• 検索結果がありません。

Metrizability of spaces having certain k-networks(Set-theoretic Topology and Geometric Topology)

N/A
N/A
Protected

Academic year: 2021

シェア "Metrizability of spaces having certain k-networks(Set-theoretic Topology and Geometric Topology)"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

\sim

tr

$\mathrm{i}$

zabi

1

$\mathrm{i}$

ty

of

s 暇下 Ces

h

vi

$\mathrm{n}\mathrm{g}$

certai

$\mathrm{n}\mathrm{k}^{-}\mathrm{n}\mathrm{e}\mathrm{t}_{\mathrm{V}}0\mathrm{r}\mathrm{k}\mathrm{s}$

中祥雄

(Yoshio Tanaka)

Department

of

Mathematics,

Tokyo Gakugei University

As is

well-lmown,

each of the

following

properties

implies

that X is

metrizable.

(A)

X is

a

paracompact

developable

space

(R.

H.

Bing [2]).

(B)

Xis

aparacompact

space

having

a

$\sigma-1\propto \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

cour

市小

le

base

(V.

V.

Fedorcuk

[9]).

(C)

X

has

a

$\sigma$

-hereditarily

cloeure-praeerving

base

(D. Burke,

R.

Engelking

and

D. Lutzer

$[5|)$

.

(D)

X is

a

paracompact

$\mathrm{M}$

-space,

and

a

$\sigma-\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}$

(A.

Okuyama [15],

the

paracompactness

can

be

omitted;

see

F. Siwiec

and

J.

Nagata [16]

$)$

.

(E)

X

is

an

$\mathrm{M}$

-space

having

a

point-coumtable

base

(V.

V.

Filippov [10]).

In

terms

of

these

properties,

we

give

some

metrization

theorems

by

means

of certain

$\mathrm{k}$

-networks,

or

generalizations

of

M-spaces,

etc.

We

assume

that spaces

are

regul

$ar$

and

$T_{1}$

.

Def

$\mathrm{i}$

ni ti

$\mathrm{o}\mathrm{n}\mathrm{s}$

.

(1)

A

cover

$C$

of

a

space

a

$k\tau wtumk$

if,

whenever

$\mathrm{K}\subset \mathrm{U}$

with

$\mathrm{K}$

compact

and

$\mathrm{U}$

open

in

X,

then

$\mathrm{K}\subset\cup C’\subset \mathrm{U}$

for

some

finite

$C’\subset C$

.

If the

$\mathrm{K}$

is

a

single

point,

then such

a

cover

is

called network

(or

net).

Recall that

a

space is

an

$\#$

-space

(resp.

$\sigma-\mathrm{s}_{\mathrm{P}}\mathrm{a}\mathrm{C}\mathrm{e}$

)

if

it

has

a

o-locally

(2)

(2)

A

space

is

courtabl $ybi-quaSi-k[14]$

if,

whenever

(

$\mathrm{F}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

is

a

decreasing

sequence with

$\mathrm{x}\in\overline{\mathrm{F}}_{\mathrm{n}}$

,

there

exists

a

decreasing

sequence

(

$\mathrm{A}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

such that

$\mathrm{x}\in\overline{\mathrm{A}_{\mathrm{n}}\cap \mathrm{F}}_{\mathrm{n}}$

for each

$\mathrm{n}\in \mathrm{N}$

,

and

if

$\mathrm{x}_{\mathrm{n}}\in \mathrm{A}_{\mathrm{n}}$

for each

$\mathrm{n}\in \mathrm{N}$

,

then

$\mathrm{t}l\mathrm{E}$

sequence

(

$\mathrm{x}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

has

a

cluster

$\mathrm{r}\mathfrak{v}\mathrm{i}\mathrm{n}\mathrm{t}$

in

$\cap(\mathrm{A}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}.

${\rm Re}(\mathrm{B}11$

that

a

space

X is

a

q-space

if each

point

has

a

sequence

(

$\mathrm{V}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

of

nbds

such that if

$\mathrm{x}_{\mathrm{n}}\in \mathrm{V}_{\mathrm{n}}$

,

the

sequence

(

$\mathrm{x}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

has

a

cluster

point

in

X.

Every

$\mathrm{q}$

-space is

a

countably

$\mathrm{b}\mathrm{i}^{-}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{k}^{-\mathrm{s}}\mathrm{P}\mathrm{a}\mathrm{c}\mathrm{e}$

.

