕ო❑⿛╭࠳ࠗࠕ࠶࠼ធวㇱߩ᭴ㅧ⸃ᨆ ᧁධ㓷ᥙ

N/A
N/A
Protected

Academic year: 2021

シェア "エ૕േ‛࠲࠷࠽ࡒࠟࠗ૕ო❑⿛╭࠳ࠗࠕ࠶࠼ធวㇱߩ᭴ㅧ⸃ᨆ ᧁධ㓷ᥙ"

Copied!
10
0
0

読み込み中.... (全文を見る)

全文

(1)

©Research Institute for Integrated Science, Kanagawa University

عේ ⪺ع

エ૕േ‛࠲࠷࠽ࡒࠟࠗ૕ო❑⿛╭࠳ࠗࠕ࠶࠼ធวㇱߩ᭴ㅧ⸃ᨆ

ᧁධ㓷ᥙ

1

㋈ᧁቄ⋥

1,2

Structural Analysis of Dyadic Contacts in the Longitudinal Body Wall Muscle of a Mollusc Dolabella auricularia

Masaaki Kinami

1

and Suechika Suzuki

1,2

1 Department of Biological Sciences, Graduate School of Science, Kanagawa University, Hiratsuka- City, Kanagawa 259-1293, Japan

2 To whom correspondence should be addressed. E-mail: suechika-bio@ kanagawa-u.ac.jp

Abstract:

The ultrastructure of dyads in the longitudinal body wall muscle (LBWM) of a mollusc Dolabella auricularia was studied to elucidate electro-mechano coupling in the dyadic contacts of somatic smooth muscles, and to make clear the morphological homology with the triadic contacts of skeletal muscles. In LBWM fibers, the sarcoplasmic reticulum (SR) in vesicular forms was mostly located underneath the plasma membrane, and constructed dyads, not only along the fiber surface but also around the tubular invaginations (Sugi and Suzuki, 1978)1) which resemble the transverse tubule of skeletal muscles in shape. In the junctional gap of dyads, electron-dense foot-like structures were arrayed at regular intervals. In dyads found along the fiber surface, the diameter of the foot-like structures was 18.3 nm, the center-to-center distance was 30.5 nm, and the junctional gap was 9.7 nm. While, in triads found around the tubular invaginations, those dimensions were 18.6 nm, 30.4 nm and 9.6 nm, respectively. No significant difference was found between the respective dimensions of the two types of dyads, indicating that they are fundamentally the same in construction. On the other hand, the measured dimensions of dyadic contacts coincided well with those of the triadic contacts of skeletal muscles.

Furthermore, as found in skeletal muscle triads, a two-dimensional orthogonal array of foot-like structures on the SR junctional membrane was also confirmed by observing serial sections 35 nm thick. These results indicate that the foot-like structures are truly feet, and the dyadic contacts of LBWM fibers are homologous in structure and possibly in function with the triadic contacts of skeletal muscles. This view was further supported by these experiments, proving the existence of calsequestrin in SR demonstrated by immuno- electron microscopy and the high quantity (3.02%) of fractional SR volume per fiber volume measured by the montage method.

Keywords:

longitudinal body wall muscle (LBWM) of Dolabella auricularia, structural analysis of yiadic contacts, foot, calsequestrin, fractional SR volume

ᐨ⺰

㛽ᩰ╭ߢߪޔㆇേ␹⚻ߩ⥝ᅗ߇␹⚻ធวㇱߢવ㆐‛

⾰ߩࠕ࠮࠴࡞ࠦ࡝ࡦࠍ੺ߒߡ╭✢⛽ߦવ㆐ߐࠇࠆߣޔ

╭✢⛽ᒻ⾰⤑߇ᵴേ㔚૏ࠍ⊒↢ߒޔߘߩᵴേ㔚૏ߪ

╭✢⛽⴫㕙ࠍવ᠞ߒޔ╭✢⛽ᒻ⾰⤑ߩ㒱౉᭴ㅧߢ޽

ࠆᮮⴕዊ▤(transverse tubuleޔT▤)ࠍ⚻ߡ╭✢⛽

ਛᔃㇱߦવࠊࠅޔCa2+⾂⬿᭴ㅧߢ޽ࠆ╭ዊ൮૕

(sarcoplasmic reticulumޔSR)߆ࠄCa2+߇᡼಴ߐࠇޔ

෼❗߇ᒁ߈⿠ߎߐࠇࠆߣ⠨߃ࠄࠇߡ޿ࠆ2)ޕߎߩ⥝

ᅗ෼❗ㅪ㑐(excitation contraction couplingޔECㅪ 㑐)ߩ⻉ㆊ⒟ߩ߁ߜޔT▤ߣSR⚳ᧃᮏߢ᭴ᚑߐࠇࠆ triad㧔ਃߟ⚵㧕ߦ߅ߌࠆT▤⤑ߣSR⤑㑆ߩ⥝ᅗવ

㆐ߪelectro-mechanical coupling (EMㅪ㑐)⺑ߦࠃ

(2)

ࠅ⺑᣿ߐࠇߡ޿ࠆ3, 4)ޕEMㅪ㑐ߢߪޔT▤⤑ߦዪ࿷

ߔࠆ L ဳ Ca2+࠴ࡖࡀ࡞ߢ޽ࠆࠫࡅ࠼ࡠࡇ࡝ࠫࡦฃ ኈ૕㧔DHPR㧕߇⤑㔚૏ᄌൻߦߣ߽ߥ޿ಽሶ᭴ㅧᄌ ൻࠍ⿠ߎߒ5, 6)ޔSR ߩ T ▤ߦ㕙ߒߚ⤑ߦዪ࿷ߔࠆ Ca2+᡼಴࠴ࡖࡀ࡞ߢ޽ࠆ࡝ࠕࡁࠫࡦฃኈ૕㧔RyR㧕 ߦធ⸅ߒߡ࠴ࡖࡀ࡞ࠍ㐿߆ߖޔ╭✢⛽ౝߦCa2+ࠍㆆ 㔌ߔࠆ7)ߣ⠨߃ࠄࠇߡ޿ࠆޕRyRߪޔᓥ᧪ߩ㔚㗼ⷰ

ኤߦࠃࠅT▤⤑ߣSR⤑ߩធวㇱ㑆㓗ߢ⷗಴ߐࠇߚ foot8)ߣห৻ߩ߽ߩߢ޽ࠆߎߣ߇᣿ࠄ߆ߦߐࠇߡ޿

9, 10)ޕEM ㅪ㑐⺑ߪޔtriad ߦ߅ߌࠆ T▤⤑ౝߩ

DHPRߣT▤ߦ㕙ߒߚSR⤑ౝߩRyR㧔= foot㧕߇

‛ℂ⊛ߦធ⸅ߢ߈ࠆߎߣ߇೨ឭߦߥߞߡ߅ࠅޔ⒳ޘ ߩ㛽ᩰ╭ߢtriadߩT▤-SRធวㇱߦ߅ߌࠆਔฃኈ

૕ߩ⤑ౝಽᏓ߇⎇ⓥߐࠇޔߘࠇߙࠇߩ⤑ౝߦ߅ߌࠆ

ੑᰴర㈩೉߿T▤⤑-SR⤑㑆ߩኻะ㈩೉ߩ᭽ᑼ߇᣿

ࠄ߆ߦߐࠇߡ޿ࠆ6, 11, 12)ޕ

৻ᣇޔᐔṖ╭ߢߪޔ╭෼❗ࠍᒁ߈⿠ߎߔCa2+ޔ޿

ࠊࠁࠆᵴᕈൻCa2+ߪSRߩߺߦ↱᧪ߖߕޔ╭ᒻ⾰⤑

ౝ⴫㕙߆ࠄߩㆆ㔌߿ᄖᶧ߆ࠄߩᵹ౉ߦࠃߞߡ߽ଏ⛎

ߐࠇࠆߚ߼13, 14)ޔߘߩECㅪ㑐ߩ⻉ㆊ⒟ߦߟ޿ߡߪ

߹ߛਇ᣿ߥὐ߇ᄙ޿ޕ㛽ᩰ╭ߣߪ⇣ߥࠅޔT▤᭴ㅧ ࠍᜬߚߥ޿ᐔṖ╭ߢߪޔSR ߪޔᒻ⾰⤑⋥ਅߦዊ⢩

ߣߒߡᐢߊಽᏓߒޔᒻ⾰⤑ߣdyad㧔ੑߟ⚵㧕ࠍᒻᚑ ߒߡ޿ࠆޕᄙߊߩᐔṖ╭ߢޔᒻ⾰⤑ߣߘࠇߦኻะߔ ࠆSR⤑ߣߢ᭴▽ߐࠇࠆធวㇱ㑆㓗ߦ㛽ᩰ╭ߩfoot ߦ⦟ߊૃߚ☸⁁᭴ㅧ߇ⷰኤߐࠇߡ߅ࠅޔߘߩᓸ⚦᭴

