• 検索結果がありません。

AND8009/D ECLinPS Plus™ SPICE Modeling Kit

N/A
N/A
Protected

Academic year: 2022

シェア "AND8009/D ECLinPS Plus™ SPICE Modeling Kit"

Copied!
37
0
0

読み込み中.... (全文を見る)

全文

(1)

ECLinPS Plus ™

SPICE Modeling Kit

Prepared by:

Senad Lomigora, Paul Shockman

ON Semiconductor Broadband Applications Engineering

Objective

The objective of ”AND8009 ECLinPS Plus SPICE Modeling Kit” is to provide sufficient circuit schematic and SPICE parameter information to allow system level interconnect modeling of the ECLinPS Plus logic line devices. The kit is not intended to provide sufficient information to perform whole device logic modeling.

Schematic Information

The kit contains representative input and output schematics, netlists, and waveforms used for the ECLinPS Plus devices. The buffer, package, and ESD subcircuit models may be connected to simulate driver and receiver interconnect characteristics as shown in Figure 1. A specific device may be modeled as shown in Figure 2. No Function Logic modeling is provided.

INPUT BUFFER

INTERCONNECT OUTPUT BUFFER

Figure 1. Interconnect Model Template

BUFFER ESD PACKAGE BUFFERESD

PACKAGE

DEVICE

Figure 2. DEVICE Model Template

OUTPUT BUFFER INPUT BUFFER

BUFFER ESD PACKAGE

BUFFER

ESD

PACKAGE

FUNCTIONAL LOGIC NOT MODELED

APPLICATION NOTE

http://onsemi.com

(2)

There are four terminals on all transistor models: Emitter, Base, Collector, and Substrate (biased to V

EE

). It should be noted that circuits can be used single ended by replacing INB with V

BB

. Table 1 describes the nomenclature used in the schematics and netlists.

To simulate a different operating modes all levels, except V

CS

, are adjusted with respect to V

CC

. The V

CS

is adjusted with respect to V

EE

([V

EE

+ 1.1 V $ 50 mV)

Table 1. Schematics and Netlist Nomenclature Parameter Function Description VCC 3.3 V FOR LVPECL OR (0 V) FOR LVECL VCCO 1.6 V − 2.0 V HSTL Output Positive Supply VCS Internal Reference Voltage ([VEE + 1.1 V

$ 50 mV)

VHSTL HSTL Internal Constant Voltage Source VEE −3.3 V FOR LVECL OR (0 V) FOR LVPECL

GND 0 V

VTT VCC − 2 V TERMINATION PLANE IN TRUE INPUT TO CKT

INB or IN INVERTED INPUT TO CKT

Q TRUE OUTPUT OF CKT

QB or Q INVERTED OUTPUT OF CKT Input Buffer

A typical input buffer schematic (Figure 3) and netlist are representing structures currently in use on most existing devices in this family. Specific devices may have unique input buffer models per Table 2. The ESD and package models should be added for more accurate model behavior.

An internal input pulldown resistor is shown in the ESD network, Figure 26. Some devices may also display an internal pullup resistor to V

CC

. Refer to specific device data sheet pinout and logic diagram for internal input resistor.

The input buffers may be shown as differential, but may be modified to represent a single−ended structure by using a DC bias on the non driven input (at the signal pin common mode voltage). It is unnecessary to include an ESD or package model for the V

BB

pins of the models because V

BB

is intended as an internal node for most applications. If V

BB

is modeled as an external node it is usually bypassed because it is a constant voltage, and adding ESD and Package parameters provide no additional benefit.

Output Buffer

An output buffer schematic and netlist may or may not require the temperature compensation (TC) network structure depending on the specific device series. All 100 series devices will require the TC network. A 10 series device does not include a TC network. ESD, package, and

termination models must be added for proper buffer behavior. Output buffers are shown as differential. When simulating a single−ended output, both differential outputs should utilize ESD, package, and termination models to maintain properly balanced loading.

Package

Various simplified input and output package case models may be found in the Appendix Section, Package RLC.

Specific device package pin models may be modified according to IBIS model parasitics values.

EP16 Buffer Model

The EP16 interconnect has been completely modeled to provide a working schematic and output waveforms as examples of the ECLinPS Plus line. The typical input buffer may be driven with the output buffer, OBUF01. (See Figure 28, simplified EP16 SPICE model and Figure 29 typical output waveform.)

SPICE Netlists

The netlists are organized as a group of subcircuits. In each subcircuit model netlist, the model name is followed by a list of external node interconnects.

Temperature Compensation Network for 100EP

The output netlists include temperature compensation network circuitry for 100EP style output buffers. The circuit components of the temperature compensation networks are shown in Figure 29. For simulating 10EP style outputs these components should either be deleted or commented out of the subcircuit netlists. Subcircuit models such as the Input or Output Buffer, Package, Input ESD and Output ESD should connect to supplies through hierarchical, passed parameters such as V

CC

, V

EE

, etc., for proper simulation and not separately attached to independent power supplies.

SPICE Parameter Information

In addition to the schematics and netlists is a listing of the

SPICE parameters for the transistors referenced in the

schematics and netlists. These parameters represent a typical

device of a given transistor. Varying the typical parameters

will affect the DC and AC performance of the structures; but

for the type of modeling intended by this note, the actual delay

times are not necessary and are not modeled, as a result

variation of the device parameters are meaningless. The

performance levels are more easily varied by other methods

and will be discussed in the next section. The resistors

referenced in the schematics are polysilicon and have no

parasitic capacitance in the real circuit and none is required

in the model. The schematics display the only devices needed

in the SPICE netlists.

(3)

Modeling Information

The bias drivers for the devices are not detailed since their circuitry would result in a substantial increase of model complexity and simulation time. Instead, these internal reference voltages (V

BB

, V

CS

, V

HSTL

, etc.) should be driven with ideal constant voltage sources.

The schematics and SPICE parameters will provide a typical output waveshape, which can be seen in Figures 29, 30, and 31. Simple adjustments can be made to the models allowing output characteristics to simulate conditions at or near the corners of the data book specifications. Consistent cross−point voltages need to be maintained.