Every countably

bi-$\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}^{-}\mathrm{k}^{-\mathrm{s}}\mathrm{P}\mathrm{a}\mathrm{c}\mathrm{e}$

is

precisely

the

countably

$\mathrm{b}\mathrm{i}$

-quotient image

of

an

M-space;

see

[14].

(3)

A

space

X

is

a

$m7\mathrm{a}\sigma mcw\Delta-sMce$

(simply,

$\mathrm{m}\mathrm{w}\Delta-\mathrm{s}\mathfrak{B}^{\mathrm{c}}\mathrm{e}$

)

[18]

(raep.

$m\tau d\sigma mC$

devetoWble

[7]

(equivalently,

space

having

a

$\mathrm{l}\mathrm{H}\mathrm{s}\mathrm{e}$

of countable

order in the

sense

of

Arhangel’skii

$\lfloor 1$

])),

if there

exists

a

sequence

$(\mathcal{B}_{\mathrm{n}})$

of

bases for X such that

any

decreasing

sequence

(

$\mathrm{B}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

with

$\mathrm{B}_{\mathrm{n}}\in\beta_{\mathrm{n}}$

satisfies

$(*)$

:

$(*)$

If

$\mathrm{x}\in\cap \mathrm{B}_{\mathrm{n}}$

,

and

$\mathrm{x}_{\mathrm{n}}\in \mathrm{B}_{\mathrm{n}}$

,

thaen the

sequence

$\{\mathrm{x}_{\mathrm{n}} :

\mathrm{n}\in \mathrm{N}\}$

has

a

cluster

point

in X

(resp.

the cluster

point

x).

If the

sequence

(

$\mathrm{B}_{\mathrm{n}}$

:

$\mathrm{n}\in \mathrm{N}$

}

with

$\mathrm{B}_{\mathrm{n}}\in\beta_{\mathrm{n}}$

is

not

necessarily decreasing,

then such

a

space

is called

a

$\mathrm{w}\Delta-\mathrm{s}\mathrm{m}\mathrm{C}\mathrm{e}$

;

developable

space

respectively.

Every

$\mathrm{w}\Delta^{-\mathrm{s}_{\mathrm{P}}}\mathrm{a}\mathrm{c}\mathrm{e}$

or

every

(monotonic)

$\mathrm{P}$

-space[7]

is

an

$\mathrm{m}\mathrm{w}\Delta^{-_{\mathrm{S}}}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$

.

Every

$\mathrm{m}\mathrm{w}\Delta$

-space

is

a

$\mathrm{q}$

-space, hence

countably

$\mathrm{b}\mathrm{i}^{-\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{S}}\mathrm{i}-\mathrm{k}$

.

Among

$\theta-\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}(=$

submetacompact)

spaces,

$\mathrm{m}\mathrm{w}\Delta^{-}\mathrm{s}_{\mathrm{P}^{\mathrm{a}\mathrm{c}\mathrm{a}\mathrm{e}}}$

(resp.

monotonic

developable spaces)

are

$\mathrm{w}\Delta$

-spaces

(

$\mathrm{r}\mathrm{a}\mathrm{e}_{\mathrm{I})}$

.

developable spaces);

see

[18]

(resp.

[7]).

Ihe lemma below holds

by

maens

of

[13;

$\mathrm{p}_{\Gamma \mathrm{O}\mathrm{I}\epsilon}\mathrm{x}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}3.2\rfloor$

,

[17;

Section

4],

$[4; \mathrm{m}\infty \mathrm{r}\mathrm{e}\mathrm{m}4.1]$

,

and

[

$18\rfloor$

,

etc.

Here,

we

note

that,

in

a

space

having

a

$\sigma$

-locally

countable

$\mathrm{k}$

-network,

each

point

is

a

$\mathrm{G}_{\delta}-\mathrm{S}\mathrm{e}\mathrm{t}$

.

So,

every

countably

$\mathrm{b}\mathrm{i}-\eta \mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{k}$

-space

with

a

$\sigma$

-locally

countable k-network is

countably

bi-k

by

(3)

$\mathrm{L}\sqrt$

.