ㅧቇ⊛㘃ૃᕈ߆ࠄޔᐔṖ╭ߢ߽ޔߎߩㇱಽߢEMㅪ 㑐ᯏ᭴߇ᯏ⢻ߒߡ޿ࠆน⢻ᕈ߇␜ໂߐࠇߡ޿ࠆ1, 14)ޕ 1978ᐕߦSuzuki and Sugiߪޔエ૕േ‛࠲࠷࠽ࡒ

ࠟࠗDolabella auriculariaߩ૕ო❑⿛╭㧔LBWM㧦 longitudinal body wall muscle㧕ߩ෼❗⺞▵ᯏ᭴ߦ ߟ޿ߡ↢ℂቇ෸߮ࡇࡠࠕࡦ࠴ࡕࡦ㉄ᴺࠍ↪޿ߚ⚦⢩

ൻቇ⊛ታ㛎ࠍⴕ޿ޔߎߩᐔṖ╭ߢߪޔ╭ᒻ⾰⤑ౝ⴫

㕙߅ࠃ߮SR߇ᵴᕈൻCa2+ߩ⾂⬿᭴ㅧߣߒߡᯏ⢻ߒ ߡ޿ࠆߎߣࠍ␜ߒߚ13)ޕᓐࠄߪޔ߹ߚޔߎߩ╭߇ޔ ᒻ⾰⤑⋥ਅߦᐔṖ╭ߣߒߡߪ⦟ߊ⊒㆐ߒߚᄙߊߩ SR ࠍ฽ߺޔT ▤ߦ⦟ߊૃߚᒻ⾰⤑ߩ▤⁁㒱౉᭴ㅧ ߦSR߇ㄭធߒߡtriad߿dyad᭽ߩ᭴ㅧࠍᒻᚑߒޔ ߘࠇࠄߩធวㇱ㑆㓗ߦߪfootߦ⦟ߊૃߚ☸⁁᭴ㅧ߇ ዪ࿷ߔࠆߎߣ߽ႎ๔ߒߡ޿ࠆ1)ޕ㘃ૃߩ᭴ㅧߪޔ࠲

࠷࠽ࡒࠟࠗߦㄭ✼ߩࠕࡔࡈ࡜ࠪߩ૕ო╭ߢ߽ⷰኤߐ ࠇߡ޿ࠆ15)ޕߎࠇࠄߩ᭴ㅧ਄ߩ․ᓽߪޔߎߩ૕ო❑

⿛╭߇ޔᐔṖ╭ߦ߅ߌࠆECㅪ㑐ޔߐࠄߦߪEMㅪ 㑐ߩ⎇ⓥߦᭂ߼ߡㆡߒߚ⚛᧚ߢ޽ࠆߎߣࠍ␜ߒߡ޿

ࠆޕᧄ⎇ⓥߢߪޔᐔṖ╭ dyadߣ㛽ᩰ╭ triadߩᒻ ᘒቇ⊛㘃ૃᕈࠍ᣿⏕ߦߔࠆߚ߼ߦޔ࠲࠷࠽ࡒࠟࠗ૕

ო❑⿛╭ࠍ↪޿ߡ dyadߩᓸ⚦᭴ㅧⷰኤࠍⴕ޿ޔㅪ

⛯ಾ ⷰኤᴺߦࠃࠅធวㇱ⤑㕙ߢߩfoot᭽᭴ㅧߩੑ

ᰴర㈩೉ߦߟ޿ߡᬌ⸛ߒߚޕ߹ߚޔߎߩ╭ߩᵴᕈൻ ߦኻߔࠆSRߩነਈࠍ᣿⏕ߦߔࠆߚ߼ߦޔ╭✢⛽ౝ

ߦභ߼ࠆSRߩኈⓍࠍ᷹ቯߒޔ఺∉㔚㗼ᴺߦࠃࠅSR

ౝ Ca2+-⚿ว࠲ࡦࡄࠢ⾰ߩหቯࠍ⹜ߺߚޕ

᧚ᢱߣᣇᴺ

╭✢⛽ᮡᧄ૞⵾ߣᓸ⚦᭴ㅧⷰኤᴺ

␹ᄹᎹ⋵ਃᶆ㇭⪲ጊ↸ߩᩊፒᶏጯߢណ㓸ߒޔ26͠ߩ ᓴ Ⅳ ᶏ ᳓ߢ㘺 ⢒ߒ ߚ ࠲ ࠷ ࠽ ࡒ ࠟ ࠗ Dolabella

auriculariaࠍ⢛஥ᱜਛ✢ߢಾ㐿ߒޔౝ⤳ࠍోߡ៰಴

ߒߚᓟޔ㗡ㇱ߆ࠄ૕ოߦᴪߞߡ⿛ⴕߔࠆ૕ო❑⿛╭

㧔LBWM㧕߆ࠄ⋥ᓘ⚂1 mmߩ╭✢⛽᧤ࠍන㔌ߒߚޕ න㔌ߒߚLBWM╭✢⛽᧤ࠍpH7.2ߩ0.1Mࠞࠦ

ࠫ࡞㉄✭ⴣᶧߢᏗ㉼ߒߚ 6%ߩࠣ࡞࠲࡞ࠕ࡞࠺ࡅ࠼

㧔GA㧕ᶧ߅ࠃ߮ 2%ߩ྾㉄ൻࠝࠬࡒ࠙ࡓ㧔OsO4㧕 ߢ࿕ቯߒߚޕࠛ࠲ࡁ࡯࡞♽೉߅ࠃ߮ࡊࡠࡇ࡟ࡦࠝࠠ

ࠨࠗ࠼㧔PO㧕ߢ⣕᳓ߒߚᓟޔEpoxy ᮸⢽ߦ൮ၒߒ ߚޕ࠙࡞࠻࡜ࡒࠢࡠ࠻࡯ࡓ㧔Reichert Ultracut-N㧕 ࠍ↪޿ޔ᮸⢽ࡉࡠ࠶ࠢ߆ࠄޔㅢᏱߩᓸ⚦᭴ㅧⷰኤ↪

