• 検索結果がありません。

A NOTE ON p-BASIS OF A POLYNOMIAL RING IN TWO VARIABLES

N/A
N/A
Protected

Academic year: 2021

シェア "A NOTE ON p-BASIS OF A POLYNOMIAL RING IN TWO VARIABLES"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

SUT J皿㎜10fぬth創阻tics

〔Fonnerly TR∫Mathematics) Vblume 25, NUUil)eT 1 (1989〕, 33−38

ANOTE ON p−BASIS OF A POLYNOMlAL RING

      IN TWO VARIABLES

Tetsuzo I(IMURA and Hiroshi NIITSUMA

〔Received April 7, 1989;・Revised June 30,1989〕 ABSTRACT. Let k be a perfect field of characteristic p. Let Aニ k[x1,x21 and B=k【Y1,Y2】be the polynomial ri皿gs over k in two variables such that A⊇B2/lp=k【v?i,弓】・The皿we prove that A has a p−basis over B a皿d B ha3 a p−basis over/IP.

1980Mathematics Subject Classi五cations. Pri血ary 13F20,13B10;

Secondary 14E35.

Key words and phrases. p.basi『, polynomial ring,】Frobe皿ius sand− wich.    §o.Introduction    Let P b e always a prime皿umber, S a commutative ri皿9 with identi.ty of charaCteristic p a皿d SP={xP l. x∈5}. Let 5’be a su1)ring of 5. A subset r of S is said to 1)eρ一independent over 5’if, fbr a皿y subset{ろ1,....,bn}of F, the set of monomials b;1_b;n(0≦e‘<p)is linearly・independent over 51’【SPI. r is ca皿ed a p−1)asis of S over S’, if it is p_i皿depe皿dent over 3’and S=SP[5’, r】. In this note, we prove the f()lowi皿g theorem.    THEOREM.五εは6eαρeげect field.o∫ characteristi¢p一五ε‘、4=k【エ1梁21

and B=砲、,Y2】5e抗り・∼卿m輌α1 r拘3・uerねn‘ω・varia‘rε8 SU¢ゐ毒ゐα‡

A.スB⊃AP=綱,姥】, A5sum・tゐ・‘1Φ(A)・Φ(B)1=P,ωゐ・r・Φ(ノ1)・ndΦ(B) αrθ‡ゐ¢guotiept∬ε∼ds〔リノ1 and B respectively一τゐeπ‡ゐe∫01わt〃ing statements ゐold.    (1)ノ1ゐα5αρ一ba5i・・㊨εrB.    (2)Bゐ・5・P−basis・y・・AP.    R.Ganong[3]has prOved this theorem and obta1皿ed mo士e pfecise result(s㏄ Theorem[3D under the assumption tha洗is algebraica皿y closed. But, his proof 4

33

(2)

depe皿ds deePly on his ow五the6ry df ph皿e ci’ rVes and on』acohcePt, Hamburger− Noether expansion. The authors Wahtどo have a mOre aJgebralc proof of above theorem as an application of local eXiste皿ce of p−basis(i.e. Kll丑z’s conjecture).    §1.Pre五min泣ies    O丑eof the importa皿t part()f our proof dep ends o皿Y皿an,si皿separable Galois Theory[6】. So, We rewrite its defi皿itio皿a皿d a theorem.    DEFINITION([6D. Let 1)be a ri皿g of prime char㏄teristicρ. A D−algebra Ois called a Gaユo呈s exte皿sio玖of刀provided 、      , ,.    (i)Ois finitely generated projective as 1)−module,    (ii)tP∈Df・・all t t C,    (iii)give皿any prime idea1 P i皿0, the皿Cp adm玉ts aρ一basis over 1)Q,.whele

QニP∩1).    ・    ・.・

   Theorem ll of S.Y旺a皿[61. Letσ⊇1)⊇E5eαteωer o∫ rings sucゐthat O is a Gα1。is exten3i・n・ver・E and ever 1), Then the fo∼1・wing statement5 ho∼d.    (1)1)is a Gα∼・i5 extensi・n・ver E’    (2).Let H={d∈1)erE(0)ld1)⊆D}’Tゐen there ・isα1)−m.oぬ∼εゐom・omor一 輌mD・rE(ヱ))一・H.whi・h f・ll・ω・輌・‡ゐ・∬・・加輌鋤η卿丑一→D・・E(D)

givenあy d→41が・the identity map・n刀erE(1))’  ・

   (3)五・‡砺(D)b・オゐ・imag・・∫D・・E(1))in・H・Th・n .   ・

C・碗(1))㊥D・・D(C)=D・rE(C)・    The fblowing theorem dne to Matsulm皿ra is aユso iMportamt for our pro6f of