(1)

$\mathrm{S}\mathrm{u}\mathrm{p}\infty \mathrm{e}$

that X is

a

$\mathrm{k}$

-space;

a

normal

space

in which

every

closed

countably

compact

set

is compact;

or

each

point

of

X is

a

$\mathrm{G}_{\delta}-\mathrm{S}\mathrm{e}\mathrm{t}$

.

Then

(i)

and

(ii)

below hold.

(i)

X

has

a

point-countable

$1_{\mathrm{B}}\mathrm{s}\mathrm{e}$

if

and

only

if X is

a

countably

bi-$\mathfrak{M}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{k}^{-_{\mathrm{S}}}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$

with

a

$\iota \mathrm{r}\mathrm{i}\mathrm{n}\mathrm{t}$

-countable

k-network.

(ii)

X is

a

nomotonically developable

space

with

a

point-countable

$1_{\mathrm{H}}\mathrm{s}\mathrm{e}$

if

$\mathrm{a}\mathrm{I}\mathrm{H}$

only

if X is

an

$\mathrm{m}\mathrm{w}\Delta$

-space

with

a

$\mathrm{r}\mathrm{x}$

)

$\mathrm{i}\mathrm{n}\mathrm{t}-_{\mathrm{C}}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$

k-network

(cf.

[18]).

(2)

(i)

A space

has

a

$\sigma$

-locally

countable

oese

if

and

only

if

it is

a

countably

$\mathrm{b}\mathrm{i}-\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}^{-}\mathrm{k}-\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}$

with

a

o-locally

countable k-network.

(ii)

A spaoe is

a

nomotonically developable

space with

a

$\sigma-1\propto \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

countable

$l_{\mathrm{H}}\mathrm{s}\mathrm{e}$

if and

only

if it is

an

$\mathrm{m}\mathrm{w}\Delta-\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}$

with

a

$\sigma-1\propto \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

countable k-network.

ffitri

zati

on

$\mathrm{l}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$

The

following

are

equivalent.

(a)

X is

metrizable,

(b)

X is

a

paracompact

$\mathrm{M}$

-space

having

a

point-countable

k-network,

(c)

X is

an

M-space,

and

a

$\mathrm{k}$

-space

having

a

point-countable

k-network,

(d)

X

is

an

M-space having

a

point-countable k-network,

and

having

a

$\sigma$

-locally

countable

$oetuD\gamma k$

.

(e)

X is

an

$\mathrm{M}$

-space

having

a

o-locally

countable

$\mathrm{k}-\iota \mathrm{a}\mathrm{e}\mathrm{t}\mathrm{W}\mathrm{o}\mathrm{r}\mathrm{k}$

,

(f)

X is

a

paracomrct,

countably

$\mathrm{b}\mathrm{i}-\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{k}-\mathrm{S}\mathrm{P}^{\mathrm{a}\mathrm{C}\mathrm{e}}$

having

a

$\sigma-1\propto \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

countable

k-network,

(g)

X is

a

countably

$\mathrm{b}\mathrm{i}^{-_{\mathrm{q}\mathrm{u}\mathrm{a}}}\mathrm{s}\mathrm{i}-\mathrm{k}$

-space

having

a

point-coumtable k-network,

anfi

having

a

$\sigma$

-closure

preserving

k-network;

cf.

[12].

(h)

X is

an

$\mathrm{m}\mathrm{w}\Delta^{-\mathrm{S}}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}$

having

a

$\sigma$

-closure

preserving

k-network;

see

[18].

(i)

X is

a

countably

$\mathrm{b}\mathrm{i}-\mathfrak{M}^{\mathrm{a}}\mathrm{s}\mathrm{i}-\mathrm{k}$

-space

having

a

$\sigma$

-heraitarily

closure

(4)

kmark.

In the

previous theorem,

it

is

possible

to

replace

countably

$\mathrm{b}\mathrm{i}-\tau \mathrm{u}\mathrm{a}\mathrm{S}\mathrm{i}^{-}\mathrm{k}-\mathrm{S}\mathrm{P}\mathrm{a}\mathrm{C}\mathrm{e}$

by

.

countably

$\mathrm{b}\mathrm{i}-\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{S}\mathrm{i}-\mathrm{k}-_{\mathrm{S}}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}$

,

but the

sequence

$\{\mathrm{x}_{\mathrm{n}} :

\mathrm{n}\in \mathrm{N}\}$

has

a

cluster

$\iota \mathrm{x}$

)

$\mathrm{i}\mathrm{n}\mathrm{t}$

in X

(instead

of

$\cap(\mathrm{A}_{\mathrm{n}} :

\mathrm{n}\in \mathrm{N}\})$

in the

definition

of

countably

$\mathrm{b}\mathrm{i}^{-_{\mathrm{q}\mathrm{u}\mathrm{a}}}\mathrm{s}\mathrm{i}-\mathrm{k}$

-spaces

We

see

that each condition in

(b)

$\sim(\mathrm{h})$

of

Etrization

Theorem is

essential

by

mfflns

of the

following examples.