ߩෘߐ70 nmߩ⿥⭯ಾ ߣޔfoot᭽᭴ㅧੑᰴర㈩೉

ⷰኤ↪ߩෘߐ35 nmߩㅪ⛯⿥⭯ಾ ࠍ૞⵾ߒޔ㈶㉄

࠙࡜ࡦߣࠢࠛࡦ㉄㋦ߢ㔚ሶᨴ⦡ߒߚᓟޔㅘㆊဳ㔚ሶ 㗼ᓸ㏜㧔JEOL JEM2000EX㧕ߢⷰኤߒߚޕ 㔚ሶ㗼ᓸ㏜ߢ᠟ᓇߒߚࡈࠖ࡞ࡓ↹௝ߪࠬࠠࡖ࠽࡯

ߢ࠺ࠫ࠲࡞↹௝ߦᄌ឵ߒߚޕࡕࡦ࠲࡯ࠫࡘᴺ 16~18) ߦࠃࠆ╭✢⛽ౝSR ኈⓍߩ᷹ቯߦߪ࠺ࠫ࠲࡞↹௝⸃

ᨆ࠰ࡈ࠻ߩNIH Imageࠍ↪޿ߚޕ߹ߚޔㅪ⛯ಾ 

௝ࠍ߽ߣߦਃᰴర↹௝᭴▽࠰ࡈ࠻ߩ VG Studio MAX㧔Volume Graphics␠㧕ߢLBWMߩdyad㗔

ၞࠍਃᰴరౣ᭴ᚑߒޔdyad ធวㇱ⤑㕙ߢߩfoot᭽

᭴ㅧߩੑᰴర㈩೉ߦߟ޿ߡ⸃ᨆߒߚޕ

఺∉㔚ሶ㗼ᓸ㏜ᴺ

Ca-⚿วⰮ⊕⾰ࠍหቯߔࠆߚ߼ߦޔLBWMߩ╭✢⛽

᧤ࠍpH 7.2ߩ0.1 Mῂ㉄✭ⴣᶧߢᏗ㉼ߒߚ4%ߩࡄ

࡜ࡎ࡞ࡓࠕ࡞࠺ࡅ࠼㧔PF㧕ᶧߢ࿕ቯޔࠛ࠲ࡁ࡯࡞♽

೉ߢ⣕᳓ߒޔLowicryl K4M ᮸⢽ߦ൮ၒߒߚᓟޔ -20͠ߢ3ᣣ㑆ޔቶ᷷ߢ24ᤨ㑆⚡ᄖ✢ࠍᾖ኿ߒߡ᮸

⢽ࠍ㊀วߐߖߚޕ࠙࡞࠻࡜ࡒࠢࡠ࠻࡯ࡓ㧔Reichert Ultracut-N㧕ߢෘߐ⚂70 nmߩ⿥⭯ಾ ࠍ૞⵾ߒޔ

Ni-150ࡔ࠶ࠪࡘߦタ‛ߒޔಾ ߩ఺∉ᨴ⦡ࠍⴕߥߞ

ߚޕ0.02 Mࠣ࡝ࠪࡦᶧߢ30ಽ㑆ಣℂߒߡ⹜ᢱਛߩ ࠕ࡞࠺ࡅ࠼ၮࠍਛ๺ߒޔῂ㉄✭ⴣᶧ㧔PBS㧕ߢᵞᵺ ߒޔ1%ߩ࠙ࠪⴊᷡࠕ࡞ࡉࡒࡦ㧔BSA㧕ࠍ฽߻ PBS ߢ 30 ಽ㑆ಣℂߒߡ㕖․⇣⊛෻ᔕࠍシᷫߐߖޔ20 mg/ml᛫ࠞ࡞ࠪࠢࠛࠬ࠻࡝ࡦ᛫૕㧔rabbit anti goat IgGޔUpstate Biotechnology Inc.㧕ߢ1ᤨ㑆఺∉ᨴ

⦡ߒߚޕ0.05% Tween20ߣPBSߢᵞᵺߒߚᓟޔ⋥

(3)

ᓘ10 nmߩ㊄☸ሶࠍᮡ⼂ߒߚIgG᛫૕ (goat anti rabbit IgGޔAmersham) ߢ30ಽ㑆ಣℂߒޔ0.05%

Tween20ߣPBSߢᵞᵺߒߚޕPBSߢᏗ㉼ߒߚ2.5%

ߩGA ᶧߢ10ಽ㑆ಣℂߒߡ᛫ේ᛫૕෻ᔕࠍ⵬ᒝߒ ߚᓟ PBS ߢᵞᵺߒޔ㈶㉄࠙࡜ࡦߣࠢࠛࡦ㉄㋦ߢ㔚 ሶᨴ⦡ߒߡㅘㆊဳ㔚ሶ㗼ᓸ㏜㧔JEOL JEM2000EX㧕 ߢⷰኤߒߚޕ

⚿ᨐ

LBWM╭✢⛽ߩᓸ⚦᭴ㅧⷰኤ

࿑1ߪLBWM╭✢⛽ߩᮮᢿಾ ௝ࠍ␜ߒߡ޿ࠆޕ

╭✢⛽ߪޔᣢߦႎ๔ߐࠇߡ޿ࠆࠃ߁ߦ 1)ޔ৻⥸ߩᐔ Ṗ╭ࠃࠅᄥߊ⋥ᓘ10ޯ20mmߢ޽ࠅޔ╭ᒻ⾰ਛᄩㇱ ߦߪᩭߣᄙᢙߩࡒ࠻ࠦࡦ࠼࡝ࠕ߇ዪ࿷ߔࠆ㗔ၞ߇޽

ࠅޔߘࠇએᄖߩ╭ᒻ⾰ߩᱴߤߪᄥ޿ࡈࠖ࡜ࡔࡦ࠻ߣ

⚦޿ࡈࠖ࡜ࡔࡦ࠻ߢභ߼ࠄࠇߡ޿ߚޕᒻ⾰⤑ߪᄙᢙ ߩዊ㒱ಳࠍᒻᚑߒߡ߅ࠅ(࿑2A)ޔ᭽ޘߥᄢ߈ߐߩዊ

⢩⁁ SR ߇ᒻ⾰⤑⋥ਅߦዪ࿷ߒߡ޿ߚ(࿑ 2,⍫ශ)ޕ

߹ߚޔᒻ⾰⤑ߪ㓐ᚲߢ╭ᒻ⾰ౝߦ㒱౉ߒߡ㛽ᩰ╭ߩ T▤ߦૃߚ᭴ㅧࠍᒻᚑߒߡ޿ߚ(࿑2C)ޕߎߩT▤᭽

᭴ㅧߩᒻ⾰⤑⋥ਅߦ߽SR ߇ዪ࿷ߒߡ߅ࠅޔߎࠇࠄ ߩSRߪᒻ⾰⤑ߦ㕙ߒߚ⤑߇ᒻ⾰⤑ߣធวㇱࠍᒻᚑ ߒߡ dyadࠍ᭴ᚑߒޔߘߩធวㇱ㑆㓗ߢߪޔߒ߫ߒ

߫ⷙೣ⊛㑆㓒ߢਗࠎߛ foot ᭽᭴ㅧ߇ⷰኤߐࠇߚ(࿑ 2B-D)ޕT ▤᭽᭴ㅧߪޔ㓞ធߔࠆ⚦⢩ߣߩ⚦⢩㑆㓗 ߇ᐢ޿႐วߦ⷗ࠄࠇޔ⚦⢩㑆㓗߇⁜޿㗔ၞߢߪⷰኤ ߐࠇߥ߆ߞߚޕᒻ⾰⤑ߣ dyad ࠍ᭴ᚑߒߡ޿ࠆ SR ߩౝ⣧ߦߪ㜞㔚ሶኒᐲߩ☸ሶ߇ᄙᢙⷰኤߐࠇߚ(࿑ 2D)ޕߘࠇࠄߩ☸ሶߪޔౝ⣧ਛᄩㇱ߿൮⤑ౝ⴫㕙ઃ

ㄭߢኒߦ㓸วߒߡ޿ߚ߇ޔdyadធวㇱ⤑ߩౝ⴫㕙ઃ

ㄭߦߪⷰኤߐࠇߥ߆ߞߚޕߎࠇࠄߩ⚿ᨐߪޔߎࠇ߹

ߢߩႎ๔1)ߣ⦟ߊ৻⥌ߒߡ޿ߚޕ

఺∉㔚ሶ㗼ᓸ㏜ᴺߦࠃࠆCa2+-⚿วⰮ⊕⾰ߩᬌ಴

᛫ࠞ࡞ࠪࠢࠛࠬ࠻࡝ࡦ᛫૕ߢ఺∉ᨴ⦡ߒߚಾ ߢߪޔ

᛫ේዪ࿷ߩᜰᮡߣߥࠆੑᰴ᛫૕ߩ㊄☸ሶߪޔSR એ ᄖߩ⚦⢩ዊེቭ߿ᒻ⾰⤑ߦߪⷰኤߐࠇߕޔSR ౝ⣧

ౝߩਛᄩㇱ߿൮⤑ౝ⴫㕙ઃㄭߢޔㅢᏱ࿕ቯಾ ௝ߩ SR ౝߦⷰኤߐࠇߚ㜞㔚ሶኒᐲߩ☸ሶ਄ߦዪ࿷ߒߡ

޿ߚ㧔࿑3㧕ޕ఺∉ᨴ⦡ߩ㕖․⇣⊛෻ᔕߩ᦭ήࠍᬌ⸽

࿑1. LBWM╭✢⛽ߩᮮᢿಾ ௝.ᒻ⾰⤑⋥ਅߦߪ,ᒻ⾰⤑ߣdyadࠍ᭴ᚑߔࠆSR߇ᄙᢙ⷗ࠄࠇࠆ(⍫ශ),ࠬࠤ࡯࡞: 1mm.

