• 検索結果がありません。

ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討

N/A
N/A
Protected

Academic year: 2021

シェア "ワイヤ擦過援用ウェットエッチングによるシリコンインゴットの切断の基礎的検討"

Copied!
10
0
0

読み込み中.... (全文を見る)

全文

(1)

࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡿࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢ

ษ᩿ࡢᇶ♏ⓗ᳨ウ



㇂ Ὀᘯ

1)

㸪ᙇ Ᏹ

1)

㸪ᮧ⏣㡰஧

2)   ᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹

A feasibility study for the application for slicing Si ingots using a wet etching

assisted by wire-friction

Yasuhiro TANI

1)

, Yu ZHANG

1)

and

Junji MURATA

2)





Silicon (Si) wafers for electronic or photovoltaic devices are fabricated by slicing a Si ingot using mechanical slicing with a diamond wire. Recently, the slicing method without generating damage on Si surface has been strongly required because of the increasing demand of ultra-thin Si wafers. In this study, we have developed a novel machining method for Si grooving based on a wet chemical etching. In this method, Si was processed by the chemical etching in HNO3 and HF mixture combined with an abrasion effect of metallic wires that contains no abrasives. The extremely

low kerf loss with approx. 100 ȝm was achieved by optimizing the composition of etchant. SEM observation showed that Si surfaces processed by the proposed method had no crack and tool mark contrary to the mechanical slicing. Furthermore, Raman microscopy exhibited that the proposed method generated no disordered layer on Si surfaces, whereas the mechanical slicing caused amorphous layers. Surface roughness was improved by adding CH3COOH to the

etchant.

Key Words : Silicon, Etching, Slicing, Mixed acid, Kerf loss

E-mail㸸zhangyu@fc.ritsumei.ac.jp (Y. Zhang)

 

᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹᧹

1)

❧࿨㤋኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉

2)

㏆␥኱Ꮫ⌮ᕤᏛ㒊ᶵᲔᕤᏛ⛉

1)

Department of Mechanical Engineering, Ritsumeikan University,

Kusatsu, Shiga, 525-8577, Japan

2)

Department of Mechanical Engineering, Kinki University,

(2)

  ⥴   ゝ ࢚ࢿࣝࢠ࣮ࡸᆅ⌫⎔ቃ࡟ᑐࡍࡿ㛵ᚰࡀ㧗ࡲࡿ࡞࠿㸪ኴ㝧㟁ụࡣ෌⏕ྍ⬟࡞ࢡ࣮࢚ࣜࣥࢿࣝࢠ࣮ࡢ୍ࡘ࡜ࡋ࡚㟂 せࡀቑຍࡋ࡚࠸ࡿ㸬ኴ㝧㟁ụࡢࡉࡽ࡞ࡿᬑཬ⋡ࡢቑຍ࡟ࡣ㸪ኴ㝧㟁ụࣃࢿࣝࡢࢥࢫࢺࡢపῶࡀ㔜せ࡜࡞ࡿ㸬ኴ㝧 㟁ụࣃࢿࣝࡣࢩࣜࢥࣥ㸦Si㸧࢙࣮࢘ࣁࢆ⏝࠸࡚〇㐀ࡉࢀࡿ㸬ኴ㝧㟁ụࣃࢿࣝ඲యࡢࢥࢫࢺࡢ࠺ࡕ㸪Si ࢙࣮࢘ࣁࡢ ᮦᩱࢥࢫࢺࡸ〇㐀ࢥࢫࢺࡀ༨ࡵࡿ๭ྜࡣᑡ࡞ࡃ࡞࠸㸬Si ࢙࣮࢘ࣁࡣ࢖ࣥࢦࢵࢺ㸦⤖ᬗሢ㸧࠿ࡽⷧࡃษฟࡋ࡚〇㐀 ࡉࢀࡿࡓࡵ㸪࢖ࣥࢦࢵࢺ࠿ࡽᮦᩱࡢ↓㥏ࢆᑡ࡞ࡃ㸪ࡼࡾከࡃࡢᇶᯈࢆษࡾฟࡍࡇ࡜ࡀపࢥࢫࢺ໬ࡢ㘽࡜࡞ࡿ㸬Si ࢖ࣥࢦࢵࢺࡢษ᩿࡟ࡣ㸪࣡࢖ࣖᕤලࢆ⏝࠸ࡓ࣐ࣝࢳ࣡࢖ࣖ࡟ࡼࡿຍᕤࡀ⏝࠸ࡽࢀ࡚࠸ࡿ㸬ᚑ᮶࡛ࡣ㸪◒⢏ࢆᠱ⃮ ࡋࡓࢫ࣮ࣛࣜࢆࣆ࢔ࣀ⥺ᕤල࡟౪⤥ࡋษ᩿ࢆ⾜࠺㐟㞳◒⢏ษ᩿᪉ᘧ (ㄶゼ㒊௚㸪2008) ࡀ⏝࠸ࡽࢀ࡚࠸ࡓࡀ㸪ษ ᩿⬟⋡ࡢྥୖࡸసᴗ⎔ቃࡢᨵၿ➼ࡢࡓࡵ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࢆ࣡࢖ࣖ࡟௜╔ࡉࡏࡓࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿᅛ ᐃ◒⢏ษ᩿ (༓ⴥ௚㸪2003) ࡀᛴ㏿࡟ᬑཬࢆఙࡤࡋ࡚࠸ࡿ㸬ࡋ࠿ࡋ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿษ᩿࡛ࡣ㸪ษฟ ࡋࡓ Si ࢙࣮࢘ࣁ⾲㠃࡟ࢲ࣓࣮ࢪࡀⓎ⏕ࡍࡿࡇ࡜ࡸ㸪ษ᩿⁁ᖜ㸦࣮࢝ࣇࣟࢫ㸧ࡢపῶ࡟㝈⏺ࡀ࠶ࡿ࡞࡝ࡢၥ㢟ࡀ࠶ ࡿ㸬 ࡇࡢࡼ࠺࡞⫼ᬒࡢࡶ࡜㸪ᶵᲔຍᕤ࡟ࡼࡽ࡞࠸᪂ࡋ࠸ Si ࡢษ᩿ᢏ⾡࡜ࡋ࡚㸪ᨺ㟁ຍᕤ (Ᏹ㔝௚㸪2009) ࡸ㟁ゎຍ ᕤ (Lee, et al., 2011) 㸪ࣉࣛࢬ࣐࢚ࢵࢳࣥࢢ (᳃௚㸪2001) ࡞࡝ࡢຍᕤᢏ⾡ࡢ㐺⏝ࡀ᳨ウࡉࢀ࡚࠸ࡿ㸬ࡇࢀࡽࡢ᪉ ἲ࡛ࡣ㸪Si ࢙࣮࢘ࣁ࡟ᶵᲔⓗࢲ࣓࣮ࢪࢆⓎ⏕ࡉࡏࡎ࡟ษ᩿ࡀྍ⬟࡛࠶ࡿࡀ㸪ຍᕤ㏿ᗘࡸ࣮࢝ࣇࣟࢫ㸪ຍᕤࢥࢫࢺ ➼࡟ၥ㢟ࡀ࠶ࡾ㸪ᚑ᮶ࡢ◒⢏ຍᕤ࡟ࡼࡿษ᩿ࢆ௦᭰ࡍࡿ࡟ࡣ⮳ࡗ࡚࠸࡞࠸㸬ࡑࡇ࡛㸪➹⪅ࡽࡣ㸪࢙࢘ࢵࢺ࢚ࢵࢳ ࣥࢢࢆ฼⏝ࡋࡓ᪂ࡋ࠸ษ᩿ᢏ⾡࡛࠶ࡿࠕ࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࠖࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿ㸬ࡇࡢຍᕤᢏ ⾡ࡣ㸪࢚ࢵࢳࣥࢢᾮ㸦࢚ࢵࢳࣕࣥࢺ㸧୰࡛㉮⾜ࡍࡿ㔠ᒓ࣡࢖ࣖ࡟ࡼࡾ㸪Si ࢆ᧿㐣ࡍࡿࡇ࡜࡛໬Ꮫⓗ࡞స⏝ࢆ୺య ࡜ࡋ࡚ຍᕤࢆ⾜࠺ࡇ࡜ࢆ≉ᚩ࡜ࡍࡿ㸬ᮏሗ࡛ࡣ㸪㛤Ⓨࡋࡓຍᕤᢏ⾡࡟ࡼࡾ Si ࡟ᑐࡋ࡚῝⁁ຍᕤࢆ᪋ࡋ㸪ຍᕤᶵᵓ ࡸ࢚ࢵࢳࣕࣥࢺ⤌ᡂ㸪ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࡸษ᩿㠃ရ㉁࡟ࡘ࠸࡚ㄪᰝࢆ⾜࠸㸪Si ࢖ࣥࢦࢵࢺษ᩿࡬ ࡢ㐺⏝ྍ⬟ᛶ࡟ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓ㸬  ᪂つຍᕤᢏ⾡ࡢᴫせ࡜ຍᕤせ⣲ࡢ㑅ᐃ ࣭ ࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡢᴫせ ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࡣ㏻ᖖ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡜࡞ࡿࡓࡵ㸪Si ⾲㠃࡟࣐ࢫࢡࢆ᪋ࡋ࡚ࡶࢧ࢖ࢻ࢚ࢵࢳࡀ⏕ࡌࡿ㸬 ࡑࡢࡓࡵ㸪Si ࢙࣮࢘ࣁࡢษฟࡋ࡛ᚲせ࡜࡞ࡿ࢔ࢫ࣌ࢡࢺẚࡢ㧗࠸ᚤ⣽⁁ࢆຍᕤࡍࡿࡇ࡜ࡣ㏻ᖖ࡛ࡣᅔ㞴࡛࠶ࡿ㸬