Exanpl

es.

(1)

Not

every

countably

compact

(resp. countably

compact,

first

countable)

space

having

a

point-countable

$\mathrm{k}$

-network

(resp. locally

countable

oetumk)

is

a

$\sigma$

-space.

(2)

Not

every

Cech-CVmplete

(raep.

metacompact

developable)

space

having

a

$\sigma-1\propto \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

countable kse

is

a

$\sigma-\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}[8]$

(resp. metrizable;

cf.

[11]).

(3)

Not

every

first

countable, Lindel\"of

space

having

a

$\sigma$

-closure

preserving

base is

developable [6].

But,

the

following

holds

by

maens

of

[3]

and

[18]

,

etc.

Roposi

ti

on

(1)

Every

$\theta$

-refinable

space

X

is

developable

if

(a)

or

(b)

below holds.

(a)

X

is

an

$\mathrm{m}\mathrm{w}\Delta^{-}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$

having

a

$\infty \mathrm{i}\mathrm{n}\mathrm{t}^{-\mathrm{c}\mathrm{o}}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{k}$

-network,

or

having

a

$\sigma$

-locally

coumtable

oetuxyrk.

(b)

X

is

a

countably

$\mathrm{b}\mathrm{i}^{-\mathrm{q}\mathrm{u}8}\mathrm{S}\mathrm{i}^{-\mathrm{k}\mathrm{p}}- \mathrm{S}\mathrm{a}\mathrm{C}\mathrm{e}$

having

a

$\sigma-1\mathfrak{c}\mathrm{x}\mathrm{B}\mathrm{l}\mathrm{l}\mathrm{y}$

countable

$\mathrm{k}^{-}\mathrm{I}\mathrm{E}\mathrm{t}\mathrm{W}\mathrm{o}\mathrm{r}\mathrm{k}$

.

(2)

Every

$\mathrm{m}\mathrm{w}\Delta-\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{e}$

which is the

quotient

mmpact image

(raep. quotient

s-image)

of

a

metric

space

is

developable (resp. monotonically

developable);

(5)

We

nmte

that

every

$\mathrm{m}\mathrm{w}\Delta$

-space

having

a

$\sigma$

-lotBlly

finite

$mtuD\gamma k$

(resp.

$\sigma$

-locally

countable

$\mathrm{k}-\mathrm{I}\mathrm{E}\mathrm{t}\mathrm{W}\mathrm{o}\mathrm{r}\mathrm{k}$

)

is

developable

(resp.

monotonically

developable;

cf.

[18].

In view

of

the

$\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{V}\mathrm{e}$

results,

we

have

the

following

questions.

$QStions$

.

(1)

Every

$\mathrm{w}\Delta$

-space

having

a

$\sigma-1\propto \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

countable

k-network

(resp.

$\sigma$

-locally

countable

oetumk)

is

developable

(resp.

monotonically

developable)

$\nabla$

(2)

Every

$\mathrm{w}\Delta$

-space which is the

quotient

$\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}-\mathrm{t}\mathrm{o}$

-one

image

of

a

metric

space is

developable

$\nabla$

Ref

erenres

[11

A. V.

Arhangel

ski

$\mathrm{i}$

,

Certain

metr

$\mathrm{i}$

zat

$\mathrm{i}$

on

theorems, Usp.

Mat.

,

Nauk,

18(1963),

139-145.

[2]

R. H.

Bing,

Metr ization of

topologi

cal spaces,

Canad. J.

Math.

,

3(1951),

175-186.

[31

D.

Burke,

Refinements of

locally

countable

collections, Topology

Proceedings, 4(1979),

19-27.

[4]

.

Paralindel\"of

spaces and

closed

mappings,

ibid.

5(1980),

47-57.

[5]

D.