(4)

࿑2. LBWM╭✢⛽ߩᒻ⾰⤑๟ㄝߩ᜛ᄢ௝. A. ዊ㒱ಳ. B. ╭✢⛽⴫㕙ᒻ⾰⤑ߣdyadࠍᒻᚑߔࠆSR, ធวㇱ㑆㓗ߦߪfoot

᭽᭴ㅧ߇ⷰኤߐࠇࠆ. C. T▤᭽᭴ㅧ߅ࠃ߮ߘߩᒻ⾰⤑ߣdyadࠍᒻᚑߔࠆSR ធวㇱ㑆㓗ߦߪfoot↪᭴ㅧ߇ⷰኤߐࠇࠆ. D.

ౝ⣧ౝߦ㜞㔚ሶኒᐲߩ☸ሶࠍ฽߻SR. ࠬࠤ࡯࡞: 100 nm.

࿑3. ᛫ࠞ࡞ࠪࠢࠛࠬ࠻࡝ࡦ᛫૕ߢ఺∉ᨴ⦡ߒߚLBWM╭✢⛽ߩ❑ᢿಾ ௝. ㊄☸ሶߪSRౝ⣧߿൮⤑਄ߦ⷗ࠄࠇࠆ. ࠬ ࠤ࡯࡞: 200 nm.

(5)

⴫1. LBWM╭✢⛽dyadฦㇱߩࠨࠗ࠭

Dyadฦㇱ SRߣ╭✢⛽⴫㕙ᒻ⾰⤑

߆ࠄߥࠆdyad (nm)

SRߣT▤᭽᭴ㅧᒻ⾰⤑

߆ࠄߥࠆdyad (nm) ᦭ᗧ᳓Ḱ

Foot᭽᭴ㅧߩ᏷ 18.3 r 1.5 (n=229) 18.6 r 1.8 (n=110) 㧪0.05 Foot᭽᭴ㅧਛᔃ㑆〒㔌 30.5 r 2.5 (n=175) 30.4 r 3.2 (n= 83) 㧪0.05 ᒻ⾰⤑ߣSR⤑㑆〒㔌 9.7 r 0.9 (n=183) 9.6 r 0.8 (n= 81) 㧪0.05 ୯ߪᐔဋ୯rᮡḰ஍Ꮕ(n=12)

ߔࠆߚ߼ߦᨴ⦡ㆊ⒟ߢ৻ᰴ᛫૕ߢ޽ࠆ᛫ࠞ࡞ࠪࠢࠛ

ࠬ࠻࡝ࡦ᛫૕ࠍ↪޿ߕߦੑᰴᮡ⼂᛫૕ߩߺࠍ෻ᔕߐ ߖߚಾ ߢߪޔ㊄☸ሶߪ৻ಾⷰኤߐࠇߥ߆ߞߚޕ

Dyad᭴▽ⷐ⚛ߩ᭴ㅧ⸃ᨆ

LBWM╭✢⛽ߦ⷗ࠄࠇࠆdyadߣ㛽ᩰ╭ߩtriadߣ ߩ᭴ㅧ਄ߩ㘃ૃᕈࠍᬌ⸛ߔࠆߚ߼ߦޔߘߩ᭴▽ⷐ⚛

ߣߥࠆfoot᭽᭴ㅧߩ᏷ߣਛᔃ㑆〒㔌ޔ߅ࠃ߮ᒻ⾰⤑

ߣSR⤑㑆ߩធวㇱ㑆㓗〒㔌ࠍ᷹ቯߒߚޕ⴫1ߪߘ ߩ⚿ᨐࠍ➙߼ߚ߽ߩߢ޽ࠆޕSR ߣ╭✢⛽⴫㕙ᒻ⾰

⤑߆ࠄߥࠆdyadߢߪޔfoot᭽᭴ㅧߩ᏷ߪ18.3 nmޔ

ਛᔃ㑆〒㔌ߪ30.5 nmޔធวㇱ㑆㓗ߪ9.7 nmߢ޽ߞ ߚޕ৻ᣇޔSR ߣ T ▤᭽᭴ㅧᒻ⾰⤑߆ࠄߥࠆ dyad ߢߪޔfoot᭽᭴ㅧߩ᏷ߪ18.6 nmޔਛᔃ㑆〒㔌ߪ30.4 nmޔធวㇱ㑆㓗ߪ9.6 nmߢ޽ߞߚޕSR߇╭✢⛽

⴫㕙ᒻ⾰⤑߅ࠃ߮ T ▤᭽᭴ㅧᒻ⾰⤑ߣߢᒻᚑߔࠆ dyadߩฦㇱߩ᷹ቯ୯ߩ߁ߜޔห৻᷹ቯㇱߩ᷹ቯ୯㑆 ߢtᬌቯࠍⴕߞߚߣߎࠈޔ޿ߕࠇߩ႐วߢ߽ޔਔ⠪

ߦ᦭ᗧߩᏅߪߥ߆ߞߚޕ

Dyadធวㇱߦ߅ߌࠆfoot᭽᭴ㅧߩ⤑㕙਄ੑᰴర

㈩೉ࠍ᣿ࠄ߆ߦߔࠆߚ߼ߦޔㅪ⛯⿥⭯ಾ ⷰኤࠍⴕ ߥߞߚޕ࿑4ߪޔSRߣ╭✢⛽⴫㕙ᒻ⾰⤑ߣߢ᭴ᚑ

࿑4. SRߣ╭✢⛽⴫㕙ᒻ⾰⤑ߣߢ᭴ᚑߐࠇࠆdyad㗔ၞߩㅪ⛯ಾ ௝. A߆ࠄLߪ⭯ಾ㗅ࠍ␜ߔ. Lߢߪdyad ធวㇱ(⍫ශ) ߢߩߺSR⤑ߩᢿ㕙߇⷗ࠄࠇࠆ. D߆ࠄFߢߪធวㇱ㑆㓗ߦ foot᭽᭴ㅧ߇ⷰኤߐࠇࠆ.ࠬࠤ࡯࡞: 100 nm.

(6)

࿑5. Foot᭽᭴ㅧ(࿑ਛ⍫㗡)߇᣿⍎ߥ࿑4E(A), ࿑4F(B), ࿑4G(C)ߩdyad᜛ᄢ௝. ࠬࠤ࡯࡞: 50 nm.

ߐࠇࠆdyadߩㅪ⛯ಾ ௝ߢ޽ࠆޕA߆ࠄLߪಾ 

߇⭯ಾߐࠇߚ㗅ࠍ␜ߒޔ㗅߇ㅴ߻ߦߟࠇߡ 㕙ಲߩ

࡟ࡦ࠭⁁SRߩಾ ௝ߪᓢޘߦᄢ߈ߊߥࠅޔFߢᦨ ᄢߣߥࠅޔએᓟᓢޘߦዊߐߊߥߞߚޕ㗅ᦨᓟߩಾ 

L ߢߪޔSR ൮⤑ߪಾᢿ௝ߢߪߥߊޔ㔚ሶኒᐲߩ㜞

޿ᐔ㕙ߣߒߡⷰኤߐࠇߚޕ߹ߚޔEߣFߩಾ ߢߪ

ౖဳ⊛ߥdyadߩಾ ௝߇ⷰኤߐࠇޔߎߩ SRߩᦨ ᄢ㐳ᓘߪ⚂370 nmߢ޽ߞߚޕDޔFޔGޔHߩಾ 

ߢߪSRߩౝ⣧ߦ㜞㔚ሶኒᐲߩ㗰☸߇ⷰኤߐࠇޔߘ ߩᦨᄢ⋥ᓘߪ⚂58 nmߢ޽ߞߚޕㅪ⛯ಾ ߩ߁ߜޔ EޔFޔGߩಾ ߢ᣿⍎ߥFoot᭽᭴ㅧ߇ⷰኤߐࠇߚ(࿑ 5)ޕFoot᭽᭴ㅧߪޔᔅߕߒ߽ធว㕙ో૕ߦಽᏓߒߡ

