• 検索結果がありません。

ON A THEOREM OF GALLOT-MEYER-TACHIBANA IN RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE OPERATOR

N/A
N/A
Protected

Academic year: 2021

シェア "ON A THEOREM OF GALLOT-MEYER-TACHIBANA IN RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE OPERATOR"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

〈)NATHEOREM OF GALLOT−MEYER−TACHIBANA

    IN RIEMANNIAN MANIFOLDS.O・F POSITrVE

      CURVATURE OPERATOR

       BY

SEIIcHr、YAMAGUCHI

  1.血trOdudion. Let.M%(n>2)be a compact orientabale Riemannian manifold

−whose metric tensor is 9iven by gαb(a, b,...=1,2,..., n)血terms of local coordi− nates {xa}.Throughout this paper, manifolds are assumed to be connected and the differ− 。entiab血ty be C°°. Denote by Rabcd the curvature tensor. ff there eXists a positive constant ..k such that       ・       ’

<*)    :   −R。b。d uabued≧2ku励u“b

−holds good for any skew symmetric tensor uab at any poir並, then Mn is ca皿ed to be of posi− tive curvature operator. About its Betti numbers, b2(ハの=Ohas been proved by M Ber− ,ger[1], a血d bゼ(M)=Oby 1). Meyer【5]for i=1,2,...,n−1.   S.Tachibana口1]has proved the fb皿ow血g:   The・rem A・恥c卿砺・rientable・Riemannian manifo”Mn・fp・sitive c〃rvat・・’e・・pera・

Xorぷatisfies 』      1  ’‘ ’

       ▽αR伽ば=0, ‘   ’ −th¢πハ4n is a space of constant curvature.   1βt△=∂δ十δd denotes the Laplacian operatgr・If a non−zero、ρ一fb皿usatisfies△u= ,Zu for a constant Z, it is called a Prope士fbr【n△corresponding to a proper valueλ. S. Ga1− Iot and D. Meyer【4]have discussed the p}oper value of Laplacian operator△fbr p−fbm1 .u in such manifolds and get its lower boumd which is the正杷st possible, that is, they have 元Proved the fb皿owing:   Theorem B. Inαco〃rpact Rie〃mnnian〃励ウわ〃ハぜ狗satisiンing(*)the proper valueλ .ofムプ’or Pプform u(〃−1≧P≧1)ぷatisjies        λ≧P(n−P+1)k, if du=0,        λ≧⑦+1)(〃−P)k,がδ〃=0.   Recently, S. Tachiballa[10]11as i皿vestigated in the case when Z actUa皿y takes the possi・ fble min口11um values and obtained the f()皿ow丘1g interesti血g theorems: Theorem C. betハ〃3 bθαco〃㌘αc’1砲〃螂αη㎜蓼わld satiSXンing(*)and Z the proper Received June 20,1975

17

(2)

18

S.YAMAGucm

value ・f△f・r P−f・rm u(n−1≧P≧1). lf du=Oandλ=P(n−P+1)〃,’舵η賠c。n_ for〃url Killing.   Theorem D・Let M” be a compaプi R励辺η〃ian〃iam:t70〃ぷα域か’㎎(*)andλthe prop−,

θ・v・1…ゾム伽ク吻励(n−1≧ク≧1).∬δ〃=Oandzi(ρ+1)(・一ρ)瓦.’乃。。ば

瓦蹴㌘. Theorem E・Let.M” be a c・mpaet Rieman吻n脚nifoldsatisXアing(*).∬」14n admits a’