Theote皿.       』

   Theo士em 2730f H.Matsu’mura【5】.五e‡C5εαア畑《)f characteristi¢p, and SUPP…tゐ・t x∈0, D∈1)・・(0)・ati・fy Dx=1・nd・1)Pニ0;・・‡σ・={・∈

OID・ニ0},τλ・・0ぷカ・・m・d・1・・…(る嚇↓・・ξ・1,x,_,x,−1’

   L醐MA.1, P9老A・n品6・ω・老・オr」硫・.Th・一・丁九・n・

   (1)D・τB(A)i・ψee 4一励d・1・.0加斑・    (2)1)eアAρ(B)輌sα∫アεε1ヲーmodule o∫rank 1◆

(3)

T.KIMURA AND H. NI ITSUMA

35

  PROOF. Let P be any prime ideal of.A. Set(?=P.∩B. Then,、4p a皿d BQ .are reg皿lar local rings. Since Ap is a finitely generate(1」BQ−modUle,ノlp ha3 a『o’basi・・ver BQ by ,Th…em。f【21: ΩB④⑧A・Ap, w・hwr th・姐・wi・9・. On th・・the・h・pd・・i亘ceΩβ。(4・)=        D・rB④⑧・A・r∬g頑Ωβ(4), A)⑧・A・        = H・mAi(ΩB(A)⑧A・Ap,ノ1P)        =1)eアBQ(ノ1P)・

  Th・敵e, D…④⑧μ・i・a f・e・ Ap−m・a・1・・f・rank…th・t D・・日(A)

is a pr()jective A−module of rank 1, by Theorem 20f§5, Chap.H,【1エ. Thus, ・i・ce・A i・ap・1y・・㎡al・ri・g, D…(A)i・a・f・ee・A−m・d・1・・f…k1 by Si・rel・

conjecture(T.Y.Lam[4D.

  LEMMA 2.五e‘F6εαpo lynomiα1 in A=克【σ1,司sucゐ‡ゐαf F¢.4p=

嘱,弓】・・ば∼・オG‘・…∼・m・・‘み.lf bF/∂・、ニ・、σ・・nd∂F/∂x、’= α2G,(α・,α2∈A),tゐ・nω・ゐ・・eF=αGP+午ρ(α,7EA).   PROOF. Since F〆.4P, we may assume∂F/∂σ1=α1( P≠0. Hence, we

have

       F=α3Gp+β, (α3∈ノ1,β∈AP【x2]・), by i・t・9r・ti・・with ・e・bect t・x、,beca・・e・th・・c・・伍・i・・t・・f・㌘・一’i・∂F/∂。、ニ α1(Pmust be equal to O. Th釘eforel we have       ∂F/∂X2=G?(∂α3/∂X2)+∂β!∂X2.

Combining this with∂F/∂x2=α2Gp, we obtain

       βニ『θ’δザ・(7,δ∈A): Puttihgα∫=α3十δ,尋ve get the ’reqnited identity        FニαGρ’十午P, (α,午・∈A).

(4)

   §2.Proof of Theo;em    First, w6・h・ll・P・・∀・th・t・B h・s砕b品i・・ve・Ap・L・t.g b6・p・il・・’ id・al

・fB㎝d g=Q∩Ap・Th・・βg ha・ap−basi・・ver(A’), by Th…em・f l21・

Obviously, B is a finitely generated.4P.mod皿le. By virtue of Serre,s conl㏄ture (c£Lam[4D, B is a free AP−module. That is, B is a Gaユois extensio皿of、AP in the sense of S.Yua皿[6】. Similairly,ノ1 is a GaJois extensio皿of B and A is a Galois extension of/IP. So we have        ’ D・rA。(A)=A・Gf.A・(B)㊥D・・B(A) by Theore皿110f[61. Further,もy Lemma 1, D eアB(A)is a free A−module of rank 1 and DerA・(B)i・als・a・free・B−m・dule・frank 1・    Hence we have

and

PerAp(B)=Bdl,

DeアB(A)ニノld2, dl∈1)eア.4ρ(B) d2∈1)erB(A).    Identifyi皿g dl with the derivation d;i皿1)erAp(A)such that the restrictio皿 ・fdl is di, we・have        DerA・(A)ニノld・㊥Ad2・    On the other ha皿d, si皿ce∂/∂x1,∂/∂x2∈1)erAp(A), we have the following ide皿titieS:       ’       ∂!∂Xl=αidi+fi,d,, (α1,β1∈A),       ∂/∂エ2ニcr 2dl+β2 d2, (α2,β2∈A).    Let F be an element of B−AP such that the degree of the polymmi泣Fi皿 工1,ω2is the smaillest o皿e in B一ノ4P.     −    ApPlyi・g th・d・・ivati…∂/∂x・・エd∂/∂x・t・th・p・1y・・㎡a F, w・g・t ∂F/∂Xlニαi.d1F, ∂Fソ∂X2=α2diF,

whereα輌∈A(i=1,2)and dlF∈B.