(3)

ⴭ⪅ࡽࡣ㸪⁁ࡢᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆᢚไࡋ㸪῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢࢆಁ㐍ࡍࡿࡇ࡜ࡀ࡛ࡁࢀࡤ␗᪉ᛶࡢຍ ᕤࡀᐇ⌧࡛ࡁࡿ࡜⪃࠼ࡓ㸬ࡑࡇ࡛㸪ᅗ 1 ࡟♧ࡍࡼ࠺࡟㸪Si ࢖ࣥࢦࢵࢺ࡟࢚ࢵࢳࣕࣥࢺࢆ౪⤥ࡋ㸪㉮⾜ࡍࡿ㔠ᒓ࣡ ࢖ࣖ࡟ࡼࡾ࢖ࣥࢦࢵࢺࢆ᧿㐣ࡍࡿຍᕤ᪉ἲࢆ╔᝿ࡋࡓ㸬Si ࢖ࣥࢦࢵࢺ࡜㔠ᒓ࣡࢖ࣖࡢ᧿㐣Ⅼ࡟࠾࠸࡚㸪ᦶ᧿⇕ࡢ Ⓨ⏕ࡸ᪂㩭࡞࢚ࢵࢳࣕࣥࢺࡢᘬࡁ㎸ࡳ࡞࡝࡟ࡼࡗ࡚῝ࡉ᪉ྥ࡬ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡢྥୖࢆᅗࡗࡓ㸬୍᪉㸪࢚ࢵࢳ ࣕࣥࢺ⤌ᡂࡢ᭱㐺໬࡟ࡼࡾ㸪⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢࡢᢚไࢆ᳨ウࡋࡓ㸬ࡇࡢࡼ࠺࡞ຍᕤ᪉ἲࡀᐇ⌧࡛ࡁࢀࡤ㸪໬ Ꮫⓗస⏝࡟ᇶ࡙ࡃᮦᩱ㝖ཤ࡛࠶ࡿࡓࡵ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿࡛ၥ㢟࡜࡞ࡿษ᩿㠃࡬ࡢᶵᲔⓗࢲ࣓࣮ࢪࢆⓎ⏕ ࡉࡏࡎ࡟ຍᕤࡀ࡛ࡁࡿ㸬ᶵᲔⓗࢲ࣓࣮ࢪࡣ࢙࣮࢘ࣁࡢᢠᢡᙉᗘࡢపୗ࡟⧅ࡀࡿࡓࡵ㸪ⷧ⫗࢙࣮࢘ࣁࡢษฟࡋ࡟࠾ ࠸࡚Ṍ␃ࡲࡾࡀᝏ໬ࡍࡿ㸬୍᪉㸪࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡛ࡣ࢙࣮࢘ࣁ࡬ࡢࢲ࣓࣮ࢪࡢⓎ⏕ࡀ࡞ࡃᴟ ࢙࣮ⷧ࢘ࣁࡢษฟࡋࡶぢ㎸ࡵࡿ㸬ࡉࡽ࡟㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿࡜ẚ㍑ࡋ࡚㸪ᕤල࣡࢖ࣖ࡬ࡢ㈇Ⲵࢆపῶ࡛ࡁ ࡿࡓࡵ㸪⣽⥺࣡࢖ࣖࡢ౑⏝࡟ࡼࡿ࣮࢝ࣇࣟࢫࡢపῶࡀྍ⬟࡜࡞ࡿ࡞࡝ࡢ฼Ⅼࡀᣲࡆࡽࢀࡿ㸬   ࣭ ࢚ࢵࢳࣕࣥࢺ࣭ຍᕤ⿦⨨࣭ᕤල࣡࢖ࣖࡢ㑅ᐃ

Si ࡢ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡛ࡣ㸪KOH ࡸ TMAH ࡞࡝ࡢ࢔ࣝ࢝ࣜ⁐ᾮ (Sato, et al., 2000) ࡸ㸪◪㓟࡜ࣇࢵ໬Ỉ⣲㓟 㸦ࣇࢵ㓟㸧ࡢΰ㓟࡛࠶ࡿࣇࢵ◪㓟 (Steinner, et al., 2005) ࡀከ⏝ࡉࢀ࡚࠸ࡿ㸬࢔ࣝ࢝ࣜ⁐ᾮ࡟ࡼࡿ࢚ࢵࢳࣥࢢ࡛ࡣ㸪 ࢚ࢵࢳࣥࢢ㏿ᗘࡢ⤖ᬗ᪉఩౫Ꮡᛶࡀ㧗ࡃ㸪࢚ࢵࢳࣥࢢ㏿ᗘࡶప࠸㸬ࡑࢀ࡟ᑐࡋ㸪ࣇࢵ◪㓟ࡣ⤖ᬗ᪉఩౫Ꮡᛶࡀᑠ ࡉࡃ㸪ᐇ⏝ⓗ࡞࢚ࢵࢳࣥࢢ㏿ᗘ㸦᭱኱ 800 —m/min (Yoshikawa, et al., 2010) 㸧ࡀᚓࡽࢀࡿ㸬ࡲࡓ㸪ኴ㝧㟁ụ〇㐀ᕤ ⛬࡟࠾ࡅࡿࢲ࣓࣮ࢪ㝖ཤࡢ࢚ࢵࢳࣕࣥࢺ࡜ࡋ࡚ᐇ⦼ࡀ࠶ࡿࡇ࡜࡞࡝࠿ࡽ㸪ᮏຍᕤᢏ⾡࡟࠾ࡅࡿ࢚ࢵࢳࣕࣥࢺ࡜ࡋ ࡚㑅ᢥࡋࡓ㸬ୖグࡢ᪂ࡋ࠸ຍᕤᢏ⾡࡟ࡼࡿ Si ࡢษ᩿ຍᕤࡢྍ⬟ᛶࢆ᳨ドࡍࡿࡓࡵ㸪ᅗ 2 ࡟♧ࡍࢩࣥࢢࣝ࣡࢖ࣖຍ ᕤ⿦⨨ࢆ㛤Ⓨࡋࡓ㸬ᕤල࣡࢖ࣖࢆᕳࡁࡘࡅࡓ࣎ࣅࣥࢆ࣮ࣔࢱ࡟ࡼࡾᅇ㌿ࡍࡿࡇ࡜࡛࣡࢖ࣖࢆ㉮⾜ࡉࡏ㸪ࣉ࣮࣮ࣜ ࢆ௓ࡋ࡚ᕤస≀⾲㠃ࢆ࣡࢖ࣖࡀ᧿㐣ࡍࡿᶵᵓ࡛࠶ࡿ㸬ࣇࢵ◪㓟࡬ࡢ⪏⸆ရᛶࢆ⪃៖ࡋ࡚㸪᥋ᾮ㒊ࡣᇶᮏⓗ࡟ PVC 㸦Polyvinyl chloride㸧ࡲࡓࡣ PEEK㸦poly ether ether ketone㸧࡛ᵓᡂࡉࢀ࡚࠸ࡿ㸬࢚ࢵࢳࣕࣥࢺࡣᕤస≀ୖ᪉࠿ࡽ⁲ ୗࡍࡿࡇ࡜࡛౪⤥ࡋ࡚࠸ࡿ㸬ᕤල࣡࢖ࣖࡣ㸪⭉㣗ᛶࡢᴟࡵ࡚㧗࠸ࣇࢵ◪㓟࡟⪏㣗ᛶࢆ᭷ࡍࡿࡇ࡜ࡀせồࡉࢀࡿ㸬 ࡲࡓ㸪㧗㏿࡛㉮⾜ࡋ࡞ࡀࡽ Si ࢖ࣥࢦࢵࢺࢆ᧿㐣ࡍࡿࡇ࡜࠿ࡽ㸪㧗࠸ᘬᙇᙉᗘࡀᚲせ࡜࡞ࡿ㸬ᵝࠎ࡞㸪ྜ㔠࣡࢖ࣖ ࠿ࡽ⪏㣗ᛶࡢ㧗࠸ᮦᩱࢆ㑅ᢥࡋ㸪ࣇࢵ◪㓟࡟ᑐࡍࡿ⭉㣗㔞ࢆホ౯ࡋࡓ㸬⾲ 1 ࡟♧ࡍࡼ࠺࡟㸪ࣇࢵ◪㓟㸦◪㓟 40wt%㸪 ࣇࢵ㓟 4wt%㸧ᾐₕᚋࡢ࣡࢖ࣖࡢ┤ᚄῶᑡ㔞ࢆィ ࡋࡓ⤖ᯝ㸪ࢽࢡ࣒ࣟ㸦NCHW1㸧୪ࡧ࡟ࢫࢸࣥࣞࢫ㸦SUS316L㸧 ࣡࢖ࣖࡀ㧗࠸⪏㣗ᛶࢆ♧ࡋࡓࡇ࡜࠿ࡽ㸪ࡇࢀࡽࢆ࣡࢖ࣖᕤල࡜ࡋ࡚㑅ᢥࡋࡓ㸬