・1・s吻・⑳・・1−f・・m・・fク・・q…』鴫功・πMπ蕊・m・t・i・・with〃吻…わ妬1鋤…一

ぷη㈹with radius 1/!t.   Theorem F・ Lε’・ルln be a eompact si,〃rply eonneetedRie〃urnnii n manifoldぷατ句ンing(*). IfMn admits a cocloぷed、proper 1プわr〃10f△corresponding to theproper value 2(n−1)斥, then− Mn iS either Sasakian or i,ぷo〃tetrie砿h Sn(k). REMARK 1. S. Gallot has stated Theorem E in【3]. 111this paper, we shall genera五ze Theorem C, D. E and’F as follows: Theorem 1・Let M” be a c・mpaet.Riemannian uamtTo∼d satisfying(*)・ndλ the pr〈)per value ofムプわ’、ρrプbrm〃.∬吻==0.λ=、ρ(η一」ρ十1)たand n−1≧p≧2, thenδu is a・・ Ψθ碗11ロ侮9(クー1).form with constant k. Theorem 2・Lθ’M” be a c・mpact.Rた%〃nian〃tanifo〃ぷ碗かing(*)and Z. the proper−. value ofムプbrρづ「orm u.万δ〃=0,λ=(ク十1)(n一ク)k and n−2≧、ρ≧1, the〃u丞r a spe−_ eia1 Killing・P〔ノ’orm with constant k.   皿1eorem 3・Let Mnゐe a compactぷimply connectedRie〃mnnian manifo〃satiSLb,ing(*)..一 ∬M%α㎞ゴ’ぷαcloぷε4ρrρクθr、ρづeorm u(η一1≧ρ≧2)of」ρrqρθr valueλ=p(π一ρ十1)k and the length ofu or 6〃Zぷη0’CO噺碗砺η.M力緬30〃te〃ic・with・S・㈹.   Theorem 4・Letルtn be a compact吻ply eonnected Riemannian manifold satisfying(*). IfMn acimits a cloぷedproper 2−form〈ヅρrqρθr value 2(n−1)k, then Mn‘ぷeithei Sasakiare・ or伽’netric・withぷn(k). Theorem 5・Lε’」lfn be a compactぷ‘〃⑳co〃〃ec’edRiε〃励痂〃manifo〃ぷatistVing(*).. 〃’五(nα伽its a cocloぷed P’qρθr P:ノわrm u(n−2≧ク≧1)ρアproper valueλ=:(P十1>・ ・(n−P)k and the length of u or・du is not¢・πぷ励’勲β〃」匪・緬ぷomβτr’C W乃S・(k).   2.Conformal Killing pform.血an nrdirnensional.Riemamian manifold Mn, we cal主之 ap_fbrm w=(1/p!)wcvl...αp dUk...dUaP a K皿ingρ一fbrm jf it satis丘es (2.1)   .      ▽bWα1αz...ap十▽alWbdl...ap=0, where▽means the operator of covariant derivative with respect to the Riemannian con−一一 nection. Then we have

(3)

ON A THEOREM OF GALLOTI:−MEYER□A.CHIBANA

1’9 イ2.2)      〈吻)bal...・ap=(ク・十1)▽δwα1....αφ・.、 :1。[8],S. Tachib。。。・and T. K。shiw・d・hav・p・・v・d th・t醐藏㎞tss晒・i・・t・m・・yK迅一 『ingρ一fbrms(〃≧ク≧2)tllen丑ぞ司s a ’space of conStant curvature a血d ,the converse ls 才rue.   If a Killing p−fbrm w satisfies <2.3) ▽。嘱...。,+・(      ρ9・bWal...αP+Σ(−1)・。,αi・、。1_a.、.。,)一・,       i‘’  』where a is ・constant and ai means that ai is omitted, then it is called a sp㏄ial Killingクーfb皿 with constant a. Then it is㎞own that   Theorem G P】. Let Mn be a completeぷ」〃rply connected Rieman〃ian mo〃ifold ut加itting 理θC‘α1疏〃ing p−forms u⑳idッW匡吻0ぷiガve constant k.ガオ乃θ加研クro伽τ(u,v)血η0τCO〃一 ぷ伽ち沈θη』M銘垣ぷ・〃ie’trie with S”(k)・   R.EMARK 2. To prove Theorem G, tht’ y have msed tbe foll(柄ing M. Obata,s theorem stated in[7]without proof:   皿eorem・H..Lθ’Mn .be a complete.simply conneeted Rie.〃tannian〃Utmifold. ln orderノ「or .Mn・.to・admit −a・.non一τrゴ吻1 solution ¢ of the ld」fferential equation       ▽α▽bφc十(1/2)β(2φα8・bC十φb9・碗十iPcgab):=0, ・W乃θ・θφ。=▽。φαn4β畑・sitiv・C励砺, it・is・nec・∬ary and sufici・nt that M” be is・met・・ic ”t,ithぷn(fiノ.   ’   We sha皿call a Ki皿ing 1ヰblm whiCh is sp㏄ial with positiveαand of constant length(≠0) ・aSasakian stmcture and a Riemannian manifold admitting such a structure is ca皿ed :Sasakian.   Next we are gOing to recaU the de麺tion of a confbrmal Killing p・fbrm. In Mカwe・窃皿a 汐一f()rm〃with coe伍cient〃殉...ap a conf()nnal Ki1血g、ρ一f()皿, if there eXists a(p−1)−