Burke,

R.

Engelking

and

D.

Lutzer, Hereditarily

closure-preserving

collections

and

metr

$\mathrm{i}$

zat

$\mathrm{i}$

on, Proc. Amer. Math.

Soc.

,

51

(1975),

483-488.

[6]

J. G.

Ceder,

Some

general

$\mathrm{i}$

zat

ions of

metr

$\mathrm{i}\mathrm{c}$

spaces,

Pac

$\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{c}$

J. Math.

,

(6)

[7]

J.

Chaber,

M.

M. Coban and K.

Nagami,

On monotonic

generalizations

of Moore

spaces,

Cech

complete

spaces and

$\mathrm{p}$

-spaces,

Fund

Math.

,

84(1974),

107-119.

[81

S.

W.

Davis,

A

nondevelopable

$\mathrm{C}\mathrm{e}\mathrm{c}\nu \mathrm{h}^{-\mathrm{C}\mathrm{O}}\mathrm{m}\mathrm{P}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}$

space with

a

point-countable

base,

Proc. Amer. Math. Soc.

,

78

(1980),

139-142.

[9]

V. V.

Fedorcuk,

Ordered

sets

and

the

product

of

topologi

cal spaces,

(Russian),

Vestnik

Mos.

.

21

(1966),

66-71.

[101

V.

V.

Filippov,

On feathered

paracompacta,

Soviet Math. Dokl.

,

9(1968),

161-164.

[11]

W.

G. Fleissner

and

G.

M.

Reed,

Paralindel\"of spaces

and spaces with

a

$\sigma-1_{\mathrm{o}\mathrm{C}}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$

countable

base,

Topology Proceedings,

2

(1977),

89-110.

[12]

Z. M.

Gao,

The

closed

images

of

metric

spaces and

Fr\’echet

$R$

-spaces,

$\mathrm{Q}$

&

A

in

General

Topology.

,

5

(1987),

281-291.

[13]

G.

Gruenhage,

E.

Michael and

Y.

Tanaka,

Spaces

determined

by

point-countable

covers,

Pac

$\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{c}$

J.

Math.

,

113

(1984),

303-332.

[14]

E.

Mi

chael,

A

quintuple

quot

$\mathrm{i}$

ent

quest,

Gen.

Top.

Appl.

,

2

(1971),

91-138.

[15]

A.

Okuyama,

On

metr

$\mathrm{i}$

zabi

1

$\mathrm{i}$

ty

of

$\mathrm{M}$

-spaces,

Proc.

Japan

Acad.

,

40

(1964),

176-179.

[16]

F.

Siwiec

and

J.

Nagata,

A

note

on

nets

and

Metrization,

Proc.

Japan

Acad.

,

44

(1968),

623-627.

[171

Y.

Tanaka,

Metr

ization

I

I,

in: K. Mor

$\mathrm{i}$

ta

and

J.

Nagata,

$\mathrm{e}\mathrm{d}\mathrm{s}$

.

,

Topi

cs

in

General

Topology (Elsevier,

Amsterdom,

1989),

275-314.

[181

Y.

Tanaka and

T.

Murota,

Monotonic

generalization

of

$\mathrm{w}\Delta$

-spaces, and

参照

関連したドキュメント

Also an example of a complete D-metric space having a convergent sequence with infinitely many limits is given and, using the example, several fixed point theorems in D-metric

We introduce an iterative method for finding a common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of a

For a countable family {T n } ∞ n1 of strictly pseudo-contractions, a strong convergence of viscosity iteration is shown in order to find a common fixed point of { T n } ∞ n1 in

Every 0–1 distribution on a standard Borel space (that is, a nonsingular borelogical space) is concentrated at a single point. Therefore, existence of a 0–1 distri- bution that does

Zograf , On uniformization of Riemann surfaces and the Weil-Petersson metric on Teichm¨ uller and Schottky spaces, Math. Takhtajan , Uniformization, local index theory, and the

Any countable subspace X of an extremally disconnected Tychonoff space K is almost discrete and has the strong Skorokhod property for Radon

We introduce a new iterative method for finding a common element of the set of solutions of a generalized equilibrium problem with a relaxed monotone mapping and the set of common

Tuyen proved that a regular space with a locally countable sn-network (resp., weak base) if and only if it is a compact-covering (resp., compact-covering quotient) compact and