• To adjust rise and fall times:

Produce the desired rise and fall times output slew rates by adjusting collector load resistors to change the gates tail current. The V

CS

voltage will affect the tail current in the output differential, which will interact with the load resistor and collector resistor to determine t

r

and t

f

at the output.

• To adjust the V

OH

:

Adjust the V

OH

and V

OL

level by the same amount by varying V

CC

. The output levels will follow changes in V

CC

at a 1:1 ratio.

• To adjust the V

OL

only:

Adjust the V

OL

level independently of the V

OH

level by increasing or decreasing the collector load resistance.

Note that the V

OH

level will also change slightly due to a I

BASE

R drop across the collector load resistor. V

OL

can be changed by varying the VCS supply, and therefore the gate current through the current source resistor.

Summary

The information included in this kit provides adequate information to run a SPICE level system interconnect simulation. Device input or output models are presented in Table 2. For EP and LVEP series devices not listed in Table 2, consult www.onsemi.com (Technical Support).

Table 2. ECLinPS PLUS INPUT/OUTPUT SELECTION TABLE

Device Package A Package B Input ESD Input Buffer Output Buffer Output ESD

EP01 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP05 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP08 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP11 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP14 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

EP16 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP17 20−lead SO 20−lead TSSOP IN_ESD TYPICAL INBUF OBUF06 OUT_ESD

EP29 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

EP31 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP32 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP33 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF02 OUT_ESD

EP35 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP40 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF09 OUT_ESD

EP51 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP52 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP56 20−lead SO 20−lead TSSOP IN_ESD TYPICAL INBUF OBUF04 OUT_ESD

EP57 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD

EP58 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

EP89 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF05 OUT_ESD

EP90 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD

EP016 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF02 OUT_ESD

EP016A 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF02 OUT_ESD

EP101 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF06 OUT_ESD

EP105 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF06 OUT_ESD

EP116 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF06 OUT_ESD

EP131 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF02 OUT_ESD

(4)

Table 2. ECLinPS PLUS INPUT/OUTPUT SELECTION TABLE

Device Package A Package B Input ESD Input Buffer Output Buffer Output ESD

EP139 20−lead SO 20−lead TSSOP IN_ESD TYPICAL INBUF OBUF07 OUT_ESD

EP140 8−lead SO N/A IN_ESD TYPICAL INBUF OBUF09 OUT_ESD

EP142 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

EP195 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD

EP196 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD

EP210S 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF10 OUT_ESD

EP223 64−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF11 OUT_ESD

EP445 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

EP446 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF04 OUT_ESD

EP451 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

EP809 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF11 OUT_ESD

LVEP11 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF08 OUT_ESD

LVEP14 20−lead TSSOP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

LVEP16 8−lead SO 8−lead TSSOP IN_ESD TYPICAL INBUF OBUF08 OUT_ESD

LVEP17 20−lead TSSOP 24−lead QFN IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP34 16−lead SO* 16−lead TSSOP* IN_ESD TYPICAL INBUF OBUF03 OUT_ESD LVEP56 20−lead TSSOP 24−lead QFN IN_ESD TYPICAL INBUF OBUF01 OUT_ESD

LVEP111 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

LVEP210 32−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

LVEP221 52−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

LVEP222 52−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

LVEP224 64−lead LQFP N/A IN_ESD TYPICAL INBUF OBUF03 OUT_ESD

NV4N840M QFN−32 − − 50 W to VCC OBUF12 −

NB4L16M QFN−16 − − 50 W to VCC OBUF14 −

NB4N527S QFN−16 − − INBUF02 OBUF13 −

NB4N855S Micro−10 − − INBUF02 OBUF13 −

NB4N507A SOIC−16 − − INBUF04 OBUF15 −

*For package model, please consult manufacturer at www.onsemi.com (Technical Support).

(5)

Netlists and Schematics

Q17

TNA Q15

TNA

Q18

TNA Q16

TNA

− +

− +

− +

VEE VCS

−2.1 Vdc

−3.3 Vdc

VEE VCS

V2

V1

−1.33 Vdc

IN

R4

125 R5

67 R6

67 R3125

R2125 R1 VCC 125

0 Vdc

5

6 4 3

8 10

9 7

1

V1 = −1.7 V V2 = −0.95 V TD = 1 n TR = 0.15 n TF = 0.15 n PW = 1 n PER = 6 n

0

0

INB

+ 0

Figure 3. Typical INBUF

− +

INB Q21

TNA Q19

TNA

Q22

TNA Q20

TNA Q9

TNA Q7

TNA

Q10

TNA Q8

TNA

Q13

TNA Q11

TNA

Q14

TNA Q12

TNA Q4

Q3

TNA TNA TNA

TNA Q2 Q1 IN

.SUBCKT TYPICAL INBUF IN INB VCS VEE Q_Q1 3 IN 5 TNA

Q_Q2 3 IN 5 TNA Q_Q3 4 INB 5 TNA Q_Q4 4 INB 5 TNA Q_Q5 5 VCS 6 TNA Q_Q6 5 VCS 6 TNA Q_Q7 1 3 8 TNA Q_Q8 1 3 8 TNA Q_Q9 1 3 8 TNA Q_Q10 1 3 8 TNA Q_Q11 8 VCS 7 TNA Q_Q12 8 VCS 7 TNA Q_Q13 8 VCS 7 TNA Q_Q14 8 VCS 7 TNA Q_Q15 1 4 10 TNA Q_Q16 1 4 10 TNA Q_Q17 1 4 10 TNA Q_Q18 1 4 10 TNA Q_Q19 10 VCS 9 TNA Q_Q20 10 VCS 9 TNA Q_Q21 10 VCS 9 TNA Q_Q22 10 VCS 9 TNA R_R1 2 1 125 R_R2 3 2 125 R_R3 4 2 125 R_R4 VEE 6 125 R_R5 VEE 7 67 R_R6 VEE 9 67 V_V1 VEE 0 −3.3Vdc V_V2 VCS 0 −2.1Vdc V_IN IN 0 −1.33Vdc V_VCC 1 0 0Vdc V_INB INB 0

+PULSE −1.7V −0.95V 1n 0.15n 0.15n 1n 6n .END TYPICAL INBUF

(6)