Table 1 Corrosive and mechanical properties of wire

Material Reduction of diameter (mm)ͤ Tensile strength ×102 (N/mm2)

80Ni-20Cr 0 0.7

Inconel® 0.04 0.6

HASTELLOY® 0.04 0.9

Austenitic stainless steel 0 2.7

ͤafter 2h immersion of HNO

3 (40 wt%) and HF(4wt%) solution

Table 2 Experimental conditions

Workpiece Mono- and Poly-Si ingot (10 × 10 × 10 mm3)

Wire Ni-Cr (ࢥ160 —m), Stainless steel (ࢥ100 —m) Wire running speed, V Max. 200 m/min

Wire tension, T 5 N

(4)

  ຍᕤ㏿ᗘ࠾ࡼࡧ࣮࢝ࣇࣟࢫࡢホ౯ ࣭ ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪 ⾲ 2 ࡟♧ࡍຍᕤ᮲௳ࢆᇶᮏ࡜ࡋ㸪ຍᕤ᮲௳ࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆホ౯ࡋࡓ㸬࡞࠾㸪ຍᕤᐇ㦂ࡣ඲࡚ᐊ ୗ࡛ ⾜ࡗࡓ㸬ࡲࡎ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆㄪ࡭ࡓࡶࡢࡀᅗ 3 ࡛࠶ࡿ㸬ᅗ 3(a)ࡣࣇࢵ㓟⃰ᗘࢆᅛ ᐃࡋ㸪◪㓟⃰ᗘࡢࡳࢆኚ໬ࡉࡏࡓ㝿ࡢຍᕤ≉ᛶ࡛࠶ࡾ㸪ᅗ 3(b)ࡣ◪㓟⃰ᗘࢆᅛᐃࡋ㸪ࣇࢵ㓟⃰ᗘࡢࡳࢆኚ໬ࡉࡏ ࡓ㝿ࡢຍᕤ≉ᛶࢆ♧ࡋ࡚࠸ࡿ㸬ᅗ 3(a)࡟♧ࡍࡼ࠺࡟㸪◪㓟⃰ᗘࢆቑຍࡉࡏࡿ࡜ຍᕤ㏿ᗘࡀྥୖࡋࡓࡀ㸪࣮࢝ࣇ ࣟࢫࡣ◪㓟⃰ᗘ࡟ᑐࡋ࡚ኚ໬ࡏࡎ࡯ࡰ୍ᐃࡢ⣙ 170 —m ࡛࠶ࡗࡓ㸬୍᪉㸪ᅗ 3(b)࡟♧ࡍࡼ࠺࡟㸪ࣇࢵ㓟⃰ᗘࢆቑ ຍࡉࡏࡿ࡜㸪ຍᕤ㏿ᗘࡔࡅ࡛࡞ࡃ࣮࢝ࣇࣟࢫࡶቑຍࡍࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬 ḟ࡟㸪࣡࢖ࣖࡢ㉮⾜㏿ᗘࡀຍᕤ㏿ᗘ࡟୚࠼ࡿᙳ㡪ࢆㄪ࡭ࡓࡶࡢࡀᅗ 4 ࡛࠶ࡿ㸬࣡࢖ࣖ㉮⾜㏿ᗘࡢቑຍ࡜ඹ࡟㸪 ຍᕤ㏿ᗘࡶ࡯ࡰẚ౛ⓗ࡟ቑຍࡍࡿࡇ࡜ࡀࢃ࠿ࡿ㸬࣡࢖ࣖࡢ㉮⾜㏿ᗘࢆቑຍࡉࡏࡿ࡜㸪Si ࡢ᧿㐣Ⅼ࡟࠾ࡅࡿᦶ᧿⇕ ࡀቑຍࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ᅗ 5 ࡟♧ࡍࡼ࠺࡟㸪Si ࢙࣮࢘ࣁࢆࣇࢵ◪㓟࡟ᾐₕࡉࡏࡓ㝿ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡣ࢚ࢵࢳ ࣕࣥࢺࡢຍ⇕࡟ࡼࡗ࡚ಁ㐍ࡉࢀࡿ㸬ᚑࡗ࡚㸪࣡࢖ࣖ㉮⾜㏿ᗘࡢቑຍ࡟క࠺ᦶ᧿⇕ࡢቑຍࡀ㸪ຍᕤ㏿ᗘྥୖࡢ୍ࡘ ࡢせᅉ࡛࠶ࢁ࠺㸬ࡲࡓ㸪࣡࢖ࣖ㉮⾜㏿ᗘࡢቑຍࡀ᧿㐣Ⅼ࡟࠾ࡅࡿ཯ᛂ⏕ᡂ≀ࡸ Si ⾲㠃ࡢ୙ാែ⭷ࡢ㝖ཤࢆಁ㐍ࡉ ࡏࡓࡇ࡜࡞࡝ࡶせᅉ࡜ࡋ࡚⪃࠼ࡽࢀࡿ㸬    

Fig. 3 Material removal rate and kerf loss of Si as a function of (a) HNO3 and (b) HF concentration





Fig. 4 Material removal rate and kerf loss of Si        Fig. 5 Dependence of etchant temperature on etching    as a function of wire running speed          rate of Si (100) wafer surface

(5)