(5)

T.KIMURA AND H. NIITSUMA

37

   Then, by the choice of F, we conclllde that the element diF of B must l)e an element of 4P, b㏄a皿se the degree of 41F is sma皿er thah that of F, and

diF∈B.

  .Si皿ce dl F∈.4P, by Lemma 2, there eXist elements a’.a皿d 7 of.A such that

F=α41F+7P.

   O皿the other ha皿d, since the poly皿olnial ring」B is integrally closed i皿its

q・・ti・・t五・ldΦ(B)and・∈Φ(B),・i・・n・1・me・t・f B・W…laim・th・t.

ば1F∈た*, where k*ニk−0・It is clear that《ll F≠0. SupPose that di F¢ん.

Put

       ・=.Σ・e、。、x:’・・s2.       0≦ε1,ε2≦P−1 Th・・, th・d・g・ee・f・一・∼。。)i・・sm・ll・・th・n・th・d・g・ee・f F・H・・ceαb・1・ng・ to/IP and so F also belongS to AP. This is a, contradiction.  .    S・,・i・ce・d・F≠0, F 4Φ(Ap), h・・ceΦ(B)=Φ㈹(F)=Φ(A・)【珂. Therefore, we get d?1=0. Thus, by Theorem 27.3 of [5】,・褒ソdiF is a p−basis of Bover Ker dl:ニ{x l x∈B,dlx=0}. Fllrther, since B is a Galois extension over 4P, by Theorem 90f【6】, Ker dl=AP. It fbllows thatアソdi F is a p−basis of B over/IP. Obviously, F is a p−1)asis of B over A,.    Next, we prove that.4 has a p−basis over B. Applying the same argument to the situatio皿B⊇AP⊇」BP, there exists a p−basis GP of AP over BP. Then,

G is a p−basis of A over B.      ・

   REMARK Let F be an dement of B−AP such that the degr㏄of the

polynomi al F i皿xl,σ2 is the sma皿est one in B−A,. The proof of Theorem shows us that a p−basis of B over/4P is given by such a polynomial F.・Furtherrhore, sinceΩAρ(B)=BdF is a free B−module of rank 1, a皿y other p.basis of B over AP is of the・f()rm cF十7P(C∈先*,7∈A).

REFERENCES

lii N.Bgurbaki, A. lgさbre commutative, Chap.1,2, Hermann, Paris,1961. {21T.Kimura and H.Niitsuma, On Kunz,s conjecture, J.Math. Soc. Japan,   34(1982),371−378. [3]R.Ga皿o皿g, Plane Frobe皿ius sandwiches, Proc. Amer. Math. Soc.,

(6)

  84(1982),474−478. {41T.Y.La皿,’Serre,s COnjecture,i Lectnre −Notes ’in Mathemat}cs VoL635   Spri丑ger−Verlag,1978. 【51H.Mats血mura, Co㎜ntative ring theory, Cambridge’U皿iversity Press,1986. 161S.Yua皿, hseparable Galois仙eory of expo丑ent one,. Trans. AmeL Math.   Soc.,149(1970),163−170.

Tetsuzo KIMURA

F・皿culty of Engineering Science University of Tbkyo 1−3,Kagurazaka, Shinjuku−ku’ T・ky・,162

Japan

Hiro8hi NHTSUMA

Nippon Kogyo D aigaku

Miyashir(テm㏄hi

Saita皿1a,−345

Japa皿

ξ

参照

関連したドキュメント

The categories of prespectra, symmetric spectra and orthogonal spec- tra each carry a cofibrantly generated, proper, topological model structure with fibrations and weak

Once bulk deformation b is chosen (so that there is a torus fiber L whose Floer cohomology is non-vanishing), then we consider the Floer chain complex of L with a generic torus fiber

We remarked at the end of the proof of Theorem 3.6 that each residue map on a two- dimensional, complete, normal local ring is continuous with respect to the adic topology on the

[1] Feireisl E., Petzeltov´ a H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations 10 (1997), 181–196..

のようにすべきだと考えていますか。 やっと開通します。長野、太田地区方面  

Some new Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales are established, which provide a handy tool in the research of qualitative

A Darboux type problem for a model hyperbolic equation of the third order with multiple characteristics is considered in the case of two independent variables.. In the class

We show that two density operators of mixed quantum states are in the same local unitary orbit if and only if they agree on polynomial invariants in a certain Noetherian ring for