5 T1 Q2

TND

D15ESDM

4 NS

VEE

R115 333 VEE

R108 .1

Die Pad

16 VTT

24 VEE

VEE

L1 2.17nH

1 2

D114ESDS

Q

23

C106.364p

Db

Q5 TND

9

VCC

Qb

VCC2 VEE INTDb

20 Q9

TNB

4 NS

D3 ESDM

VEE Q1

TNB

D112ESDM VCC

ESD

VEE D4

ESDM R2

120

D13ESDM

INPUT Buffer 10

C109.364p

Q104 TNE 6

R11492 Q10

TNC

R13.154

16 QFN PKG R116

333 D14ESDM

Q11 TNC

R3 28

8 SOIC PKG

R112 1.25K LVPECL OUTPUT Buffer OBUF01

26 VEE

.09p

25 Q4

TNB

R1011

VEE 7

Q101 TNE

R1010

Q6 TND

D16ESDM

R11392 L101

.8nH

1 2

VCS

R118244 VCS2

VEE VCC

D5 ESDM

Resistor Network

Q103 TNE T2

18

D2 ESDS

1.25KR109

C107.364p D111 ESDS VCC2

19 Q8

TND

C105 .09p

C5 .364p

Q102 TNE

1.25KR110 Q7

TND

VCC2

C108 .364p

Q105 TNE R107.1

VCC

R117 333 VCC

VCC INTD

VEE 8

D 15

D12 ESDS

R1111.25K

VEE D1

ESDS

VEE

D6 ESDM

R12 .154 R1

120

21 ESD

VT PINS

2.17nHL2

1 2

C4 .364p

D113 ESDM

VEE

D11 ESDS

L102 .8nH

1 2 27

22 17

VCC Q3

TND

LVPECL OUTPUT BUFFER Internal Stimulus (666.6 MHz)

VCS2

0

VTT

0 VCS

1.07Vdc VCC

3.3Vdc

0

INTD TD = 1n

TF = 0.165n PW = 0.585n PER = 1.5n V1 = 1.95

TR = 0.165n V2 = 2.35 INTDb

INTDb TD = 1n

TF = 0.165n PW = 0.585n PER = 1.5n V1 = 2.35

TR = 0.165n V2 = 1.95

0 VEE

0 0

VCS2 .95Vdc LVPECL SUPPLIES

VCS

VTT 1.3Vdc VCC

0

INTD 4

C104 50

50

+

+

+

+

+

− +

Figure 4.

(7)

* OBUF01 driving INBUF02

V_INTD INTD 0 +PULSE 2.35 1.95 1n 0.165n 0.165n 0.585n 1.5n V_INTDb INTDB 0 +PULSE 1.95 2.35 1n 0.165n 0.165n 0.585n 1.5n V_VCC $G_VCC 0 3.3Vdc

V_VCS $G_VCS 0 1.07Vdc V_VCS2 $G_VCS2 0 .95Vdc V_VTT $G_VTT 0 1.3Vdc

.SUBCKT OBUF01 INTD INTDb VCC VCS VEE VTT D DB C_C4 0 9 .364p

C_C5 0 10 .364p D_D1 5 $G_VCC ESDS D_D2 5 $G_VCC ESDS D_D3 0 5 ESDM D_D4 0 5 ESDM D_D5 0 5 ESDM D_D6 0 5 ESDM D_D11 6 $G_VCC ESDS D_D12 6 $G_VCC ESDS D_D13 0 6 ESDM D_D14 0 6 ESDM D_D15 0 6 ESDM D_D16 0 6 ESDM L_L1 7 9 2.17nH L_L2 8 10 2.17nH Q_Q1 2 INTD 1 TNB Q_Q2 2 INTD 1 TND Q_Q3 2 INTD 1 TND Q_Q4 3 INTDB 1 TNB Q_Q5 3 INTDB 1 TND Q_Q6 3 INTDB 1 TND Q_Q7 1 $G_VCS 4 TND Q_Q8 1 $G_VCS 4 TND Q_Q9 1 $G_VCS 4 TNB Q_Q10 $G_VCC 2 6 TNC R_R1 2 $G_VCC 120 R_R2 3 $G_VCC 120 R_R3 0 4 28 R_R12 5 7 .154 R_R13 6 8 .154

T_T1 9 0 D 0 Z0=50 TD=4000ps T_T2 10 0 DB 0 Z0=50 TD=4000ps .END OBUF01

(8)

.SUBCKT INBUF02 D DB VCC VCS VEE C_C104 0 18 .09p

C_C105 0 17 .09p C_C106 0 19 .364p C_C107 19 $G_VCC2 .364p C_C108 0 20 .364p C_C109 20 $G_VCC2 .364p D_D111 19 $G_VCC ESDS D_D112 0 19 ESDM D_D113 0 20 ESDM D_D114 20 $G_VCC2 ESDS L_L101 15 17 .8nH L_L102 16 18 .8nH Q_Q101 23 21 26 TNE Q_Q102 23 21 26 TNE Q_Q103 24 22 26 TNE Q_Q104 24 22 26 TNE Q_Q105 26 $G_VCS2 27 TNE Q_Q11 $G_VCC 3 5 TNC R_R107 D 15 .1 R_R108 DB 16 .1 R_R109 19 17 1.25K R_R110 18 20 1.25K R_R111 19 $G_VCC 1.25K R_R112 $G_VCC 20 1.25K R_R113 19 21 92

R_R114 22 20 92 R_R115 23 25 333 R_R116 24 25 333 R_R117 25 $G_VCC 333 R_R118 0 27 244 R_R1010 $G_VTT DB 50 R_R1011 D $G_VTT 50 .END INBUF02

(9)

INBUF04 INPUT BUFFER

16 SOIC PKG

VCC

D101ESDS

0

Q102 TNE 0

R107 8160 TTLREF

C102 .364p

VCC

L101 2.17nH

1 2

100 ps Delay

8 688.8mV

Q103 TNE Die Pad

R106 8160 73.48uA

C101 .364p

Q101 TNE

VCS

6 R102

37.5K

5

0

INPUT Buffer

7 Resistor

Network R105

8160 3.593pA

T1

C103 .364p

3 4

Q104 TNE 1.050uA

−75.00uA

0

612.0mV 3.300V

2

0 R104

92

1.500V OE

D103ESDS

0

VCC

D104 ESDM

VCC ESD

R103 75K R101

.154

D102 ESDM

0

OPERATIONAL SUPPLIES

VCC

0

VCS 1.427Vdc TTLREF

1.5Vdc TTLREF

0 0

VCC

3.3Vdc OE

TD = 1n TF = 2n PW = 3n PER = 10n V1 = 0.05

TR = 2n V2 = 3.25

OE VCS

OE LVTTL INPUT BUFFER Stimulus (100 MHz)