޿ߥ߆ߞߚ߇ޔዪ࿷㗔ၞߢߪㅪ⛯⊛ߦ╬㑆㓒ߢਗࠎ ߢ߅ࠅޔಾ EߣFߢ5୘ޔಾ Gߢ4୘߇⏕⹺

ߐࠇߚޕ

ห᭽ߩ⚿ᨐߪޔSRߣT▤᭽᭴ㅧᒻ⾰⤑ߣߢ᭴ᚑ ߐࠇࠆdyad ߩㅪ⛯ಾ ⷰኤߦࠃߞߡ߽ᓧࠄࠇߚޕ ߘߩ৻଀ࠍ␜ߔ࿑6ߢߪޔSRߪT▤᭽᭴ㅧߩ㒱౉

వ┵ㇱࠍ൮ߺㄟ߻ࠃ߁ߦߒߡdyadࠍᒻᚑߒߡ޿ߚޕ

⭯ಾ㗅A߆ࠄLߩಾ ௝ߩ߁ߜޔC߆ࠄJߢdyad ࠍ᭴ᚑߔࠆSR߇ⷰኤߐࠇޔߐࠄߦޔD߆ࠄIߢធ วㇱ߇⏕⹺ߐࠇߚޕSRಾ ௝ߪޔGߢᦨᄢߦߥࠅޔ ߘࠇએ㒠ߪᓢޘߦዊߐߊߥߞߚޕF㨪Iߩಾ ߪޔౖ

ဳ⊛ߥdyad௝ࠍ␜ߒޔធวㇱߢߪ6୘ߩfoot᭽᭴

ㅧ߇ⷰኤߐࠇߚ(࿑7)ޕT▤᭽᭴ㅧߣߘߩ╭✢⛽⴫㕙 ߆ࠄߩ㒱౉ㇱߪޔ࿑6ߩA߆ࠄIߩಾ ߢㅪ⛯⊛ߦ

ⷰኤߐࠇߚޕT▤᭽᭴ㅧߩౝᓘߪ⚂70 nmߢޔߘߩ

ᒻ⾰⤑਄ߦ߽ౝᓘ⚂ 90 nm ߩᄙᢙߩዊ㒱ಳ߇ⷰኤ ߐࠇޔ࿑6ߢߪޔT▤᭽᭴ㅧߩ╭✢⛽⴫㕙߆ࠄߩᷓ

ߐߪHߩಾ ߢᦨ߽ᄢ߈ߊޔ⚂1.1mmߢ޽ߞߚޕ ࿑8ߪޔਃᰴర↹௝᭴▽࠰ࡈ࠻ߩVG Studio MAX ߦࠃࠅޔ࿑4ߩㅪ⛯ಾ ௝ࠍ⭯ಾ㗅ߦ㊀ߨ޽ࠊߖߡ

ౣ᭴ᚑߒߚਃᰴర↹௝ߣޔߘߩਃᰴరౣ᭴ᚑ↹௝ࠍޔ dyad ធวㇱઃㄭߢធว㕙ߣᐔⴕߦౣಾᢿߒߚಾᢿ 㕙ߩ௝ࠍ␜ߒߡ޿ࠆޕ┙૕௝਄㕙ߪㅪ⛯ಾ ߩᦨೋ

ߩಾ ௝(࿑ 4A)ߣ৻⥌ߔࠆޕFoot ᭽᭴ㅧ߇㗼⪺ߦ

⷗ࠄࠇߚ࿑ 4E㨪G ߩធวㇱ⤑㕙߇ⷰኤߢ߈ࠆࠃ߁ ߦޔ┙૕௝ࠍಾᢿߒ㧔࿑ 4B㧕ޔ࿁ォߐߖ㧔࿑ 4C㧕ޔ SRߩធวㇱ⤑㕙ࠍᱜ㕙߆ࠄㅘⷞߒߚ㧔࿑4D㧕ޕਃ

ᰴరౣ᭴ᚑߢߪޔಾ ߩෘߐ߇┙૕௝ߩ㜞ߐߩᖱႎ ߣߒߡ૶ࠊࠇޔಾ ௝ߩỚ᷆ߪන⚐ߦߘߩ߹߹㜞ߐ (ᷓߐ)ᣇะߦ෻ᤋߐࠇࠆޕᓥߞߡޔಾ ௝ߢ☸ሶ߿

ࡈࠖ࡜ࡔࡦ࠻╬ߩ㔚ሶኒᐲ߇㜞޿ㇱ૏ߪ┙૕௝஥

㕙ߢ߽㔚ሶኒᐲ߇㜞ߊ⴫␜ߐࠇࠆޕㅪ⛯ಾ ௝ߢ㔚 ሶኒᐲߩ㜞޿foot᭽᭴ㅧߪޔ࿑8Dߩಾᢿ㕙ߢߪᔅ ὼ⊛ߦỚ޿ㇱಽߣߒߡ␜ߐࠇࠆޕߘߩ⚿ᨐޔfoot᭽

᭴ㅧࠍ␜ߔߣ⠨߃ࠄࠇࠆ㜞Ớᐲࠬࡐ࠶࠻(࿑ਛޔ٤ ߢᮡ⼂)ߪޔᢿ㕙਄ߢ᳓ᐔᣇะߦ 3 ೉ⷰኤߐࠇޔㅪ

⛯ಾ 5ᨎ⋡(࿑4E)ߦ⋧ᒰߔࠆ᳓ᐔ૏ߢ4୘ޔ6ᨎ

⋡(࿑ 4F)ߦ⋧ᒰߔࠆ᳓ᐔ૏ߢ 3୘ޔ7ᨎ⋡(࿑ 4G) ߦ⋧ᒰߔࠆ᳓ᐔ૏ߢ2୘ⷰኤߐࠇߚޕㅪ⛯ಾ ௝ߢ

ⷰኤߐࠇߚfoot᭽᭴ㅧߩᢙࠃࠅዋߥ߆ߞߚ߇ޔ3೉ ߩࠬࡐ࠶࠻ߪޔု⋥ᣇะߢߪ߅ࠃߘหߓ૏⟎ߣߥࠆ ࠃ߁⋥✢⊛ߦ㈩೉ߒߡ޿ߚޕ

(7)

࿑6. SRߣT▤᭽᭴ㅧᒻ⾰⤑ߣߢ᭴ᚑߐࠇࠆdyadߩㅪ⛯ಾ ௝. A߆ࠄL ߪ⭯ಾ㗅ࠍ␜ߔ. T▤᭽᭴ㅧߪዊ㒱ಳ߇ㅪߥߞ ߡᒻᚑߐࠇߡ޿ࠆࠃ߁ߦ⷗߃(A, C), SR⤑ߣᒻ⾰⤑㑆ߩធวㇱ㑆㓗ߦߪfoot᭽᭴ㅧ߇ⷰኤߐࠇࠆ(F-I). ࠬࠤ࡯࡞: 100 nm.

࿑7. Foot᭽᭴ㅧ(࿑ਛ⍫㗡)߇᣿⍎ߥ࿑6F(A), ࿑6G(B), ࿑6H(C), ࿑6I(D)ߩdyad᜛ᄢ௝. ࠬࠤ࡯࡞: 50 nm.

(8)

࿑8. ㅪ⛯ಾ ௝(࿑4)ࠍਃᰴరౣ᭴ᚑߒߚ┙૕௝ߣߘߩಾᢿ㕙ߩㅘⷞ௝. 㔚㗼௝ࠍಾ 㗅ߦ㊀ߨ(A), ធวㇱ(B, ⍫ශ)㕙 ߦᐔⴕߦಾᢿߒ, ಾᢿ㕙(C, ⍫ශ)߇⷗ࠄࠇࠆࠃ߁ߦਃᰴర⊛ߦ࿁ォߒ,ಾᢿ㕙ࠍᱜ㕙߆ࠄㅘⷞ(D). ಾᢿ㕙౮⌀਄ߩᮡ⼂

(٤)ߪfoot᭽᭴ㅧߩዪ࿷ࠍ෻ᤋߔࠆ㜞Ớᐲࠬࡐ࠶࠻ߩ૏⟎. ⍫ශߪޔfoot᭽᭴ㅧ߇᣿⍎ߦⷰኤߐࠇߚ࿑4ߩಾ E, F, G ߩ૏⟎. ❑ゲ⋡⋓ߪಾ ߩෘߐ35 nmߩ㑆㓒ࠍ␜ߔ.