fbnnθsuch that

X2.4)      ▽bUal...zじP十▽a1Ubα2...αP        P        =20吻...αPgba1−.Σ(−1)i〈6ai...iD...ap 9あai        t=2        +’ebeq_ai_qp 9・iq)・ This form e is called the associated form of〃. For a◎onformal Killingクーfbrm〃, the fb110w− ing identities are’㎞own I6】: (2.5)       δ〃=一(n一ク十1)θ,        P 【2・a 低)・・…・・=・ip+1)(▽晦_吻+Σ〈一・1      z=1)‘θ・・…翁一’・・p gb・・)・ ●   3. Proof of Theorem l. By・o1rr assump60ns, we have fo’ r P−f()rm況       吻=0,△・u=λ〃andλ=ク(π一ρ十1)た. <)perating△toδμ, it fbllows加m△δ=δ△that△δ〃t. ・nδu. As we血ay use層Theorem D for a coclosed(P−1)−fbrmδ〃, we can ’fi’ fid that 6H is a Killing(ρ一1)−fbrm, which shows

(4)

20

S.YAMAGU(別

(3・1)  』▽・、(δ〃)h・_・Pr(1加)(d6u)殉、..kP=(ZIP)〃・1_ap   ・一. by vh加e of△〃=.Zu. u being closed ・conformal Killing、ρ・form by making.use of’Theorem・ C,we get by ta㎞g a㏄ount of.(2.5),(2.6),(3.1)andλ=ρ(〃−p十1)k        .

(3・2)  ▽b▽・、(δ〃)h_吻=(ZIP)▽bUq_kP

      P       =働一・+1))亙「(−1)’(δu)・1…命…ap gb・i    ’    ttロド      ・P  ’ ロ

      ー   =k} ,(−1)’(δ〃)・・…命…吻恥

from which it is easy to see that 6〃is a sp㏄ial Killing(ρ一1)−form with constant k. This completes the proof of theorem.   4・、P’oofぱ在eor㎝2・By q聖.lissumptiQiis・we can rec.all the relations  ’.       δu=0,△〃=Zu・andλ=白+1)(π.r P)k, for p−form〃.μ1崩g K皿ngクーform by Theor{∋m D, we have

  l・  .∵..〃’・1.・∴all+ゴ=(11(P+1))(du)eq_吻+、, 一,∴’・・−

where we put〃,al...ap+1=▽α1〃α2...ap+r It is clearly that』〆iS a d6sed(P十1)_ 飴㎝Jfwg gP・rat・△t・〆・th・・we can・bt中△〆.=IV’, fr・m whigh it, iS ea・y t・mP that’we mayuse Theorem’Dfbr closed(P十1)4brlnシ. Then We s㏄that〆is a dosed con− forma1 Kl血g(ρ十1)一飴rm㎝d爬gar血9 to¢.5)孤d(2.6)With tespect fo.(p.十1)−forml l〆,it holds that   ’ ”        .     .   .    ”

㈹..V・V…2・・…+1−▽bti’・…・・エ・’

@ .z、.’二、..