Figure 5. INBUF04 Input Buffer

+

+

+

− +

NETLIST for INBUF04

V_OE OE 0 PULSE 0.05 3.25 1n 2n 2n 3n 10n V_TTLREF $G_TTLREF 0 1.5Vdc

V_VCC $G_VCC 0 3.3Vdc V_VCS $G_VCS 0 1.427Vdc SUBCKT INBUF04

C_C101 0 3 .364p C_C102 4 $G_VCC .364p C_C103 0 4 .364p D_D101 3 $G_VCC ESDS D_D102 0 3 ESDM

(10)

D_D103 3 $G_VCC ESDM D_D104 0 3 ESDS L_L101 2 3 2.17nH Q_Q101 5 4 7 TNE

Q_Q102 4 4 $G_TTLREF TNE Q_Q103 6 $G_TTLREF 7 TNE Q_Q104 7 $G_VCS 8 TNE R_R101 1 2 .154 R_R102 4 $G_VCC 37.5K R_R103 4 0 75K

R_R104 3 4 92

R_R105 5 $G_VCC 8160 R_R106 6 $G_VCC 8160 R_R107 0 8 8160

T_T1 OE 0 1 0 Z0=50 TD=100ps END INBUF04

Time

24.0ns 28.0ns 32.0ns 36.0ns 40.0ns

20.2ns V(R101:1) 0V

1.00V 2.00V 3.00V

−0.43V 3.48V

Figure 6. Typical LVCMOS Driving INBUF04 Input Buffer at 100 MHz

(11)

Figure 7. OBUF01 R1

120 R2

120

R4

50 R5

50 R3

28

VCC

Q11 TNC

Q10 TNC

Q1

VCC

+

+ VEE

Q2 Q3

TNB TND TND

Q7 Q8 Q9

TNB TND TND

Q6 Q5 Q4

TNB TND TND

−2.22 Vdc VCS

1 2

3

+

+

4

−2 Vdc VTT

−3.3 Vdc 0

0 0

0

0 VTT

5

0 Vdc

INB

V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

+

0 TNA

283 W TNA

Termination TC Network

for 100EP

INB IN

Q QB

+ IN V1 = −0.95 −

V2 = −1.5 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

.SUBCKT OBUF01 IN INB VCS VCC VEE VTT Q_Q1 2 IN 1 TNB

Q_Q2 2 IN 1 TND Q_Q3 2 IN 1 TND Q_Q4 3 INB 1 TND Q_Q5 3 INB 1 TND Q_Q6 3 INB 1 TNB Q_Q7 1 VCS 10 TND Q_Q8 1 VCS 10 TND Q_Q9 1 VCS 10 TNB Q_Q10 VCC 2 5 TNC Q_Q11 VCC 3 4 TNC R_R1 2 VCC 120 R_R2 3 VCC 120 R_R3 VEE 10 28 R_R4 VTT 4 50 R_R5 VTT 5 50 V_IN IN 0

+PULSE −0.95 −1.5 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0

+PULSE −1.5 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VCC VCC 0 0Vdc

V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.22Vdc .END OBUF01

(12)

Figure 8. OBUF02 R1

240

R2 240

R4

50 R5

50

R3 56

VCC

Q4 TNC

Q1 VCC

+

+

VEE TNB

6 INB

Q2 TNB

2 3

+

VTT

−3.3 Vdc 0 0

0

−2 Vdc 5

0 Vdc

V1 = −1.55 V2 = −0.95 TD = 1 n TR = 0.158 n TF = 0.196 n PW = 0.573 n PER = 1.5 n

+

1 0

VEE 0

VTT

+

− Q5

VCS

−2.2 Vdc TNB

TNA

283 W TNA

Termination

IN INB

Q QB

TC Network for 100EP

4 Q3TNC

IN

0 +

− V1 = −0.95

V2 = −1.55 TD = 1 n TR = 0.158 n TF = 0.196 n PW = 0.573 n PER = 1.5 n

.SUBCKT OBUF02 IN INB VCC VCS VEE VTT Q_Q1 2 IN 5 TNB

Q_Q2 3 INB 5 TNB Q_Q3 VCC 2 4 TNC Q_Q4 VCC 3 1 TNC Q_Q5 5 VCS 6 TNB R_R1 2 VCC 240 R_R2 3 VCC 240 R_R3 VEE 6 56 R_R4 VTT 4 50 R_R5 VTT 1 50 V_IN IN 0

+PULSE −0.95 −1.55 1n 0.158n 0.196n 0.573n 1.5n V_INB INB 0

+PULSE −1.55 −0.95 1n 0.158n 0.196n 0.573n 1.5n V_VCC VCC 0 0Vdc

V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.2Vdc .END OBUF02

(13)

TNA

283 W TNA

Figure 9. OBUF03 R1

245 R2

245

R4

50 R5

50

R3 69

VCC

Q4 TNC

Q1 VCC

+

+

VEE TNB

5 INB

TNBQ2

2 3

+

VTT

−3.3 Vdc 0

0 0

−2 Vdc 1

0 Vdc

V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n

+

6 0

VEE 0

VTT

+

− Q5

VCS

−2.17 Vdc TNB

Termination

IN INB

Q QB TC Network

for 100EP

4 Q3 TNC

IN

0 +

− V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n

.SUBCKT OBUF03 IN INB VCC VCS VEE VTT Q_Q1 2 IN 1 TNB

Q_Q2 3 INB 1 TNB Q_Q3 VCC 2 4 TNC Q_Q4 VCC 3 6 TNC Q_Q5 1 VCS 5 TNB R_R1 2 VCC 245 R_R2 3 VCC 245 R_R3 VEE 5 69 R_R4 VTT 4 50 R_R5 VTT 6 50 V_IN IN 0