⸛⺰

LBWM╭✢⛽ߩdyadߣfoot᭽᭴ㅧ

LBWMߩ╭✢⛽ߢⷰኤߐࠇߚdyadߩធวㇱ㑆㓗ߪޔ SRߣ╭✢⛽⴫㕙ᒻ⾰⤑߆ࠄߥࠆdyadߢߪ9.7 nm ߢޔSRߣT▤᭽᭴ㅧᒻ⾰⤑߆ࠄߥࠆdyadߢߪ9.6 nmߢ޽ߞߚޕ৻ᣇޔ㛽ᩰ╭ߩtriad߿ᔃ╭ߩdyad ߩធวㇱ㑆㓗ߪޔ⚂10.0 nmߢ޽ࠆߎߣ߇⍮ࠄࠇߡ ߅ࠅ19)ޔ੹࿁᷹ቯߐࠇߚ⚿ᨐߪߎࠇߣ߶߷৻⥌ߔࠆޕ

߹ߚޔLBWMߩdyadߩធวㇱ㑆㓗ߢ⷗ࠄࠇߚfoot

᭽᭴ㅧߦߟ޿ߡߪޔSR ߣ╭✢⛽⴫㕙ᒻ⾰⤑߆ࠄߥ ࠆdyadߢߪޔfoot᭽᭴ㅧߩ᏷߇18.3 nmޔߘߩਛ ᔃ㑆〒㔌ߪ30.5 nmߢ޽ࠅޔSRߣT▤᭽᭴ㅧᒻ⾰

⤑߆ࠄߥࠆdyadߢߪޔfoot᭽᭴ㅧߩ᏷߇18.6 nmޔ ߘߩਛᔃ㑆〒㔌ߪ30.4 nmߢ޽ߞߚޕtᬌቯߩ⚿ᨐ ߢߪޔੑ⒳ߩdyadߢߎࠇࠄߩ୯ߦ᦭ᗧߩᏅߪߥ߆ߞ ߚߩߢޔਔ dyadߪ᭴ㅧ⊛ߦోߊห৻ߩ߽ߩߣ⠨߃ ࠄࠇࠆޕ㛽ᩰ╭triadߩfootޔߔߥࠊߜޔRyRߪޔ SR⤑߆ࠄធวㇱ㑆㓗ߦ⓭಴ߒߚ⤑ᄖㇱߣޔSR⤑ౝ

ߩ Ca2+᡼಴࠴ࡖࡀ࡞᭴ㅧࠍᜬߟ⤑⽾ㅢㇱߣ߆ࠄߥ ࠅޔ⤑ᄖㇱߩ⤑㕙ߦᐔⴕߥᐔ㕙௝ߪฦㄝߩਛᄩ߇߿

߿߳ߎࠎߛޔ৻ㄝ⚂30 nmߩ߶߷ᱜᣇᒻࠍ␜ߒޔ஥ 㕙௝ߪਣߺࠍᏪ߮ߚ਄ਅㅒォߩಲဳߢޔਛᄩߩ⓭಴

ߒߚㇱಽߪ⤑⽾ㅢㇱߣߥࠅSRౝ⣧ߦะ߆ߞߡ⚦ߊ ߥߞߡ޿ࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ20, 21)ޕ߹ߚޔᣢߦ⍮

ࠄࠇߡ޿ࠆfootߩ᏷ߪ15.0㨪18.0 nmޔਛᔃ㑆〒㔌 ߪ⚂30.0 nmߢ޽ࠅ7)ޔ੹࿁ߩฦ᷹ቯᢙ୯ߣ⦟ߊ৻

⥌ߒߡ߅ࠅޔLBWMߩfoot᭽᭴ㅧߪ㛽ᩰ╭ߩfoot ߣหߓ᭴ㅧࠍߒߡ޿ࠆߣ⠨߃ࠄࠇࠆޕ

࿑4ߣ5ߢ␜ߒߚSRߣ╭✢⛽⴫㕙ᒻ⾰⤑߆ࠄߥ ࠆdyadߩㅪ⛯ಾ ௝ߢߪޔfoot᭽᭴ㅧߪEߣFߩ

ಾ ߢ5୘ߕߟ⷗ࠄࠇޔGߩಾ ߢߪ4୘ߒ߆⷗ࠄ ࠇߥ߆ߞߚޕ߹ߚޔfoot᭽᭴ㅧߪઁߩಾ ߢߪⷰኤ ߐࠇߥ߆ߞߚޕFoot᭽᭴ㅧߩਛᔃ㑆〒㔌ߪ⚂30 nm ߢ޽ࠅޔㅪ⛯ಾ ߩෘߐߪ35 nmߢ޽ࠆߚ߼ޔ৻ᨎ ߩಾ ߦߪfoot᭽᭴ㅧ߇߶߷1୘ಽ߅ߐ߹ࠆߎߣߦ ߥࠅޔߎߩdyad ߢߪޔㅪ⛯ಾ ߢⷰኤߐࠇߚ߽ߩ

(9)

એᄖߩfoot᭽᭴ㅧ߇޽ࠆߣߪ⠨߃ࠄࠇߥ޿ޕߎߩ੐

߆ࠄޔ࿑4ߩdyadࠍ᭴ᚑߔࠆSRߩធวㇱ⤑㕙ߦ ߪ4㨪5୘ߩfoot᭽᭴ㅧ߇3೉ሽ࿷ߒߡ޿ࠆߣ⠨߃ ࠄࠇࠆޕ৻ᣇޔ࿑6ߣ7ߦ␜ߒߚSRߣT▤᭽᭴ㅧ ᒻ⾰⤑߆ࠄߥࠆdyadߩㅪ⛯ಾ ௝ߢߪޔfoot᭽᭴

ㅧߪF߆ࠄIߩಾ ߢ6୘ߕߟ⷗ࠄࠇߚޕ߹ߚޔfoot

᭽᭴ㅧߪઁߩಾ ߢߪⷰኤߐࠇߥ߆ߞߚޕߎߩ੐߆ ࠄޔߎߩdyiad ࠍ᭴ᚑߔࠆSRߩធวㇱ⤑㕙ߦߪ6

୘ߩfoot᭽᭴ㅧ߇4೉ሽ࿷ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆޕ ߐࠄߦޔ࿑4ߩㅪ⛯ಾ ௝ࠍ߽ߣߦਃᰴరౣ᭴ᚑߒ ߚ┙૕௝ߩធวㇱ⤑㕙ߦᐔⴕߦಾᢿߒߚᢿ㕙㧔࿑

8D㧕ߢߪޔSRߩធวㇱ⤑㕙਄ߦਗ⿛ߔࠆ3೉ߩ㜞

Ớᐲߩࠬࡐ࠶࠻߇⏕⹺ߐࠇߚޕߎߩ┙૕௝ᢿ㕙ߢߪޔ ㅪ⛯ಾ ௝ߣหᢙߩࠬࡐ࠶࠻ߪ⏕⹺ߢ߈ߥ߆ߞߚ߇ޔ ߎࠇߪޔਃᰴరౣ᭴ᚑߢޔᰳ⪭ߒߡ޿ࠆᷓߐߩᖱႎ ࠍಾ ௝ߩỚ᷆ߦᓥߞߡߘߩ߹߹⵬ቢߔࠆߚ߼ޔಾ

 ௝ߦ⷗ࠄࠇࠆfoot᭽᭴ㅧએᄖߩ㜞㔚ሶኒᐲߩㇱಽ

߽㘃ૃߩ᭴ㅧߩࠃ߁ߦ⴫␜ߒߡߒ߹߁ߎߣߢޔࠬ

ࡐ࠶࠻ࠍ᣿⏕ߦ್ቯߢ߈ߥ߆ߞߚߚ߼ߢ޽ࠆޕએ਄

ߩᬌ⸛߆ࠄޔ࿑4ߩdyadࠍ᭴ᚑߔࠆSRߩធวㇱ

⤑㕙ߢߪޔfoot᭽᭴ㅧߪޔ❑ᣇะߦ3೉ޔᮮᣇะߦ 4㨪5 ೉ߢਗࠎߛ྾ⷺᩰሶ㈩೉ࠍߒߡ޿ࠆߣ⠨߃ࠄ ࠇࠆޕ߹ߚޔห᭽ߩ⸃ᨆߦࠃࠅޔ࿑6 ߩdiad ࠍ᭴

ᚑߔࠆSRធวㇱ⤑㕙ߢߪޔfoot᭽᭴ㅧ߇❑ᣇะߦ 4೉ޔᮮᣇะߦ6೉ਗࠎߛ྾ⷺᩰሶ㈩೉ࠍߒߡ޿ࠆ ߣ⠨߃ࠄࠇࠆޕࠩ࡝ࠟ࠾߿ࠨ࠰࡝ߢߪޔfoot ߪ SR ធวㇱ⤑਄ߦ╬㑆㓒ߢਗࠎߛ྾ⷺᩰሶ㈩೉ࠍߒߡ޿