       、 =(1!(n−・))誓1(−1)・(・・’)・_a・・..・,.、・9・・i二』・       !(11(ク十1)(n一ρ))誓(−1)・(・du)・,.∴ll・_、、+1… Moreover,・taking account.of△u=λμandλ=.(ρ十1)(n一ρ)k, the equation(4.1)Ie− duρes、tp’      .       ρ十1 (4・2)     ▽b▽cal〃α2....ap+ ==(iλ/(P十1)(〃−P))2二(−1)iUa1...E≧...・αρ+18・bのi        i−Tl        ...『”、 ,.   ・       『・.        P十1       .∵・.・・.._’.〒克嵩(三工)玩.∵・命∵・㍗+9eai・ which means that u is a special Killing p一㊤m with constan口. 5.kbOt《㎡皿α汀em 31 n It飴ilows丘om our assumptions. and Theorem 1 that 6u is: a・p㏄i・1臼血9(P−1)−f・・m witP・?・・t・n比Tg Pr・y・Th・0・e血3・it緬㎝t・・bt・inl the fbllowhlg identity      『 (5・1)・・r−V・(㈱‘・2、.’∴「r轣iδ・)a2’.”・・).= −r・(22・/p3k)’▽S(〃叱.:.・,u・ゼ∴吻). In fact, if(5.1)is true, it follows from Theorem G that Mn is .isometric With Sn(k)if the

len鋤・f…δ膝nOぬ・S㎞t, Whi・h i・nqthng bpt・Th・grgm 3・ W・a・e g・麺・・㎏w

(5・1)・P・tting∫=(δ〃)h、。く諏∼δりt?2’::一.”・ and h=・・eq_・,.9“1…a・and・pdrating” ▽b to fand h respeCtively, We h嬬.,..’..,......   、...  ..・ :・’・・ @ ,. .:.         .▽∼ξ∫:『「’2Ψ0(δu)α2−...αP(δ4)α2’”a?、       .

(5)

ON A THEOREM OF GALLOT・MEYER−TACHBANA

i−

Q1

・.・.’ E.  1  =(2λ加)〃blP_』吻(δu)‘Z2 t’ r←’qp,『 一∴』

      ’v・h=2▽・獅…ap ua・”1・”p、. ”1∫’

       P        =⑳脚α・”・’吻1苔(−1)i(δの・・…¢…ap gb’ai)       =一(2P2k/z)Ubh_・P(δりt’2 ”⑭ .by virtue of(3.1)and(3.2), whiCh’ imply(5.1).      ・一.   6.Ptoof of Theorem 4.       1・       S祖ce u is a closed 2−fb.ロn. witb proper.value /Z『2(n−1)k, Theorem 4 is nothing but the specia1. case of Theorem 3 if the length of〃orδ〃1s not cot1・ stant. ff the Jength of u or 6u is constant, then」M「n is Sasakian by the de丘nition because of δ〃is a special Klling 1−fomm with constant k’and(5.1)With respect to 2−form u holds good.   7.Proof of Theorem 5. Silce u is a specia1 Killing」p.f()rrn with constant k, by v加ue of Theorem 2, we may take account of the equations(4.1)and(4.2)fb聞. By the same way in the proof of Theorem 3, to prove Theorem 5, it su伍ces to obtain the fbUowing: (7.1)       ▽b((吻)碗...αρ+1(du)α1’”αρ+1)       =一(kl(ρ+1))▽b(〃・1...CVp ua・…αP)・. Let us prove(5.1). Puttj㎏∫=(血)α1...ap+1(4切α1’°’αP+1 and h=〃al...α, ual’”αP and operatmg▽b to f and h.resp㏄tively, we can obtain        ▽bh=:2▽o〃α1...αP llal’”ap,   、        ▽bf=(2ノ(ク+1)2)▽b▽eq・Uh...・ρ+、▽物a2”吻+・       P十1       =(2k/(P十i)2)▽aus’”吻+1(Σ(−1)i Uq...命...αP+1 9abi)       i=1       =一(2k/(P+1))▽q・UIP_ap+、 u‘ig…OP+1. by makmg use of(4.1)and(4.2), which yield(7.1).  The author would like to express his hearty thanks to kofessor S. Tachibana for his・ criticisms and k ld adVices. [1] 【2】 【3] [4] [5] [θ [7】       REFERENCES Berger, M.:Sur 1es vari6t6S b op6rateur de courbure positif, C. R. Acad. Sc. Paris,253『  (1961),2832−2834. Berger, M., Gauduchon, P., Mazet, E.:Le S蝋e d,une Variet6 Riemannienne, Sp血ger−  .Verlag,194,1971. Ganot, S.:Sur 1es vari6tes b op6rateur de◎ourbure pOsitif qUi ont meme premiere valeur  propre du p−spectre《lue le sp1面e, C. R. Acad. Sc. Pa亘s,277(1973),457−459. Gallot, S., Meyer, D.:Sur Ia pエemi白re valeur propre du p−spectre pour les vari6tbS a Op6r.  eteur de◎ourbure positif, C. R. Acad. Sc. Pa亘s,276(1973),1619−1621. Meyer, D.:Sur les vari6t6s亘emalmiemesムop{5rateur de courbure positif, C. R. Acad.       ’   Sc. Pa亘s,272(1971),482−485. Kashiwada, T.:On conformal㎜ng tellsor, Nat. Sc. Rep. of OChanomizu Univ.,19   (1968),67−74. Obata. M.:Riemamiiaii manifolds ad!nitting a solution of a oertai1 system of dilrerential   eqUations, Pr㏄. of the Uhited States−Japan seminer in difi;erentia1 geometry,1965,101−   114.