+PULSE −0.95 −1.5 1n 0.195n 0.195n 0.555n 1.5n V_INB INB 0

+PULSE −1.5 −0.95 1n 0.195n 0.195n 0.555n 1.5n V_VCC VCC 0 0Vdc

V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.17Vdc .END OBUF03

(14)

Figure 10. OBUF04 R1

180

R2 180

R4

50 R5

R3 50 30

VCC

Q11 TNC

Q10 TNC

Q1 VCC

+

+ VEE

Q2 Q3

TNB TND TND

Q7 Q8 Q9

TNB TND TND

Q6 Q5 Q4

TNB TND TND

−2.29 Vdc VCS

5

1 2

+

− +

3

−2 Vdc VTT

−3.3 Vdc 0

0

0

0 VTT

4 0 Vdc

INB V1 = −1.55

V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

+

− 0

6 TNA

283 W TNA

Termination TC Network

for 100EP

IN INB Q QB

V1 = −0.95 V2 = −1.55 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

0 +IN

.SUBCKT OBUF04 IN INB VCS VCC VEE VTT Q_Q1 1 IN 5 TNB

Q_Q2 1 IN 5 TND Q_Q3 1 IN 5 TND Q_Q4 2 INB 5 TND Q_Q5 2 INB 5 TND Q_Q6 2 INB 5 TNB Q_Q7 5 VCS 6 TND Q_Q8 5 VCS 6 TND Q_Q9 5 VCS 6 TNB Q_Q10 VCC 1 4 TNC Q_Q11 VCC 2 3 TNC R_R1 1 VCC 180 R_R2 2 VCC 180 R_R3 VEE 6 20 R_R4 VTT 3 50 R_R5 VTT 4 50 V_IN IN 0

+PULSE −0.95 −1.55 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0

+PULSE −1.55 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VCC VCC 0 0Vdc

V_VEE VEE 0 −3.3Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.29Vdc .END OBUF04

(15)

Figure 11. OBUF05 R1

250 R2

250

R4

50 R5

50

R3 36

VCC

Q13 TNC

Q14 TNC

Q1 VCC

+

+

− VEE

Q2 Q3

TNB TND TND

Q7 Q8 Q9

TND TND TND

Q6 Q5 Q4

TNB TND TND

−2.25 Vdc VCS

5

1 2

+

− +

3

−3 Vdc VTT

−3.3 Vdc 0

0 0

0

0 VTT

4 0 Vdc

INB

V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

+

− 0

Q10 Q11 Q12 TNB TNB TNB TNA

283 W TNA

Termination TC Network

for 100EP

IN INB

QB Q

+IN

− V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

6

.SUBCKT OBUF05 IN INB VCS VCC VTT VEE Q_Q1 1 IN 5 TNB

Q_Q2 1 IN 5 TND Q_Q3 1 IN 5 TND Q_Q4 2 INB 5 TND Q_Q5 2 INB 5 TND Q_Q6 2 INB 5 TNB Q_Q7 5 VCS 6 TND Q_Q8 5 VCS 6 TND Q_Q9 5 VCS 6 TND Q_Q10 5 VCS 6 TNB Q_Q11 5 VCS 6 TNB Q_Q12 5 VCS 6 TNB Q_Q13 VCC 2 3 TNC Q_Q14 VCC 1 4 TNC R_R1 1 VCC 285 R_R2 2 VCC 285 R_R3 VEE 6 38 R_R4 VTT 3 50 R_R5 VTT 4 50 V_IN IN 0 −1.33Vdc

+PULSE −0.95 −1.5 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0

+PULSE −1.5 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VEE VEE 0 −3.3Vdc

V_VCC VCC 0 0Vdc V_VTT VTT 0 −3Vdc V_VCS VCS 0 −2.25Vdc .END OBUF05

(16)

Figure 12. OBUF06 R1

177 R2

177

R4

50 R5

50 R3

37.5 VCC

Q7 TNC

Q8 TNC

Q1 VCC

+

+ VEE

Q2 TNB TND

Q5 Q6

TND TNB

Q4 Q3

TNB TND

−2.25 Vdc

VCS

1 2

+

− +

3

−2 Vdc VTT

−3.3 Vdc 0

0

0

0 VTT

4 0 Vdc

INB

V1 = −1.5 V2 = −0.95 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

+

− 0

5 6 TNA

283 W TNA

Termination TC Network

for 100EP

IN INB

Q QB

0 + IN V1 = −0.95 − V2 = −1.5 TD = 1 n TR = 0.165 n TF = 0.165 n PW = 0.585 n PER = 1.5 n

.SUBCKT OBUF06 IN INB VCC VCS VEE VTT Q_Q1 1 IN 6 TNB

Q_Q2 1 IN 6 TND Q_Q3 2 INB 6 TND Q_Q4 2 INB 6 TNB Q_Q5 6 VCS 5 TND Q_Q6 6 VCS 5 TNB Q_Q7 VCC 2 3 TNC Q_Q8 VCC 1 4 TNC R_R1 1 VCC 177 R_R2 2 VCC 177 R_R3 VEE 5 37.5 R_R4 VTT 3 50 R_R5 VTT 4 50 V_IN IN 0

+PULSE −0.95 −1.5 1n 0.165n 0.165n 0.585n 1.5n V_INB INB 0

+PULSE −1.5 −0.95 1n 0.165n 0.165n 0.585n 1.5n V_VEE VEE 0 −3.3Vdc

V_VCC VCC 0 0Vdc V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.25Vdc .END OBUF06

(17)

Figure 13. OBUF07 R1

245 R2

245

R4

50 R5

50 R3

55

Q3 TNC

Q4 TNC

Q1 VCC

+

+ VEE

TNB

Q5 TNB

Q2 TNB

−2.22 Vdc VCS

1

2

+

− +

8

−2 Vdc VTT

−3.3 Vdc 0 0 0

0 7 0 Vdc

V1 = −1.5 INB V2 = −0.95 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n

+

− 0

13 3 6

9

5 10

11

4

Termination TNA

283 W TNA

TC Network for 100EP

IN

INB

Q QB

0 +IN

− V1 = −0.95 V2 = −1.5 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n

.SUBCKT OBUF07 Q_Q1 2 6 3 TNB Q_Q2 11 10 3 TNB Q_Q3 1 2 8 TNC Q_Q4 1 11 7 TNC Q_Q5 3 9 13 TNB R_R1 2 1 245 R_R2 11 1 245 R_R3 5 13 55 R_R4 4 8 50 R_R5 4 7 50 V_IN 6 0