 ࣭ ␗᪉ᛶ࢚ࢵࢳࣥࢢࡢ࣓࢝ࢽࢬ࣒࡟㛵ࡍࡿ⪃ᐹ ୖグࡢ⤖ᯝ࠿ࡽ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࢆ◪㓟⃰ᗘ 40 wt%㸪ࣇࢵ㓟⃰ᗘ 4 wt%࡜Ỵᐃࡋ㸪⁁ຍᕤࢆ᪋ࡋࡓ Si ࡢຍᕤ ගᏛ㢧ᚤ㙾ീࢆᅗ 6 ࡟♧ࡍ㸬ᅗ 6(a)ࡣ┤ᚄ 160 —m ࡢࢽࢡ࣒ࣟ࣡࢖ࣖࢆ⏝࠸ࡓຍᕤ⁁࡛࠶ࡾ㸪࣮࢝ࣇࣟࢫࡣ⣙ 175 —m ࡛࠶ࡗࡓ㸬࣮࢝ࣇࣟࢫࡣຍᕤ⁁඲య࡟ࢃࡓࡗ࡚࡯ࡰ୍ᐃ࡛࠶ࡾ㸪⁁ࡢධཱྀ㒊࡟࠾࠸࡚ࡶᗈࡀࡿࡇ࡜࡞ࡃ㸪㧗 ࠸࢔ࢫ࣌ࢡࢺẚࢆ᭷ࡍࡿࡇ࡜ࡀࢃ࠿ࡿ㸬┤ᚄ 100 —m ࡢࢽࢡ࣒ࣟ⥺ࢆ⏝࠸ࡓሙྜ㸪ຍᕤ୰࡟᩿⥺ࡀ⏕ࡌࡓࡓࡵ㸪 ࡼࡾᘬᙇᙉᗘࡢ㧗࠸ࢫࢸࣥࣞࢫ࣡࢖ࣖࢆ⏝࠸࡚ຍᕤࢆ⾜ࡗࡓ㸬ᅗ 6(b)࡟♧ࡍࡼ࠺࡟㸪ࡇࡕࡽࡢሙྜࡶ࣮࢝ࣇࣟࢫ ࡣ 109 —m ࡜࡞ࡾ㸪࣡࢖ࣖ┤ᚄࡼࡾ 10 —m ⛬ᗘ኱ࡁ࠸࣮࢝ࣇࣟࢫࡢຍᕤ⁁ࡀᚓࡽࢀࡓ㸬ୖグࡢࡼ࠺࡟㸪୍⯡ⓗ࡟ ࡣ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡜࡞ࡿࣇࢵ◪㓟ࢆ⏝࠸ࡓ࡟ࡶ㛵ࢃࡽࡎ㸪㛤Ⓨࡋࡓຍᕤᢏ⾡࡟࠾࠸࡚ࡣ␗᪉ᛶ࢚ࢵࢳࣥࢢ࡜࡞ ࡾ㸪㧗࠸࢔ࢫ࣌ࢡࢺẚࡢຍᕤࡀᐇ⌧ࡋࡓ㸬ࡇࡢせᅉ࡟ࡘ࠸࡚௨ୗ࡟⪃ᐹࡍࡿ㸬ࣇࢵ◪㓟࡟ࡼࡿ Si ࡢ࢚ࢵࢳࣥࢢࡣ㸪 ୗᘧ࡟♧ࡍࡼ࠺࡟㸪◪㓟࡟ࡼࡿ Si ⾲㠃ࡢ㓟໬࡜㸦ᘧ(1)㸧࡜ࣇࢵ㓟࡟ࡼࡿ㓟໬⭷ࡢ⁐ゎ㸦ᘧ(2)㸧࡟ࡼࡾ཯ᛂࡀ㐍 ⾜ࡍࡿ (Steinnert, et al., 2005) 㸬

Si + 4HNO3 Ѝ 3SiO2 + 4NO + 2H2O                             (1)

SiO2 + 6HF Ѝ H2SiF6 + 2H2O                                  (2) ◪㓟⃰ᗘࡀ㧗ࡃ㸪ࣇࢵ㓟⃰ᗘࡀప࠸࢚ࢵࢳࣕࣥࢺ㸦ᅗ 3(a)㸧࡛ࡣ㸪Si ࡢ㓟໬㏿ᗘࡣ༑ศ኱ࡁ࠸ࡀ㸪ࣇࢵ㓟࡟ࡼ ࡿ㓟໬⭷ࡢ⁐ゎ㏿ᗘࡀᑠࡉࡃ㸪ࡇࢀࡀᚊ㏿㐣⛬࡜࡞ࡿ㸬ࡑࡢࡓࡵ㸪࣡࢖ࣖ᧿㐣㒊௨እࡢ࢚ࢵࢳࣥࢢ㏿ᗘ㸦ࡘࡲࡾ ⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘ㸧ࡣᑠࡉࡃ࡞ࡿ㸬୍᪉㸪࣡࢖ࣖ࡜ Si ࡢ᧿㐣Ⅼ࡟࠾࠸࡚ࡣ㸪Si ⾲㠃࡟⏕ᡂࡋࡓ㓟໬⭷ࡀ ࣡࢖ࣖࡢ᧿㐣స⏝࡟ࡼࡾ㝖ཤࡉࢀࡿࡇ࡜ࡀண᝿ࡉࢀࡿ㸬ࡲࡓ㸪๓㏙ࡋࡓࡼ࠺࡟࣡࢖ࣖࡢ᧿㐣Ⅼ࡛ࡣᦶ᧿⇕ࡀⓎ⏕ ࡋ㸪㓟໬⭷ࡢ⁐ゎ㏿ᗘࡀቑຍࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡉࡽ࡟㸪ຍᕤⅬ࡛ࡣ࢚ࢵࢳࣕࣥࢺࡢᘬࡁ㎸ࡳࡀಁࡉࢀࡿ㸬ᅗ 5 ࡛ࡣᾮ ࢆᆒ୍࡟ࡍࡿࡓࡵ࢚ࢵࢳࣕࣥࢺࢆ᧠ᢾࡋ㸪࢚ࢵࢳࣥࢢ࣮ࣞࢺࡢホ౯ࢆ⾜ࡗࡓࡀ㸪ྠࡌ⸆ᾮ⤌ᡂ࡛ᐊ ࠿ ࡘ᧠ᢾࢆ⾜ࢃ࡞࠸᮲௳࡛ࡣ㸪ࢩࣜࢥࣥ⾲㠃ࡢ࢚ࢵࢳࣥࢢࡀ☜ㄆࡉࢀ࡞࠿ࡗࡓ㸬ࡇࢀࡣ㸪ࢩࣜࢥࣥ⾲㠃࡛⏕ᡂࡍࡿ NO ࢞ࢫࡸ H2SiF6࡞࡝ࡢ཯ᛂ⏕ᡂ≀ࡀ࢚ࢵࢳࣥࢢࢆጉࡆࡿࡓࡵ࡛࠶ࡿ (኱ぢ௚㸪2012) 㸬࣡࢖ࣖࡢ㏆ഐ࡛ࡣ㸪࣡ ࢖ࣖࡢ㐠ື࡟ࡼࡾ࢚ࢵࢳࣕࣥࢺࡀ᧠ᢾࡉࢀࡿࡢ࡟ᑐࡋ㸪࣡࢖ࣖ࠿ࡽ㐲ࡊ࠿ࡗࡓ㒊ศ࡛ࡣ࢚ࢵࢳࣕࣥࢺࡀ␃ࡍࡿ ࡓࡵ㸪཯ᛂ⏕ᡂ≀ࡀ㝖ཤࡉࢀࡎ࢚ࢵࢳࣥࢢ㏿ᗘࡀⴭࡋࡃపୗࡋ࡚࠸ࡿࡶࡢ࡜⪃࠼ࡽࢀࡿ㸬ࡇࡢࡓࡵ㸪ᮏᢏ⾡࡟࠾ ࠸࡚ࡣ㸪ຍᕤ⁁ࡢᖜ᪉ྥ࡟ᑐࡍࡿ࢚ࢵࢳࣥࢢ㏿ᗘࡣ↓ど࡛ࡁࡿ࡯࡝ᑠࡉࡃ㸪ࡑࢀ࡟ᑐࡋ࡚῝ࡉ᪉ྥ࢚ࢵࢳࣥࢢ㏿ ᗘࡀ༑ศ࡟኱ࡁ࠸ࡓࡵ㸪␗᪉ⓗ࡞࢚ࢵࢳࣥࢢࡀᐇ⌧ࡋࡓ࡜ᛮࢃࢀࡿ㸬ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢࢧ࢖ࢬࡀ኱ࡁࡃ࡞ࡗ ࡓሙྜ㸪ຍᕤ᫬㛫ࡶ㛗᫬㛫࡜࡞ࡿࡀ㸪ୖグࡢ⌮⏤࠿ࡽຍᕤ᫬㛫ࡢቑຍ࡟క࠺⁁ᖜࡢቑ኱ࡣᴟࡵ࡚ᑠࡉ࠸࡜⪃࠼ࡽ ࢀࡿ㸬୍᪉㸪ࣇࢵ㓟⃰ᗘࢆ㧗ࡵࡿ࡜㸪㓟໬⭷ࡢ㝖ཤ㏿ᗘࡀ㧗ࡲࡾ㸪࣡࢖ࣖ᧿㐣Ⅼ௨እࡢ࢚ࢵࢳࣥࢢ㏿ᗘࡶ኱ࡁࡃ ࡞ࡗࡓ⤖ᯝ㸪࣮࢝ࣇࣟࢫࡢቑ኱࡟⧅ࡀࡗࡓ࡜⪃࠼ࡽࢀࡿ㸦ᅗ 3(b)㸧㸬  

(6)

