• 検索結果がありません。

ニュートリノ駆動型 超新星爆発シミュレーション 3Dと2Dの比較

N/A
N/A
Protected

Academic year: 2021

シェア "ニュートリノ駆動型 超新星爆発シミュレーション 3Dと2Dの比較"

Copied!
34
0
0

読み込み中.... (全文を見る)

全文

(1)

Tomoya Takiwaki

(NAOJ->RIKEN

)

Explosion Mechanism of

Core-collapse Supernovae

(2)

Press Release in April

There are two press release on supernovae in last April One: Lensed extremely luminous type Ia supernova.

The other: 3D explosion of type II supernova found in K-computer.

(3)

Why is CC SN interesting?

Last time of massive stars

Birth of neutron star

Mother of supernova remnant

One of the most luminous object in the universe

Target of Multi-messenger astrophysics

Source of heavy elements in galaxies

(4)

Various Kinds of CC supernovae

Fate of the star differs from the properties of the progenitor: 1. Mass 2. Metallicity 3. Rotation 4. Magnetic Field Nomoto+2006

Initial Mass of Progenitor

N

i

m

as

s

~

E_ex

p

(5)

Two class of CC SNe

Mass Rotation Rotation Magnetic Fields Mass magnetar BH pulsar

(6)

Neutrino Mechanism

I’ll explain one by one

1.

Initial setup

2.

Key aspects of neutrino mechanism

3.

Simulations

(7)
(8)

Neutrino Mechanism

I’ll explain one by one

1.

Initial setup

2.

Key aspects of neutrino mechanism

3.

Simulations

(9)

Key aspects of Neutrino Mechanism

Shock Radius Radial Velocity Pressure RHS is determined by stellar structure(density profile). Ram Pressure

The shock is stalling. Pressure inside and ram pressure out side balances.

Entropy~T^3/ρ Proto Neutron Star

Fe=>n, p

LHS is determined by two ingredients. (1) Photodissociation (2) Neutrino Heating cooled by photodissociation Heated by neutrino Postshocked n,p Preshocked Fe Post Shock

(10)

A example of the failed supernovae

Non-Explosion Is observed Entropy is visualized Spherical symmetric simulations

(11)

Key aspects of Neutrino Mechanism

Radius

(Cold heavy matter is put over Hot light matter)

Negative entropy gradient leads Rayleigh-Taylor instability Entropy~T^3/ρ Proto Neutron Star

Fe=>n, p

cooled by photodissociation Heated by neutrino Heated by convection Rayleigh-Taylor convection transfer energy outward.

Hotter than the initial state Cooler than the initial state but ν heat is active

(12)

Neutrino Mechanism

I’ll explain one by one

1.

Initial setup

2.

Key aspects of neutrino mechanism

3.

Simulations

(13)

s11.2(Light Progenitor) Ω=0rad/s

Explode!

Convection

Dominant

EoS:LS-K220 resolution: 384(r)x128(θ)x256(φ) The finest grid

Neutrino Trasport: Ray-by-Ray:IDSA

+Leakage Hydro:

(14)

Shape of the explosion?

Many hot

bubble is

observed.

That is

evidence of

strong

convection.

(15)

s27(heavey Progenitor) Ω=0rad/s

Failed

(or need long-term sim.)

EoS:LS-K220 resolution: 384(r)x64(θ)x128(φ) Neutrino Transport: Ray-by-Ray:IDSA +Leakage Hydro: HLLE, 2nd order

(16)

Mass accretion vs neutrino heating

Mass accretion rate

N

eut

rino

Lum

inos

it

y

11.2

27.0

Heavier progenitor

results high mass

accretion rate and

high ram pressure.

That spoils the

explosion.

GR effects(or

update of

microphysics) can

change the

situation.

explode fail GR effect?

(17)
(18)

Nakamura+ 14.

(19)
(20)
(21)

Neutrino Mechanism

I’ll explain one by one

1.

Initial setup

2.

Key aspects of neutrino mechanism

3.

Simulations

(22)

Bar mode instability

Rapid Rotation => spiral instability

In the rigid ball,

Rotational energy(T)/gravtational energy(W)=14% In Sne case, criteria becomes smaller.