+PULSE −0.95 −1.5 1n 0.195n 0.195n 0.555n 1.5n V_INB 10 0

+PULSE −1.5 −0.95 1n 0.195n 0.195n 0.555n 1.5n V_VEE 5 0 −3.3Vdc

V_VCC 1 0 0Vdc V_VTT 4 0 −2Vdc V_VCS 9 0 −2.22Vdc .END OBUF07

(18)

Q6

R1175 R2

175

R4

50 R5

R3 50 17

VCC

Q11 TNC

Q10 TNC

Q1 VCC

+

+ VEE

Q2 Q3

TNB TND TND

Q7 Q8 Q9

TNB TND TND

Q5 Q4

TNB TND TND

−2.36

Vdc VCS

5

1 2

+

− +

3

−2 Vdc V2

−3.3 Vdc 0

0

0

0 VTT

4 0 Vdc

INB

V1 = −1.5 V2 = − 0.95 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n

+

− 0

6

Figure 14. OBUF08 TNA

283 W TNA

Termination TC Network

for 100EP

IN INB

Q QB

0 +INB V1 = −0.95 − V2 = − 1.5 TD = 1 n TR = 0.195 n TF = 0.195 n PW = 0.555 n PER = 1.5 n

.SUBCKT OBUF08 IN INB VCC VCS VEE VTT Q_Q1 1 IN 5 TNB

Q_Q2 1 IN 5 TND Q_Q3 1 IN 5 TND Q_Q4 2 INB 5 TND Q_Q5 2 INB 5 TND Q_Q6 2 INB 5 TNB Q_Q7 5 VCS 6 TND Q_Q8 5 VCS 6 TND Q_Q9 5 VCS 6 TNB Q_Q10 VCC 1 4 TNC Q_Q11 VCC 2 3 TNC R_R1 1 VCC 175 R_R2 2 VCC 175 R_R3 VEE 6 17 R_R4 VTT 3 50 R_R5 VTT 4 50 V_INB INB 0

+PULSE −1.5 −0.95 1n 0.195n 0.195n 0.555n 1.5n V_IN IN 0

+PULSE −0.95 −1.5 1n 0.195n 0.195n 0.555n 1.5n V_VEE VEE 0 −3.3Vdc

V_VTT VTT 0 −2Vdc V_VCS VCS 0 −2.36Vdc V_VCC VCC 0 0Vdc

(19)

Q4 R1

61.25 R2

61.25

R6

50 R7

R3 50 14

VCC

Q8 TNC

Q9 TNC

Q1 VCC

+ VEE

Q2 TNB TND

Q5 Q6 Q7

TND TND TND

Q3 TNB TND

1.25

Vdc VCS

3

1 2

+

− +

5

1.3

Vdc VTT

0

0 0

0

0 VTT

6 3.3 Vdc

INB

V1 = 1 V2 = 1.2 TD = 1 n TR = 0.13 n TF = 0.13 n PW = 0.5 n PER = 1.26 n

+

− 0

4

Figure 15. OBUF09 TNA

283 W TNA

Termination TC Network

for 100EP

IN INB

Q QB

R4

4 R5

IN 4 +

VCS

V1 = 1.2 V2 = 1 TD = 1 n TR = 0.13 n TF = 0.13 n PW = 0.5 n PER = 1.26 n

.SUBCKT OBUF09 IN INB VCC VCS VTT VEE Q QB Q_Q1 1 IN 3 TNB

Q_Q2 1 IN 3 TND Q_Q3 2 INB 3 TND Q_Q4 2 INB 3 TNB Q_Q5 3 VCS 4 TND Q_Q6 3 VCS 4 TND Q_Q7 3 VCS 4 TND Q_Q8 VCC 2 5 TNC Q_Q9 VCC 1 6 TNC R_R1 1 VCC 61.25 R_R2 2 VCC 61.25 R_R3 VEE 4 14 R_R4 Q 5 4 R_R5 QB 6 4 R_R6 VTT Q 50 R_R7 VTT QB 50 V_INB INB 0

+PULSE 1 1.2 1n 0.13n 0.13n 0.5n 1.26n V_IN IN 0

+PULSE 1.2 1 1n 0.13n 0.13n 0.5n 1.26n V_VCS VCS 0 1.25Vdc

V_VCC VCC 0 3.3Vdc V_VTT VTT 0 1.3Vdc .END OBUF09

(20)

R1

280 R2

280 VCC

Q3 TNC

Q4TNC

Q1 TNB

Q6 TNB Q2

TND

0.99 Vdc VCS 3

2

+

− 0 0

TNA

283 W TNA TC Network

for 100EP

IN

QB Q

R4 IN 100

+

VCS VCC

+

− 2.5

0

R6 90

R7 13 0

INB

INB + V1 = 1.5 − V2 = 1.7 TD = 1 n TR = 0.1 n TF = 0.1 n PW = 1 n PER = 2.2 n V1 = 1.7

V2 = 1.5 TD = 1 n TR = 0.1 n TF = 0.1 n PW = 1 n PER = 2.2 n

4

Q5 TNB

R3 74 5

R5 13

+

− VEE

0 VEE 0 Vdc

Q7 TNB Termination

Figure 16. OBUF10 1

6 7

.SUBCKT OBUF10 IN INB VCC VCS VEE Q QB Q_Q1 3 IN 4 TNB

Q_Q2 2 INB 4 TNB Q_Q3 VCC 3 QB TNC Q_Q4 VCC 2 Q TNC Q_Q5 4 VCS 5 TNB Q_Q6 QB VCS 6 TNB Q_Q7 Q VCS 7 TNB R_R1 3 1 295 R_R2 2 1 295 R_R3 VEE 5 64.3 R_R4 QB Q 100 R_R5 VEE 6 10 R_R6 1 VCC 61.25 R_R7 VEE 7 10 V_IN IN 0

+PULSE 1.5 1.7 1n 0.1n 0.1n 1n 2.6n V_INB INB 0

+PULSE 1.7 1.5 1n 0.1n 0.1n 1n 2.6n V_VCC VCC 0 2.5

(21)