 ࣭ ከ⤖ᬗ 6L ࡢຍᕤ≉ᛶ ኴ㝧㟁ụࣃࢿࣝ࡟ࡣ㸪༢⤖ᬗ Si ࡼࡾࡶᏳ౯࡛࠶ࡿࡇ࡜࠿ࡽ㸪ከ⤖ᬗ Si ࢙࣮࢘ࣁࡶ౑⏝ࡉࢀ࡚࠸ࡿ㸬༢⤖ᬗ Si ࡜ࡣ␗࡞ࡾ㸪ከ⤖ᬗ Si ࡣ࢖ࣥࢦࢵࢺ୰࡟␗࡞ࡿ⤖ᬗ᪉఩ࢆᣢࡘ⤖ᬗ⢏ࡀᏑᅾࡍࡿࡇ࡜࠿ࡽ㸪໬Ꮫⓗ࡞ຍᕤ࡛ࡣ⤖ ᬗ⢏ẖ࡟ຍᕤ≉ᛶࡀ␗࡞ࡿྍ⬟ᛶࡀ࠶ࡿ㸬ࡑࡇ࡛㸪ᮏຍᕤᢏ⾡࡟࠾࠸࡚ከ⤖ᬗ Si ࡢຍᕤ≉ᛶࢆㄪ࡭ࡓ㸬ᅗ 7 ࡟♧ ࡍࡼ࠺࡟㸪༢⤖ᬗ࡜ከ⤖ᬗ Si ࢆྠ᮲௳࡛ຍᕤࡋࡓ⤖ᯝ㸪࡯ࡰྠ➼ࡢຍᕤ㏿ᗘ࡜࣮࢝ࣇࣟࢫࡀᚓࡽࢀࡓ㸬࢚ࢵࢳࣥ ࢢ㏿ᗘࡢ⤖ᬗ᪉఩౫Ꮡᛶࢆㄪ࡭ࡿࡓࡵ㸪(111)㠃࡜(100)㠃ࡢ Si ࢙࣮࢘ࣁࢆᾐₕࡉࡏࡓ㝿ࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆ ᐃ ࡋࡓ㸬ᅗ 8 ࡟♧ࡍࡼ࠺࡟㸪Ỉ㓟໬࣒࢝ࣜ࢘Ỉ⁐ᾮ࡟ࡼࡿ࢚ࢵࢳࣥࢢ࡛ࡣ(111)㠃࡜ẚ㍑ࡋ㸪(100)㠃࡟࠾࠸࡚㠀ᖖ࡟ ኱ࡁ࡞࢚ࢵࢳࣥࢢ㏿ᗘ࡛࠶ࡗࡓ㸬ࡑࢀ࡟ᑐࡋࣇࢵ◪㓟࡛ࡣ(111)㠃࡜(100)㠃࡟࠾࠸࡚࡯ࡰྠ➼ࡢ࢚ࢵࢳࣥࢢ㏿ᗘ࡛ ࠶ࡗࡓ㸬ࡑࡢࡓࡵ㸪ᮏຍᕤᢏ⾡࡛ࡣከ⤖ᬗ Si ࡢຍᕤ࡟࠾࠸࡚ࡶ㸪༢⤖ᬗ Si ࡜ྠ➼ࡢຍᕤ≉ᛶࡀᚓࡿࡇ࡜ࡀ࡛ࡁ ࡓ࡜⪃࠼ࡽࢀࡿ㸬   ຍᕤ㠃ရ㉁ࡢホ౯ ࣭ ຍᕤࢲ࣓࣮ࢪ ࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡾຍᕤࡋࡓ Si ࡢࢲ࣓࣮ࢪࢆホ౯ࡋ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ࡜ࡢẚ㍑ ࢆ⾜ࡗࡓ㸬ᅗ 9 ࡣࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡞ࡽࡧ࡟ᮏຍᕤᢏ⾡࡟ࡼࡿ Si ࢖ࣥࢦࢵࢺࡢຍᕤ㠃ࢆほᐹࡋࡓ SEM ീ࡛࠶ ࡿ㸬ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿຍᕤ㠃࡟ࡣከᩘࡢࢡࣛࢵࢡࡀⓎ⏕ࡋ࡚࠸ࡿ௚㸪࣡࢖ࣖ㉮⾜᪉ྥ࡜ᖹ⾜࡟ࢯ࣮࣐࣮ ࢡ㸦◊๐⑞㸧ࡀぢࡽࢀࡿ㸬ࡑࢀ࡟ᑐࡋ㸪ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣࢡࣛࢵࢡࡸࢯ࣮࣐࣮ࢡࡀᏑᅾࡋ࡞࠸➼᪉ⓗ࡞⾲㠃 ࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡼࡾヲ⣽࡟ຍᕤ㠃ࡢࢲ࣓࣮ࢪࢆㄪᰝࡍࡿࡓࡵ㸪㉮ᰝᆺ࣐࢖ࢡ࣐ࣟࣛࣥ㢧ᚤ㙾㸦RENISHAW㸪 Raman microscope Invia Reflex 532㸧࡟ࡼࡿຍᕤ㠃ホ౯ࢆ⾜ࡗࡓ㸬Si ࡢ࣐ࣛࣥศග࡟࠾࠸࡚ࡣ㸪Ἴᩘ 520 cm-1௜㏆

Fig. 7 Comparison of slicing characteristics Fig. 8 Comparison of the etching rate of Si (111) and between mono-Si and poly-Si (100) wafer surface immersed in HF-HNO3

mixture and KOH solution



(7)