ࠆߎߣ߇⍮ࠄࠇߡ߅ࠅ10)ޔLBWMߩ foot᭽᭴ㅧ㈩

೉߽ߎࠇߣ⦟ߊ৻⥌ߔࠆޕߎࠇࠄߩᓸ⚦᭴ㅧ਄ߩ㘃

ૃ߆ࠄޔLBWMߩfoot᭽᭴ㅧߪ㛽ᩰ╭߿ᔃ╭ߢⷰ

ኤߐࠇߡ޿ࠆfootߣห╬ߩ߽ߩߢ޽ࠆߣ⠨߃ࠄࠇࠆޕ ູ੃േ‛ߢߪRyRߦߪ㛽ᩰ╭ဳߩRyR1ޔᔃ╭ဳ

ߩRyR2ޔ⣖ဳߩRyR3ߩ3ߟߩࠕࠗ࠰ࡈࠜ࡯ࡓ߇

⍮ࠄࠇߡ޿ࠆޕ㠽㘃ޔ㝼㘃ޔਔ↢㘃ߢߪ RyR ߦ 2

⒳ߩࠕࠗ࠰ࡈࠜ࡯ࡓߣߒߡaߣb߇⷗಴ߐࠇߡ߅ࠅޔ aߣb߇৻ߟ⟎߈ߦ㈩೉ߒߡ޿ࠆߣ޿߁ႎ๔߽޽ࠆ

11)ޕLBWM ╭✢⛽ߩ dyad ធวㇱߦ⷗ࠄࠇࠆ foot ߇ޔᓥ᧪⍮ࠄࠇߡ޿ࠆRyRࠕࠗ࠰ࡈࠜ࡯ࡓߩ޿ߕࠇ ߦ৻⥌ߔࠆ߆ߦߟ޿ߡߪޔ఺∉㔚ሶ㗼ᓸ㏜ᴺߥߤߦ ࠃࠅ᣿ࠄ߆ߦߐࠇࠆߴ߈੹ᓟߩ⺖㗴ߢ޽ࠆޕ

T▤᭽᭴ㅧ

LBWM╭✢⛽ߩ T▤᭽᭴ㅧߪޔ㒱౉వ┵ㇱ߽฽߼

ߡ T ▤᭽᭴ㅧᒻ⾰⤑ߦዊ㒱ಳ߇ዪ࿷ߔࠆߎߣ߆ࠄޔ ߎߩ᭴ㅧ߇ዊ㒱ಳ߆ࠄᒻᚑߐࠇࠆน⢻ᕈࠍ␜ໂߒߚޕ 㛽ᩰ╭ߢߪޔT▤ᒻᚑߪዊ㒱ಳߩ㒱౉߆ࠄᆎ߹ࠆߎ ߣ߇⍮ࠄࠇߡ߅ࠅ22ޔLBWMߢ߽㛽ᩰ╭ߣห᭽ߦޔ ዊ㒱ಳ߆ࠄT▤᭽᭴ㅧ߇ᒻᚑߐࠇࠆߣ⠨߃ࠆߎߣߪ

วℂ⊛ߢ޽ࠆޕ৻ᣇޔ࿑6ߩㅪ⛯ಾ ߢߪޔT▤᭽

᭴ㅧߪߔߴߡߩಾ ߢ߶߷หߓ૏⟎ߦ⷗ࠄࠇޔ╭✢

⛽⴫㕙ᒻ⾰⤑߆ࠄߩ㒱౉ㇱߪ A㨪I ߩಾ ߢㅪ⛯⊛

ߦⷰኤߐࠇࠆߎߣ߆ࠄޔߎߩ᭴ㅧߩ㒱౉ㇱߪಾ ߣ ߪု⋥ߥᣇะߦ߆ߥࠅᐢ޿ⓨ㑆ࠍභ߼ߡ޿ࠆߣᕁࠊ ࠇࠆޕߎߩߎߣߪޔߎߩ᭴ㅧ߇නߥࠆ▤⁁᭴ㅧߦ⇐

߹ࠄߕޔᤨߦߪ↲Ზ㘃ߢ⷗ࠄࠇࠆࠃ߁ߥ೉Ḵ㧔cleft㧕 ࠍᒻᚑߒ߁ࠆߎߣࠍ␜ໂߔࠆޕ

╭✢⛽ኈⓍߦኻߔࠆSRߩ⋧ኻኈⓍߣᵴᕈൻCa2+

LBWM ╭✢⛽ౝߦභ߼ࠆ SR ߩኈⓍࠍ᷹ቯߒߚ⚿

ᨐޔ╭✢⛽ኈⓍߦኻߔࠆ SR ߩ⋧ኻኈⓍߪ 3.02r 0.84%㧔ᐔဋ୯rᮡḰ஍Ꮕޔn=50㧕ߢ޽ߞߚޕᐔṖ

╭ߢߪޔᵴᕈൻCa2+ߪᒻ⾰⤑ౝ⴫㕙߿SR߆ࠄߩㆆ 㔌߿ޔ⚦⢩ᄖ߆ࠄߩᵹ౉ߢଏ⛎ߐࠇࠆߣ⠨߃ࠄࠇߡ

޿ࠆ߇ޔߘࠇࠄߩਛߢ߽ޔ৻⥸ߦޔSR߆ࠄߩCa2+

ㆆ㔌ߪ╭෼❗߳ߩነਈ߇ዋߥ޿ߣ⠨߃ࠄࠇߡ޿ࠆޕ ߎࠇࠍ෻ᤋߒޔᐔṖ╭ߢߩSRߩ⋧ኻኈⓍߪዊߐߊޔ

଀߃߫ޔࡕ࡞ࡕ࠶࠻⚿⣺⚌ᐔṖ╭23ߢߪ2.4%ߢ޽

ࠅޔ࠙ࠨࠡ㐷⣂ᐔṖ╭17)ߢߪ2.2%ߢ޽ࠆޕLBWM ߩSR ߩ⋧ኻኈⓍߪߎࠇࠄߣᲧߴࠆߣ߆ߥࠅ㜞޿ޕ Suzukiߣߘߩ౒ห⎇ⓥ⠪ߦࠃࠆႎ๔1, 13)ߦࠃࠇ߫ޔ LBWMߩᵴᕈൻCa2+ߪ⚦⢩ᄖ߆ࠄߩᵹ౉ߦࠃࠆ߽

ߩࠃࠅ⚦⢩ౝ⾂⬿ㇱ߆ࠄߩㆆ㔌ߦࠃࠆ߽ߩߩᣇ߇ᄙ

޿ޕߎߩߎߣߪޔ੹࿁᷹ቯߐࠇߚLBWMߩSR ߩ

⋧ኻኈⓍ߇߆ߥࠅᄢ߈޿ߎߣߣ⍦⋫ߒߥ޿ޕ৻ᣇޔ 㛽ᩰ╭ߩSR ⋧ኻኈⓍߪޔ଀߃߫ޔࡑ࠙ࠬᜰ㐳િ╭

24)ߢ5.5%ޔࠞࠛ࡞❔Ꮏ╭16)ߢ13%ޔࠞࠨࠧ࠙ࠠࡉ

ࠢࡠ╭18)ߢߪᦨᄢ୯ߢ25.6%ߢ޽ࠆޕߎࠇࠄߩSR

⋧ኻኈⓍߪฦ╭✢⛽ߦ߅ߌࠆ෼❗ㅦᐲ߿෼❗ജߩ㆑

޿ࠍ෻ᤋߒߡ޿ࠆߣ⠨߃ࠄࠇࠆߩߢޔᐔṖ╭ߣߒߡ ߪ߆ߥࠅᄢ߈޿LBWMߩSR ⋧ኻኈⓍߪޔ࠲࠷࠽

ࡒࠟࠗ߇LBWMߦࠃࠅ૕ㆇേߔࠆߎߣߣᷓߊ㑐ଥ ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆޕ

SRౝ Ca2+-⚿วⰮ⊕⾰

఺∉ᨴ⦡ߩ㕖․⇣⊛෻ᔕߩ᦭ήࠍᬌ⸽ߒߚߣߎࠈޔ

৻ᰴ᛫૕ࠍ↪޿ߥ߆ߞߚಾ ߢߪ㊄☸ሶߪ৻ಾ⷗ࠄ ࠇߕޔ৻ᰴ᛫૕ࠍ↪޿ߚಾ ߢߪ㊄☸ሶ߇⷗ࠄࠇߚ

੐߆ࠄޔ㊄☸ሶߪࠞ࡞ࠪࠢࠛࠬ࠻࡝ࡦߩߺߣ෻ᔕߒ ߡ޿ࠆߣ⠨߃ࠄࠇࠆޕੑᰴ᛫૕ߩ㊄☸ሶߪޔኾࠄޔ SRߩౝ⣧߿⤑๟ㄝㇱߦ⷗ࠄࠇ㧔࿑3㧕ޔㅢᏱ࿕ቯࠍ ⴕߥߞߚ╭✢⛽ߩಾ ௝ߢSRߩౝ⣧ߦ޽ࠆߎߣ߇