Q9 R1490

1

VCS 1.3 Vdc

Q3

Q8 TNC

3

0 Q4

TND 0

4

Q12

TNC

R3225 0

Q2

TNB

Q11

0

R5 50 R4

50 Q5

TNC

Q10

TNC

5 0

Q1

TNB

R2490

Q6

TNC 2

VTT 0

Q7

TNC

Figure 17. OBUF11 +

+

− +

TNC

TNC

0

− + VHSTL Internal Constant Voltage Source

VHSTL

2.0 Vdc

VHSTL

TND

Termination IN

V1 = 1.3 V2 = 1.5 TD = 1.0 n TR = 0.5 n TF = 0.5 n PW = 5.0 n PER = 11 n

INB V1 = 1.5 V2 = 1.3 TD = 1.0 n TR = 0.5 n TF = 0.5 n PW = 5.0 n PER = 11 n

VCCO

VCC0 1.8 Vdc

− +

IN INB

Q QB

.SUBCKT OBUF11 IN INB VCCO VHSTL Q QB Q_Q1 1 IN 3 TNB

Q_Q2 2 INB 3 TNB Q_Q3 3 4 5 TND Q_Q4 3 4 5 TND Q_Q5 VCCO 2 Q TNC Q_Q6 VCCO 2 Q TNC Q_Q7 VCCO 2 Q TNC Q_Q8 VCCO 2 Q TNC Q_Q9 VCCO 1 QB TNC Q_Q10 VCCO 1 QB TNC Q_Q11 VCCO 1 QB TNC Q_Q12 VCCO 1 QB TNC R_R1 1 VHSTL 490 R_R2 2 VHSTL 490 R_R3 0 5 225 R_R4 0 Q 50 R_R5 0 QB 50 V_IN IN 0

+PULSE 1.3 1.5 1n 0.5n 0.5n 5n 11n V_INB INB 0

+PULSE 1.5 1.3 1n 0.5n 0.5n 5n 11n V_VCCO VCCO 0 1.8Vdc

V_VHSTL VHSTL 0 2.0Vdc V_VCS 4 0 1.3Vdc .END OBUF11

(22)

V Q7

TNB

R5 12

16 QFN PKG R3

12.4

C5 .300p VEE VCC

1

L102 0.9nH

1 2

Die Cap

Q

R101 0.4

T−line delay 1000 ps Q1 TNB

V R1

50

Receiver Termination

D1 ESDS

6 Q5 TNB

T−line delay 1000 ps

VCC 3

Q11 TNB

C104 .6p C101

.300p D4 ESDS

R1011 50 392.0uA INTD

VCC

4 2

VEE VCC

7

L101 0.9nH

1 2 T1

VCS

9 VEE

D3 ESDS

VEE

10

VEE

D2 ESDM

8

R102 0.4 V

VCC

5

Q4 TNB

Q9 TNB

C4 .300p

R4 12

8.255mA

VEE 11 R2

50

QFN PKG

Q2 TNB

12 VEE

C103 .6p

C102 .300p

L2 0.9nH

1 2

VEE ESD

D

T2

OUTPUT Buffer

VEE

R13

0.4

VEE

Q10 TNB

L1

0.9nH

1 2

R12

0.4

VEE

R1010 50 7.671mA

TD = 1n TF = 0.125n PW = 0.075n PER = 0.4n V1 = 2.45

TR = 0.125n V2 = 2.25

163.3uA VCC

2.5 GHz Operational Frequency VCS

INTD TD = 1n

TF = 0.125n PW = 0.075n PER = 0.4n V1 = 2.25

TR = 0.125n V2 = 2.45

6.381uA 0

VEE

0 3.3 V LVPECL Supply Mode Operation

VCC 3.3Vdc

16.19mA VCS 0.97Vdc

154.9uA

0 0

INTD

0

Figure 18. OBUF12 Driving Typical Receiver with Termination and 1000 ps T−Line Delay

+

+ +

+

8.259mA

Q INTD

D

INTD

INTD

(23)

Netlist for OBUF12 Driving Typical Receiver with Termination and 1000 ps T−line delay V_VCC $G_VCC 0 3.3Vdc

V_VCS $G_VCS 0 0.97Vdc

V_INTD INTD 0 +PULSE 2.25 2.45 1n 0.125n 0.125n 0.075n 0.4n V_INTDb INTDB 0 +PULSE 2.45 2.25 1n 0.125n 0.125n 0.075n 0.4n .SUBCKT OBUF12 VCC VCS VEE INT INTb Q Qb

Q_Q1 1 INTD 3 TNB Q_Q10 4 $G_VCS 6 TNB Q_Q11 4 $G_VCS 6 TNB Q_Q2 1 INTD 3 TNB Q_Q4 2 INTDB 4 TNB Q_Q5 2 INTDB 4 TNB Q_Q7 3 $G_VCS 5 TNB Q_Q9 3 $G_VCS 5 TNB D_D1 1 $G_VCC ESDS D_D2 0 1 ESDM D_D3 2 $G_VCC ESDS D_D4 0 2 ESDS C_C4 0 Q .300p C_C5 0 QB .300p R_R1 1 $G_VCC 50 R_R2 2 $G_VCC 50 R_R3 4 3 12.4 R_R4 0 5 12 R_R5 0 6 12 L_L1 7 Q 0.9nH L_L2 8 QB 0.9nH .END OBUF12

.SUBCKT RECEIVER VCC VEE D Db T_T1 Q 0 D 0 Z0=50 TD=1000ps T_T2 QB 0 DB 0 Z0=50 TD=1000ps C_C101 0 D .300p

C_C102 0 DB .300p C_C103 0 11 .6p C_C104 0 12 .6p L_L101 9 D 0.9nH L_L102 10 DB 0.9nH R_R101 11 9 0.4 R_R1010 DB $G_VCC 50 R_R1011 D $G_VCC 50 R_R102 12 10 0.4 R_R12 1 7 0.4 R_R13 2 8 0.4 .END RECEIVER

(24)