࡟⤖ᬗᛶ Si㸦c-Si㸧ࡢࢩ࣮ࣕࣉ࡞ࣆ࣮ࢡࡀ⌧ࢀ㸪㠀ᬗ㉁㸦࢔ࣔࣝࣇ࢓ࢫ㸧Si㸦a-Si㸧ࡣἼᩘ 400-500 cm-1࡟ࣈ࣮ࣟ

ࢻ࡞ࣆ࣮ࢡ࡜ࡋ࡚⌧ࢀࡿ (Zwick and Carles, 1993) 㸬ᅗ 10 ࡣຍᕤᚋࡢ Si ⾲㠃ࢆ࣐ࣛࣥ㢧ᚤ㙾࡟ࡼࡾほᐹࡋ㸪⤖ᬗ ᛶ Si ࡢࣆ࣮ࢡ㸦Ἴᩘ 520 cm-1㸧ᙉᗘࢆ࣐ࢵࣆࣥࢢࡋࡓࡶࡢ࡛࠶ࡿ㸬ධᑕගࡣἼ㛗 532 nm ࡢ࣮ࣞࢨࢆᑐ≀ࣞࣥࢬ ࡟ࡼࡾ┤ᚄ⣙ 1 —m ࡟㞟ගࡋࡓࡶࡢ࡛࠶ࡾ㸪ࢧࣥࣉࣝࢫࢸ࣮ࢪࢆ 1 —m ࣆࢵࢳ࡛㉮ᰝࡉࡏ㸪ࡑࢀࡒࢀࡢ఩⨨࡛ࡢࣛ ࣐ࣥࢫ࣌ࢡࢺࣝࢆྲྀᚓࡋࡓ㸬࡞࠾㸪ᅗ୰ࡢᤄධᅗࡣຍᕤ㠃ࡢྠ୍⟠ᡤࢆྍどග࡛ほᐹࡋࡓගᏛ㢧ᚤ㙾ീ࡛࠶ࡿ㸬 ᅗ 10(a)࡟♧ࡍࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡛ࡣ㸪ᙉᗘࡢࡤࡽࡘࡁࡀ኱ࡁࡃ㸪⤖ᬗᛶ Si ࡢࣆ࣮ࢡᙉᗘࡀప࠸㒊ศࡀ Ꮡᅾࡍࡿ㸬ྍどග㢧ᚤ㙾ീ࡜ẚ㍑ࡍࡿ࡜㸪ࢯ࣮࣐࣮ࢡ㒊ࡢᙉᗘࡀపࡃ㸪ࢡࣛࢵࢡ㒊ࡢᙉᗘࡀ኱ࡁ࠸ࡇ࡜ࡀࢃ࠿ࡿ㸬 ୍᪉㸪ᮏຍᕤᢏ⾡࡟ࡼࡾຍᕤࡋࡓ⾲㠃㸦ᅗ 10(b)㸧ࡣ㸪⾲㠃ࡢพฝ࡟ᑐᛂࡋ࡚ⱝᖸࡢᙉᗘࡤࡽࡘࡁࡀぢࡽࢀࡿࡶࡢ ࡢ㸪඲య࡟㧗࠸⤖ᬗᛶ Si ࡢࣆ࣮ࢡᙉᗘࢆ♧ࡋࡓ㸬ᅗ 10 ࡢ࣐ࣛࣥ㢧ᚤ㙾ീ࡟♧ࡋࡓ A Ⅼ㸪B Ⅼ㸦ࢲ࢖ࣖࣔࣥࢻ࣡ ࢖ࣖຍᕤ㠃㸧㸪C Ⅼ㸦ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃㸧࡟࠾ࡅࡿ࣐ࣛࣥࢫ࣌ࢡࢺࣝࢆ♧ࡋࡓࡶࡢࡀᅗ 11 ࡛࠶ࡿ㸬ࢲ࢖ࣖࣔࣥ ࢻ࣡࢖ࣖ࡟ࡼࡿຍᕤ㠃ࡢࢡࣛࢵࢡ㒊㸦A Ⅼ㸧ࡣ㸪⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀ☜ㄆࡉࢀࡓࡀ㸪ࢯ࣮࣐࣮ࢡ㒊㸦B Ⅼ㸧 ࡛ࡣ⤖ᬗᛶ Si ࡟ຍ࠼㸪࢔ࣔࣝࣇ࢓ࢫ Si ࡢࣈ࣮ࣟࢻ࡞ࣆ࣮ࢡ࡛ᵓᡂࡉࢀ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ࢯ࣮࣐࣮ࢡࡢᏑ ᅾࡍࡿ Si ⾲㠃ࡢ┤ୗ࡛ࡣ㸪ࢲ࢖ࣖࣔࣥࢻ◒⢏ࡢษ๐స⏝࡟ࡼࡾ㸪⤖ᬗᵓ㐀ࡀ◚ቯࡉࢀ㸪࢔ࣔࣝࣇ࢓ࢫᒙࡀᙧᡂࡉ ࢀࡓ࡜⪃࠼ࡽࢀࡿ㸬ࢡࣛࢵࢡ㒊࡟࠾࠸࡚ࡣ㸪࢔ࣔࣝࣇ࢓ࢫᒙࡀ๤ࡂྲྀࡽࢀࡓࡓࡵ㸪⣲ᆅࡢ⤖ᬗᛶ Si ࡀ㟢ฟࡋࡓࡶ ࡢ࡜ᛮࢃࢀࡿ㸬ࡇࡢࡼ࠺࡞ഴྥࡣࢲ࢖ࣖࣔࣥࢻษ๐ࡋࡓ Si ⾲㠃ࡢ࣐ࣛࣥศᯒ࡟࠾࠸࡚ࡶሗ࿌ࡉࢀ࡚࠸ࡿ (Yan, 2004) 㸬ࡑࢀ࡟ᑐࡋ㸪ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃㸦C Ⅼ㸧ࡢ࣐ࣛࣥࢫ࣌ࢡࢺࣝࡣ⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀほᐹࡉࢀ࡚࠾ ࡾ㸪࠿ࡘࡑࡢࣆ࣮ࢡ್༙ᖜࡶࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟ࡼࡿຍᕤ㸦B Ⅼ㸧࡜ẚ㍑ࡋ࡚ᑠࡉ࠸ࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ୖグࡢ ࣐ࣛࣥศග࡟ࡼࡿホ౯ࡢ⤖ᯝ㸪ᮏຍᕤᢏ⾡࡟ࡼࡿຍᕤ㠃࡟ࡣ࢔ࣔࣝࣇ࢓ࢫᒙࡀᙧᡂࡉࢀ࡚࠾ࡽࡎ㧗࠸⤖ᬗᛶࢆ᭷ ࡍࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓ㸬ษ᩿ᚋࡢ࢙࣮࢘ࣁ࡟Ⓨ⏕ࡋࡓຍᕤࢲ࣓࣮ࢪࡣ㸪ࣃࢿࣝࡢⓎ㟁ᛶ⬟࡟ᝏᙳ㡪ࢆཬࡰࡍ ࡇ࡜࠿ࡽ㸪ᚋᕤ⛬ࡢ➼᪉ᛶ࢚ࢵࢳࣥࢢ࡟࠾࠸࡚㝖ཤࡍࡿᚲせࡀ࠶ࡿ㸬ࡋ࠿ࡋ㸪ࢲ࣓࣮ࢪᒙࡢ㝖ཤࡣ Si ཎᩱࡢࣟࢫ

Fig. 10 Micro-Raman mapping of Si surfaces processed by (a) diamond wire slicing and (b) proposed method





(8)

࡜࡞ࡿ௚㸪ᕤ⛬ᩘࡢቑຍ࡟క࠺㧗ࢥࢫࢺ໬ࡢせᅉ࡜࡞ࡿ㸬ᮏຍᕤᢏ⾡࡟ࡼࡾࢲ࣓࣮ࢪࡢ࡞࠸ Si ⾲㠃ࡀᚓࡽࢀࡓࡇ ࡜ࡣ㸪ኴ㝧㟁ụࣃࢿࣝ〇㐀ࢥࢫࢺపῶࡢほⅬ࠿ࡽࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿࡟ᑐࡋ࡚኱ࡁ࡞ඃ఩ᛶࡀ࠶ࡿ࡜ゝ࠼ࡿ㸬   ࣭ ຍᕤᚋ⾲㠃⢒ࡉ ኴ㝧㟁ụ⏝ Si ࢙࣮࢘ࣁࡣ㸪⾲㠃ࡢ཯ᑕ⋡ࢆపῶࡍࡿࡓࡵ㸪␗᪉ᛶ࢚ࢵࢳࣥࢢ࡟ࡼࡾ࿘ᮇᵓ㐀ࢆᙧᡂࡍࡿࢸࢡࢫ ࢳࣕࣜࣥࢢฎ⌮ࡀ᪋ࡉࢀࡿ㸬ษ᩿ᚋࡢ࢙࣮࢘ࣁ⾲㠃ࡢ⢒ࡉࡣ㸪ࢸࢡࢫࢳࣕࣜࣥࢢᕤ⛬࡟ᙳ㡪ࢆ୚࠼ࡿྍ⬟ᛶࡀ࠶ ࡾ㸪࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡾຍᕤࡋࡓ Si ࡢࢲ࣓࣮ࢪࢆホ౯ࡋ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ࡜ࡢẚ ㍑ࢆ⾜ࡗࡓ㸬ᅗ 9 ࡣࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡟࠾࠸࡚ࡶ㸪᪤Ꮡᢏ⾡࡛࠶ࡿࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖษ᩿㠃࡜ྠ➼ࡢ⾲㠃⢒ ࡉࡀせồࡉࢀࡿ㸬 ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖ࡜ᮏᢏ⾡࡟ࡼࡿຍᕤᚋ⾲㠃ࢆ఩┦ࢩࣇࢺᖸ΅㢧ᚤ㙾㸦Zygo, Newview5032㸧 ࡟ࡼࡾホ౯ࡋࡓࡶࡢࡀᅗ 12 ࡛࠶ࡿ㸬ᮏᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣ⾲㠃ࡢพฝࡀ኱ࡁࡃ㸪ࡲࡓ⾲㠃⢒ࡉࡶ 1.33 —mRa ࡛࠶ ࡾ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃㸦0.34 —mRa㸧ࡼࡾࡶ኱ࡁ࡞⾲㠃⢒ࡉ࡛࠶ࡗࡓ㸬ࡑࡇ࡛㸪ᮏᢏ⾡࡟࠾࠸࡚⾲㠃⢒ࡉ ࢆᨵၿࡍࡿࡓࡵ㸪࢚ࢵࢳࣕࣥࢺ⤌ᡂࡢ᳨ウࢆ⾜ࡗࡓ㸬Si ࡢࣇࢵ◪㓟࢚ࢵࢳࣥࢢ࡛ࡣ㸪ᕼ㔘๣㸦ࣇࢵ㓟࡜◪㓟௨እ ࡢᡂศ㸧࡟㓑㓟ࢆῧຍࡍࡿࡇ࡜࡛⾲㠃⢒ࡉࢆᨵၿ࡛ࡁࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ (℈ཱྀ㸪1985) 㸬ᅗ 13 ࡣᮏᢏ⾡࡟ ࠾ࡅࡿ㸪࢚ࢵࢳࣕࣥࢺ୰ࡢ㓑㓟⃰ᗘ࡜ຍᕤ㠃⢒ࡉࡢ㛵ಀࢆ♧ࡋ࡚࠸ࡿ㸬࡞࠾㸪ࣇࢵ㓟࡞ࡽࡧ࡟◪㓟⃰ᗘࡣࡑࢀࡒ ࢀ 4 wt%㸪40 wt%࡛ᅛᐃࡋ࡚࠸ࡿ㸬࢚ࢵࢳࣕࣥࢺ୰ࡢ㓑㓟⃰ᗘࡀቑຍࡍࡿ࡟క࠸㸪ຍᕤ㠃ࡢ⾲㠃⢒ࡉࡀᨵၿࡉࢀ ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡑࢀࡒࢀࡢຍᕤ㠃ࢆගᏛ㢧ᚤ㙾࡟ࡼࡾほᐹࡍࡿ࡜㸪㓑㓟ࢆῧຍࡋ࡞࠸ሙྜ࡟ࡣ኱ࡁࡉᩘ༑ —m ࡢᴃ෇ᙧᵓ㐀ࡀほᐹࡉࢀࡓ㸬ࡇࢀࡣࣇࢵ◪㓟࡟ࡼࡿ Si ࢚ࢵࢳࣥࢢࢆ⾜ࡗࡓ㝿࡟ぢࡽࢀࡿ඾ᆺⓗ࡞ᵓ㐀࡛࠶ࡾ㸪 ࢚ࢵࢳࣕࣥࢺ୰ࡢάᛶ཯ᛂ✀㸦ࢽࢺࣟࢯࢽ࣒࢘࢖࢜ࣥ㸪NO+㸧ࡀ Si ⾲㠃࡟೫ᅾࡍࡿࡇ࡜࡟㉳ᅉࡍࡿ࡜ሗ࿌ࡉࢀ࡚ ࠸ࡿ (Patzig-Klein, et al., 2010) 㸬㓑㓟⃰ᗘࡢቑຍ࡟ᚑ࠸ࡇࡢᴃ෇ᙧᵓ㐀ࡢ኱ࡁࡉࡀᑠࡉࡃ࡞ࡾ㸪᭱ࡶ㧗࠸㓑㓟⃰