⏕⹺ߐࠇߚ㔚ሶኒᐲߩ㜞޿☸ሶ㧔࿑ 2D㧕਄ߦዪ࿷

ߒߡ޿ߚߎߣ߆ࠄޔߎࠇࠄߩ☸ሶߪࠞ࡞ࠪࠢࠛࠬ࠻

࡝ࡦߢ޽ࠅޔLBWM ߩ SR ߢߪ㛽ᩰ╭ߣห᭽ߦ Ca2+-⚿วⰮ⊕⾰ߣߒߡࠞ࡞ࠪࠢࠛࠬ࠻࡝ࡦ߇ᯏ⢻

ߒߡ޿ࠆߣ⠨߃ࠄࠇࠆޕ

(10)

⚿⺰

LBWMߩ╭✢⛽ߢߪޔ㛽ᩰ╭ߣߪ⇣ߥࠅޔSRߪᒻ

⾰⤑ߣ dyadࠍ᭴ᚑߒߡ޿ࠆߦߔ߉ߥ޿߇ޔ㛽ᩰ╭

triadߣหߓⷐ⚛ߢ᭴ᚑߐࠇޔSRߣᒻ⾰⤑㑆ߩធว ㇱ㑆㓗ߢ⷗ࠄࠇߚfoot᭽᭴ㅧߪޔ᭴ㅧ․ᓽߩ৻⥌߆ ࠄfootߘߩ߽ߩߢ޽ࠅޔSRౝ⣧ߩCa2+-⚿วⰮ⊕⾰

߽㛽ᩰ╭ߣหߓࠞ࡞ࠪࠢࠛࠬ࠻࡝ࡦߢ޽ࠆߎߣߥߤ ߆ࠄޔEMㅪ㑐߽㛽ᩰ╭ߣหߓᯏ᭴ߢ૞௛ߔࠆߣ⠨

߃ࠄࠇࠆޕ

⻢ㄉ

࠲࠷࠽ࡒࠟࠗߩណ㓸ߦߏഥ⸒ਅߐ޿߹ߒߚ␹ᄹᎹᄢ ቇℂቇㇱ↢‛⑼ቇ⑼ߩᄢ๺↰ᱜੱ᳁ߦᷓߊᗵ⻢⥌ߒ

߹ߔޕ

ᢥ₂

1) Sugi H and Suzuki S (1978) Ultrastructural and physiological studies on the longitudinal body wall muscle of Dolabella auricularia. I. Mechanical response and ultrastructure. J. Cell Biol. 79: 454-466.

2) Ebashi S and Endo M (1968) Calcium ion and muscle contraction. Prog. Biophys mol. Biol.

18:123-183.

3) Schneider MF and Chandler WK (1973) Voltage dependent charge movement of skeletal muscle.

Nature242: 244-246.

4) Franzini-Armstrong C and Jorgensen AO (1994) Structure and development of E-C coupling units in skeletal muscle. Ann. Rev. Physiol.56: 509-534.

5) Fosset M, Jaimovich E, Delpont E and Lazdunski L (1983) [3H]nitrendipine receptors in skeletal muscle.J. Biol. Chem.258: 6086-6092.

6) Jorgensen AO, Shen AC-Y, Arnold W, Leung AT and Campbell KP (1989) Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescece. J.

Cell Biol.109: 135-147.

7) Inui M, Saito A and Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structure of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle.

J. Biol. Chem. 262: 1740-1747.

8) Franzini-Armstrong C (1970) Studies of the triad.

I. Structure of the junction in frog twitch fibers. J.

Cell Biol.47: 488-499.

9) Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kanagawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M and Hirose T (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor.

Nature339: 439-445.

10) Saito A, Inui M, Radermarcher M, Frank J and Fleischer S (1988) Ulutrastructure of the calcium release channel of sarcoplasmic reticulum. J.Cell Biol.107: 211-219.

11) Loesser EK, Castellani L and Franzini-Armstrong C (1992) Dispositions of junctional feet in muscles of invertebrates. J. Muscle Res. Cell Motil. 13: 161-173.

12) O’ Brien J, Valdivia HH and Block BA (1995) Physiological differences between the alpha and beta ryanodine receptors of fish skeletal musle.

Biophys. J.68: 471-482.

13) Suzuki S and Sugi H (1978) Ultrastructural and physiological studies on the longitudinal body wall muscle of Dolabella auricularia. II. Localization of intracellular calcium and its translocation during mechanical activity. J. Cell Biol. 79: 467-478.

14) Suzuki S and Sugi H (1982) Mechanisms of intracellular calcium translocation in muscle. In:

The Role of Calcium in Biological System.vol. I.

Anghileri LJ and Tuffet-Anghileri AM, eds., CRC Press, Boca Raton, Florida. pp. 201-217.

15) Prescott L and Brightman MW (1976) The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tiss. Cell. 8: 241-258.

16) Peachey LD (1965) The sarcoplasmic reticulum and transverse tubules of the frog,s sartorius. J.

Cell Biol.25: 209-231.

17) Devine CE, Somlyo AV and Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J. Cell Biol.52: 690-718.

18) Suzuki S, Nagayoshi H, Ishino K, Hino N and Sugi H (2003) Ultrastructural organization of the transverse tubules and the sarcoplasmic reticulum in a fish sound-producing muscle. J. Electron Microsc.52: 337-347.

19) Kelly DE (1969) The fine structure of skeletal muscle triad junctions. J. Ultrastruct. Res. 29: 37-49.

20) Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M and Fleischer S (1989) Three-dimens- sional architecture of sarcoplasmic reticulum chanel/foot structure of sarcoplasmic reticulum.

Nature338: 167-170.

21) Radermacher M, Rao V, Grassucci R, Frank J, Timerman AP, Fleischer S and Wagenknecht T (1994) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/

ryanodine receptor from skeletal muscle. J. Cell Biol.127: 411-423.

22) Ishikawa H (1968) Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J.

Cell Biol. 38: 51-66.

23) Popescu LM, Diculescu I, Zelck U and Ionescu N (1974) Ultrastructural distribution of calcium in smooth muscle cells of guina-pig taenia coli. A correlated electron microscopic and quantitative study. Cell. Tiss. Res.154: 357-378.

24) Luff AR and Atwood HL (1971) Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscle of the mouse during postnatal development. J. Cell Biol.

51: 369-383.

参照

関連したドキュメント

Conjecture 5.4, concerning the existence of disordered sphere packings, is plausible for a number of reasons: (i) the decorrelation principle of Section 4.3; (ii) the neces- sary

(4) Roughly speaking, the C 1 smooth submanifolds M are expected to produce much larger tangencies (with respect to D) than those produced by C 2 smooth submanifolds.. Analogously,

In this lecture, we aim at presenting a certain linear operator which is defined by means of the Hadamard product (or convolu- tion) with a generalized hypergeometric function and

Furuta, Two extensions of Ky Fan generalization and Mond-Pecaric matrix version generalization of Kantorovich inequality, preprint.

     ー コネクテッド・ドライブ・サービス      ー Apple CarPlay プレパレーション * 2 BMW サービス・インクルーシブ・プラス(

2 To introduce the natural and adapted bases in tangent and cotangent spaces of the subspaces H 1 and H 2 of H it is convenient to use the matrix representation of

36 investigated the problem of delay-dependent robust stability and H∞ filtering design for a class of uncertain continuous-time nonlinear systems with time-varying state

Zhao, “Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations,” Applied Mathematics and