(6)

Ω

[8] [9] [10】 [11] [12]・・        S.YAMAGUCHI Tachibana, S., K舳iwada, T.:O血the integrabiHty ofKil血g−Yano,s equation, J. of Math.   S㏄.Japan,21(1967),259−265.       ’ Tachiballa, S., Yu, W. N.:On a Riemannian space admitting more than one Sasakian   s伽珈re, T6hokU Math. J.,22(1970),536.540、 Tachib・n・・S・・On臼血g t・n・・rs i・K・輌・n m画f・途・fp・・itive cu・vat鵬・Pe・at。,,  to appeaエ、 Tachib鋤・・.S・:A血…em・n Ri・m・mi飢m麺椰s・f p・sitiVe・curvature・p・砲t。,,−P,㏄.  of Japan Acad、,       50(1974),301−302. Yamaguchi, S.:On conf()mlal Killhlg p−form in q compact Sasakian space, A皿. di Math.  pura ed appli.,94(1972),231−245.        DEPARTMENr OF MATHEMATICS       S(加団NCE UNIVERSITY OF TOKYO        WAK臓A・CHO 26・SHIN幻KU−KU,        TOKYO, JAPAN. e 膓

参照

関連したドキュメント

We give a new sufficient condition in order that the curvature determines the metric: generically, if two Riemannian manifolds have the same ”surjective” (1,3)-curvature tensor

Therefore, with the weak form of the positive mass theorem, the strict inequality of Theorem 2 is satisfied by locally conformally flat manifolds and by manifolds of dimensions 3, 4

Concerning the Goldberg conjecture, we will prove a result obtained by applying the result of Iton in terms of L 2 -norm of the scalar curvature.. 2000 Mathematics

Real elastic waves (earthquakes) propagate through many layers which do not necessarily lie in good order. Therefore, more general study, we extend the elastic wave equations

The damped eigen- functions are either whispering modes (see Figure 6(a)) or they are oriented towards the damping region as in Figure 6(c), whereas the undamped eigenfunctions

Wu, “Positive solutions of two-point boundary value problems for systems of nonlinear second-order singular and impulsive differential equations,” Nonlinear Analysis: Theory,

In section 4, with the help of the affine deviation tensor, first we introduce the basic curvature data (affine and projective curvatures, Berwald curvature, Douglas curvature) of

The key points in the proof of Theorem 1.2 are Lemma 2.2 in Section 2 and the study of the holonomy algebra of locally irreducible compact manifolds of nonnegative isotropic