(23)

Neutrino + rotation

Spiral wave transfer the energy to the outer regon. Finally explosion is found!

(24)

Shape of the explosion?

Strong

expansion

is found at

equatorial

plane

(25)

The mass of the progenitor and rotation make various type of Explosion(or Non Explosion).

(26)

Does rotation affect the shock revival?

1D=> no shock revival

s11.2 : No

N13 : Yes

s27 : Yes

s11.2

N13

Rapid rotation

s27.0

Rapid rotation

(27)

How energetic is that?

Observe 0.1-0.4 10^51erg!

It’s close to 10^51 erg!

s11.2

N13

Rapid rotation

s27.0

Rapid rotation Rapid rotation

(28)

Message

Although CC SNe are not completely

understood, we are close to solve the problem.

(It’s might be semi-final match or final match?)

Quite nice model (close to the real one) can be

obtained.

When should we start the collaboration on

astronomy with realistic supernovae model?

(29)

超新星シミュレーションの新問題

多次元モデルは物理のインプットに敏感で手法に よって爆発したりしなかったりする。 2次元モデル(複数親星に対して) Bruenn+12:全部爆発 Mueller+13:おおよそ爆発 Dolence+14:一つも爆発しない Nakamura+14:全部爆発 Suwa in prep:半分ほど爆発 Hanke in prep:おおよそ爆発 3次元モデル(複数親星に対して) Hanke in prep:一つも爆発しない Takiwaki in prep:半分ほど爆発 爆発する 爆発しない 1D 2D 3D インプットのエラーの範囲

(30)

超新星シミュレーションの新問題

多次元モデルは爆発する

にせよしないにせよ

非常にぎりぎり。

定量的な評価を確定する

ためには相当手法に凝る

必要がある!

今後は

数値計算の信頼性が

とにかく大事!

Ott+12

(31)

ロードマップ

とにかくすべてのインプットをアップデートせよ! Most realistic modelの変遷。

Takiwaki+14 Hanke+13 Kuroda in prep 6次元ボルツマン ニュートリノ反応 現象論的GR フルGR Non Ray-by-Ray エクサスケール ~2020 ペタスケール Kuroda論文での結論と6次元ボルツマンでの計算に今後は注目! 2020年ぐらいまでにはかなりの決着を見るのでは?

(32)

ニュートリノ+磁場

磁気回転不安定性で 対流安定な場所でも 乱流的になる。 それがニュートリノ 加熱に効くかもしれ ない。 現在、政田くんと研 究中。澤井くんも同 様のことを指摘。

高解像度計算が必要

すぐに完全な計算はできない

徐々に調べる

(33)

ニュートリノ+SASI爆発

Advective-acoustic cycle

Scheck+ 2008 Pressure Wave

Vorticity Wave Standing Accretion Shock Instability(SASI)

渦が落ちる時間スケールで成長が律速。

上から物がどんどん降ってくるとき成長しやすい Foglizzo’s slides

(34)

SASI爆発は起こるか?

CC的に爆発しにくいところでドミナントになる 。この不安定性で爆発に転じるのは今のところ難 しい見通し。 2D 3D Iwakami+14 Takiwaki+2012

参照

関連したドキュメント

— Algebraic curves, finite fields, rational points, genus, linear codes, asymp- totics, tower of curves.. The author was partially supported by PRONEX #

Given an extension of untyped λ-calculus, what semantic property of the extension validates the call-by-value

In Section 4 we apply this general setting to a Clark-Ocone formula stated with a deriva- tion operator on the Poisson space, and consider several examples, including

The main purpose of this paper is to show, under the hypothesis of uniqueness of the maximizing probability, a Large Deviation Principle for a family of absolutely continuous

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

Multiscale solution of the (inner) displacement boundary value problem Next, we discuss the solution of the (inner) displacement boundary val- ue problem by means of the

Multiscale solution of the (inner) displacement boundary value problem Next, we discuss the solution of the (inner) displacement boundary val- ue problem by means of the

Dimitrios I. — This paper surveys, in the first place, some basic facts from the classifica- tion theory of normal complex singularities, including details for the low dimensions 2 and