Fig. 12 3D images of silicon surface processed by (a) diamond wire slicing and (b) proposed method

Fig. 13 Surface roughness of processed Si surfaces as a Fig. 14 Material removal rate and kerf loss of Si as a function of CH3COOH concentration in etchant function of CH3COOH concentration in etchant

(9)

ᗘࡢ࢚ࢵࢳࣕࣥࢺ࡛ࡣ࡯࡜ࢇ࡝ほᐹࡉࢀ࡞ࡃ࡞ࡗࡓ㸬ࡇࢀࡣ㓑㓟ࡢῧຍ࡟ࡼࡾ࢚ࢵࢳࣕࣥࢺ୰ࡢ཯ᛂ✀ࡢ೫ᅾࡀ ᢚไࡉࢀࡓࡓࡵ࡛࠶ࡿ࡜ᛮࢃࢀࡿ㸬ࡲࡓ㸪࢚ࢵࢳࣕࣥࢺ࡬ࡢ㓑㓟ῧຍࡀຍᕤ≉ᛶ࡟୚࠼ࡿᙳ㡪ࢆホ౯ࡋࡓ㸬ᅗ 14 ࡟♧ࡍࡼ࠺࡟㸪ຍᕤ㏿ᗘ࡞ࡽࡧ࡟࣮࢝ࣇࣟࢫࢆ㓑㓟⃰ᗘ࡟ࡼࡽࡎ࡯ࡰ୍ᐃࡢ್ࢆ♧ࡋ࡚࠾ࡾ㸪㓑㓟ࡢῧຍࡀຍᕤ ≉ᛶ࡟ᝏᙳ㡪ࢆ୚࠼࡞࠸ࡇ࡜ࡀ☜ㄆࡉࢀࡓ㸬ୖグࡢࡼ࠺࡟㸪࢚ࢵࢳࣕࣥࢺࡢᕼ㔘ᾮ࡟㓑㓟ࢆ⏝࠸ࡿࡇ࡜࡛㸪ຍᕤ ≉ᛶࢆᝏ໬ࡉࡏࡎ㸪ຍᕤ㠃⢒ࡉࢆᨵၿࡍࡿࡇ࡜ࡀ࡛ࡁ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡜࡯ࡰྠ➼ࡢ⾲㠃⢒ࡉࡀᚓࡽ ࢀࡓ㸬    ⤖   ゝ ᮏㄽᩥ࡛ࡣ㸪࣡࢖ࣖ᧿㐣࡟ࡼࡾಁ㐍ࡉࢀࡓ࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢࢆ⏝࠸ࡓ᪂つຍᕤᢏ⾡ࡢ㛤Ⓨࢆ⾜࠸㸪ࢩࣜࢥࣥ ࢖ࣥࢦࢵࢺࡢࢫࣛ࢖ࢩࣥࢢ࡟ྥࡅࡓᇶᮏⓗ࡞ຍᕤ≉ᛶ࡜ࡋ࡚㸪ຍᕤ㏿ᗘ㸪࣮࢝ࣇࣟࢫ㸪ຍᕤ㠃ရ㉁࡟ࡘ࠸࡚ホ౯ ࢆ⾜ࡗࡓ㸬௨ୗ࡟㸪ᮏㄽᩥ࡛ᚓࡽࢀࡓ⤖ᯝࢆࡲ࡜ࡵࡿ㸬 㸦㸯㸧◪㓟࡞ࡽࡧ࡟ࣇࢵ㓟⃰ᗘࢆቑຍࡉࡏࡿ࡜ຍᕤ㏿ᗘࡀྥୖࡋࡓࡀ㸪ࣇࢵ㓟⃰ᗘࡢቑຍࡣ࣮࢝ࣇࣟࢫࡢቑ኱࡟ ⧅ࡀࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬◪㓟⃰ᗘ࡟ᑐࡋ࡚࣮࢝ࣇࣟࢫࡣኚ໬ࡏࡎ୍ᐃ࡜࡞ࡗࡓ㸬ࡲࡓ㸪࣡࢖ࣖ㉮⾜㏿ᗘࡢ ቑຍ࡟࡜ࡶ࡞࠸ຍᕤ㏿ᗘࡀྥୖࡋࡓ㸬 㸦㸰㸧࣡࢖ࣖ᧿㐣᥼⏝࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡾ㸪࣡࢖ࣖ┤ᚄࡼࡾ 10 —m ⛬ᗘ኱ࡁ࠸࣮࢝ࣇࣟࢫࡀᚓࡽࢀࡓ㸬◪ 㓟⃰ᗘࡢ㧗࠸࢚ࢵࢳࣕࣥࢺࡢ౑⏝࡟ࡼࡾ㸪⁁ᖜ᪉ྥࡢ࢚ࢵࢳࣥࢢ㏿ᗘࢆపῶࡋ㸪῝ࡉ᪉ྥࡢ࢚ࢵࢳࣥࢢࢆ ಁ㐍ࡉࡏࡿࡇ࡜࡛㸪␗᪉ᛶࡢ㧗࠸ຍᕤࡀᐇ⌧࡛ࡁࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬ࡲࡓ㸪ከ⤖ᬗ Si ࡢຍᕤ≉ᛶࡣ༢⤖ ᬗ Si ࡜ྠ➼࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬 㸦㸱㸧ຍᕤᚋ⾲㠃ࢆගᏛ㢧ᚤ㙾࡟ࡼࡾほᐹࡋࡓ⤖ᯝ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃ࡣࢡࣛࢵࢡࡸࢯ࣮࣐࣮ࢡࡀⓎ⏕ ࡋ࡚࠾ࡾ㸪ຍᕤࢲ࣓࣮ࢪࡀほᐹࡉࢀࡓࡢ࡟ᑐࡋ㸪㛤Ⓨᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣࡇࢀࡽࡢḞ㝗ࡢ࡞࠸⾲㠃࡛࠶ࡿ ࡇ࡜ࡀࢃ࠿ࡗࡓ㸬 㸦㸲㸧࣐ࣛࣥศග࡟ࡼࡿຍᕤ㠃ホ౯ࡢ⤖ᯝ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡟ࡣ࢔ࣔࣝࣇ࢓ࢫᒙࡢࣆ࣮ࢡࡀᏑᅾࡋࡓ ࡀ㸪㛤Ⓨᢏ⾡࡟ࡼࡿຍᕤ㠃ࡣ⤖ᬗᛶ Si ࡢࣆ࣮ࢡࡢࡳࡀほᐹࡉࢀࡓ㸬 㸦㸳㸧࢚ࢵࢳࣕࣥࢺࡢᕼ㔘ᾮ࡟ᑐࡋ㸪㓑㓟ࢆῧຍࡍࡿࡇ࡜࡛ຍᕤ㏿ᗘࡸ࣮࢝ࣇࣟࢫ࡟ᙳ㡪ࢆ୚࠼ࡿࡇ࡜࡞ࡃษຍ ᕤᚋ⾲㠃⢒ࡉࢆᨵၿ࡛ࡁࡿࡇ࡜ࡀ࡛ࡁ㸪ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖຍᕤ㠃࡜ྠ➼ࡢ⾲㠃⢒ࡉࡀᚓࡽࢀࡓ㸬  ୖグࡢ⤖ᯝ࠿ࡽ㸪ᮏຍᕤᢏ⾡ࡣప࣮࢝ࣇࣟࢫ㸪ⷧ⫗࢙࣮࢘ࣁࡀせồࡉࢀࡿኴ㝧㟁ụ⏝ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢษ ᩿ἲ࡜ࡋ࡚㸪ᚑ᮶ࡢᶵᲔຍᕤἲࢆ௦᭰ࡋ࠺ࡿ࡜ᮇᚅࡉࢀࡿ㸬ࡋ࠿ࡋ㸪ᮏᢏ⾡ࡀᐇ⏝໬࡟⮳ࡿ࡟ࡣ㸪⌧≧࡛ࡣຍᕤ ㏿ᗘࡸ࢖ࣥࢦࢵࢺࡢ኱ᆺ໬࡟ㄢ㢟ࡀ࠶ࡾ㸪௒ᚋຍᕤ᮲௳ࡸ࢚ࢵࢳࣕࣥࢺ⤌ᡂ➼ࢆぢ┤ࡍࡇ࡜࡟ࡼࡿຍᕤࡢ㧗ᗘ໬ ࡀᚲせ࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬  ㅰ   ㎡ ᮏ◊✲ࡢ୍㒊ࡣ㸪NEDO ᪂࢚ࢿࣝࢠ࣮࣋ࣥࢳ࣮ࣕᢏ⾡㠉᪂஦ᴗ㸪୕㇏⛉Ꮫᢏ⾡᣺⯆༠఍㸪ඛ➃ຍᕤᶵᲔᢏ⾡᣺ ⯆༠఍ࡢ᥼ຓࢆཷࡅ࡚⾜ࢃࢀࡲࡋࡓ㸬ࡇࡇ࡟῝ࡃㅰពࢆ⾲ࡋࡲࡍ㸬  ᩥ   ⊩ ༓ⴥᗣ㞞, ㇂Ὀᘯ, ᴮᮏಇஅ, 㟁╔ࢲ࢖ࣖࣔࣥࢻ࣡࢖ࣖᕤලࡢ㧗㏿〇㐀ἲࡢ㛤Ⓨ, ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 C ⦅, Vol. 69, No. 680 (2003), pp. 1139-1144. ℈ཱྀᜏ㞝, ࢩࣜࢥ࢙ࣥ࢘ࣁࡢ໬Ꮫ࢚ࢵࢳࣥࢢ, ⢭ᐦᶵᲔ, Vol. 51, No. 5 (1985), pp. 1013-1018.

Lee, C. L., Kanda, Y., Ikeda, S. and Matsumura, M., Electrochemical method for slicing Si blocks into wafers using platinum wire electrodes, Solar Energy Materials and Solar Cells, Vol. 95, No. 2(2011), pp. 716-720.

᳃ຬ⸝, ᒣෆ࿴ே, ᒣᮧ࿴ஓ, బ㔝Ὀஂ, ࣉࣛࢬ࣐ CVM ࡟ࡼࡿᶵ⬟ᮦᩱࡢษ᩿ຍᕤ㸫ෆ࿘ลᆺษ᩿ຍᕤ⿦⨨ࡢヨ స࡜ࡑࡢษ᩿ຍᕤ≉ᛶ㸫, ⢭ᐦᕤᏛ఍ㄅ, Vol. 67, No. 2 (2001), pp. 295-299.

(10)

኱ぢᛅᘯ, 㛗㇂㒊㢮, ྜྷ⏣㐩㑻, ෆᮧᚭᖹ, ῧ⏣୍႐, ᖹሯு㍜, ྜྷᕝ฼༤, 㡲ᕝᡂ฼, ᮧᕝ㡰அ, ࢩࣜࢥࣥ⾲㠃ࡢ ᐊ ୕ᕤ⛬Ὑίᢏ⾡࡜㉸㧗㏿࢙࢘ࢵࢺ࢚ࢵࢳࣥࢢ࡟ࡼࡿ࢙࣮࢘ࣁⷧ໬ᢏ⾡, ⾲㠃ᢏ⾡◊✲఍2012ㅮ₇ண✏㞟 (2012), pp.1-27.

Patzig-Klein, S., Roewer, G. and Kroke, E., New insights into acidic wet chemical silicon etching by HF/H2O-

NOHSO4-H2SO4 solutions, Materials Science in Semiconductor Processing, Vol. 13, No. 2 (2010), pp. 71-79.

Sato, K., Shikida, M., Yamashiro, T., Tsunekawa, M. and Ito, S., Differences in anisotropic etching properties of KOH and TMAH solutions, Sensors and Actuator A, Vol. 80, No. 2 (2000), pp. 179-188.

Steinert, M., Acker, J., Henȕge, A. and Wetzig, K., Experimental studies on the mechanism of wet chemical etching of silicon in HF/HNO3 mixtures, Journal of The Electrochemical Society, Vol. 152, No. 12 (2005), C843-C850.

ㄶゼ㒊ோ, 㜿㒊⩏⣖, 㡞ἑ㈼ኴᮁ, ▼ᕝ᠇୍, ࣐ࣝࢳ࣡࢖ࣖࢯ࣮࡟࠾ࡅࡿࢫ࣮ࣛࣜ౪⤥᪉ἲ࡜ࢫ࣮ࣛࣜᣲືࡢ㛵 ಀ, ◒⢏ຍᕤᏛ఍ㄅ, Vol. 52, No. 8 (2008) , pp. 472-477.

Ᏹ㔝⩏ᖾ, ᒸᮏᗣᐶ, ᒸ⏣᫭, ࢩࣜࢥࣥ࢖ࣥࢦࢵࢺࡢ࣐ࣝࢳ࣡࢖ࣖᨺ㟁ࢫࣛ࢖ࢩࣥࢢᢏ⾡, ◒⢏ຍᕤᏛ఍ㄅ, Vol. 53, No. 11 (2009), pp. 663-666.

Yan, J., Laser-mirco-Raman spectroscopy of single-point diamond machined silicon substrates, Journal of Applied Physics, Vol. 95, No. 4 (2004), pp. 2094-2101.

Yoshikawa, K., Yoshida, T., Soeda, K., Uchimura, T., Nemoto T. and Ohmi, T., High speed and precision silicon wafer thinning technology for three-dimensional integrated circuit by wet etching, Proceedings of 22nd International Microelectronics conference, (2010), pp. 14-19.

Zwick, A. and Carles, R., Multiple-order Raman scattering in crystalline and amorphous silicon, PHYSICAL REVIEW B, Vol. 48, No. 9 (1993), pp. 6024-6032.

 

Fig. 1 Schematic diagram of the slicing method           Fig. 2 Schematic diagram of experimental apparatus
Table 2 Experimental conditions
Fig. 3 Material removal rate and kerf loss of Si as a function of (a) HNO 3  and (b) HF concentration
Fig. 6 Optical microscope images of Si kerf processed by proposed method
+4

参照

関連したドキュメント

心臓核医学に心機能に関する標準はすべての機能検査の基礎となる重要な観

and Laugesen, P.: Interfacial transition zone (ITZ) between cement paste and aggregate in concrete, Interface Science,.. and Leeman, M.E.: Pore size distributions in hardened cement

In the present paper, the criterial images for GIF- compression attack are selected by the proposed criterial image preparation method, and the obtained criterial images are added

心部 の上 下両端 に見 える 白色の 太線 は管

 米国では、審査経過が内在的証拠としてクレーム解釈の原則的参酌資料と される。このようにして利用される資料がその後均等論の検討段階で再度利 5  Festo Corp v.

繊維フィルターの実用上の要求特性は、従来から検討が行われてきたフィルター基本特

[14.] It must, however, be remembered, as a part of such development, that although, when this condition (232) or (235) or (236) is satisfied, the three auxiliary problems above

Fig. 2 X方向 (a) およびY方向 (b) のワイヤのCT値プロファイル Fig. 3 zeroing処理前のLSF (a) とzeroing後のLSF (b).