Time

5.200ns 5.300ns 5.400ns 5.500ns

5.120ns

V(R1010:1) V(R1011:1) V(R1011:1) 3.000V

3.100V 3.200V

2.913V 3.287V

Figure 19. OBUF12 at 2.5 GHz Operation Frequency; VOUTamp at 360 mVPP; VOH at 3.28 V; VOL at 2.92 V; tr/tf (20% − 80%) is 86 ps (With Receiver Load)

(25)

L101 2.17nH

1 2

D4

ESDS T2

R108.154 Q3

TNB

Q10 TNB

50 ps Q6

TNB

Q4 TNB

T1

R5 25

D2 ESDM 4

R3 50

VEE INTDX

R13 .1

VEE

VCC

VEE

T101

R100 100

10 Q7

TNB

VEE

R4 50

Q8 TNB

R12 .1 Q2

TNB

VCS

3 Q1

TNB

7 VEE

D1 ESDS

8

L1 .8nH

1 2

C5 .9pF

V

VEE

D119 .364p R107.154

VEE

VEE

L102 2.17nH

1 2

5

9

L2 .8nH

1 2

16 QFM PKG

TERMINATION

VEE R250

V

VEE C4

.9pF Q5

TNB

VEE OUTPUT Buffer

Trace Delay 2

T102 INTD

Trace Delay

VEE

D3 ESDM 6

R1 RECEIVER: 8 SOIC PKG

.364p

VEE ESD

VCC

VCC

VEE Q9

TNB

1000 ps VEE

Figure 20. OBUF13 With Termination And Receiver Package Load

0 INTD

INTD TD = .1n

TF = 0.075n PW = .525n PER = 1.2n V1 = 2.45

TR = 0.075n V2 = 1.9

TD = .1n TF = 0.075n PW = .525n PER = 1.2n V1 = 1.225

TR = 0.075n V2 = 1.425

0

INTDX TD = .1n

TF = 0.075n PW = .525n PER = 1.2n V1 = 1.425

TR = 0.075n V2 = 1.225

INTDX

TD = .1n TF = 0.075n PW = .525n PER = 1.2n V1 = 1.9

TR = 0.075n V2 = 2.45 VEE

0

0 VCC

0 VCC

3.3Vdc

LVPECL Mode Supplies VCS

0 VCS .96Vdc

1000 ps

50 ps

C104 50

0 +

+

+

− +

− +

− +

INTDX

INTDX INTD

INTD INTDX

INTD

Q Q

12

11 13

14 15

16

17

18

SPICE NETLIST for OBUF13:

V_VCC $G_VCC 0 3.3Vdc V_VCS $G_VCS 0 .96Vdc

V_INTD INTD 0 PULSE 2.45 1.9 .1n 0.075n 0.075n .525n 1.2n V_INTDb INTDB 0 PULSE 1.9 2.45 .1n 0.075n 0.075n .525n 1.2n V_INTDX INTDX 0 PULSE 1.225 1.425 .1n 0.075n 0.075n .525n 1.2n V_INTDXb INTDXB 0 PULSE 1.425 1.225 .1n 0.075n 0.075n .525n 1.2n .SUBCKT OBUF13

C_C104 0 13 .364p C_C4 0 11 .9pF C_C5 0 12 .9pF C_D119 0 14 .364p D_D1 3 $G_VCC ESDS D_D2 0 3 ESDM D_D3 0 4 ESDM

(26)

D_D4 4 $G_VCC ESDS L_L1 9 11 .8nH L_L101 11 13 2.17nH L_L102 12 14 2.17nH L_L2 10 12 .8nH

Q_Q1 $G_VCC INTDB 2 TNB Q_Q10 6 $G_VCS 8 TNB Q_Q2 $G_VCC INTDB 2 TNB Q_Q3 $G_VCC INTD 1 TNB Q_Q4 $G_VCC INTD 1 TNB Q_Q5 4 INTDX 6 TNB Q_Q6 4 INTDX 6 TNB Q_Q7 3 INTDXB 5 TNB Q_Q8 3 INTDXB 5 TNB Q_Q9 5 $G_VCS 7 TNB R_R1 3 1 50

R_R100 Q QB 100 R_R107 9 11 .154 R_R108 10 12 .154 R_R12 3 9 .1 R_R13 4 10 .1 R_R2 4 2 50 R_R3 0 7 50 R_R4 0 8 50 R_R5 5 6 25

T_T1 11 0 Q 0 Z0=50 TD=1000ps T_T101 Q 0 9 0 Z0=50 TD=50ps T_T102 QB 0 10 0 Z0=50 TD=50ps T_T2 12 0 QB 0 Z0=50 TD=1000ps .END OBUF13

Time

45.800ns 46.000ns 46.200ns 46.400ns 46.600ns

45.662ns 46.744ns

V(Q) V(QB) 1.100V

1.200V 1.300V 1.400V

1.052V

Figure 21. OBUF13 Typical Waveform at 1.0 GHz with Termination and Receiver Package Load (95ps tr/tf)

(27)

VEE

8

QFN PKG OUTPUT Buffer

VCS

R12 0.4

C104 .6p VEE Q9

TNB R1 50

INTD

D2 ESDM

L102 0.9nH

1 VEE

VCC Q5 TNB

Q10 TNB

Receiver Termination VCC

R1011 50 364.6uA

C101 .300p

C102 .300p Q13

TNB

C103 .6p Q11

TNB Q1

TNB

VEE

R5 12

8.638mA

R1010 50 8.077mA

VEE T1

Q2 TNB

R3 12.4

7.819mA

7

Q3 TNB

R101 0.4

10

VEE 12 ESD

R13

0.4 C5

.300p

R4 12

8.635mA

VCC Q12

TNB Q6 TNB

D3 ESDS 4

T2 3

R102 0.4

L2 0.9nH

8.077mA

1 2

D1 ESDS

D

C4 .300p

Die Cap Q7

TNB

11 R2

50

9

VEE

V

6

D4 ESDS

L1 0.9nH

364.6uA

1 2

L101 0.9nH

1 2 VCC

VEE

Q 1

Q4 TNB

V V

VEE VCC

T−line delay 1000 ps T−line delay 1000 ps

16 QFN PKG

VEE

VEE

2

VCS

TD = 1n TF = 0.05n PW = 0.075n PER = 0.25n V1 = 2.425

TR = 0.05n V2 = 2.225 VCC

0

INTD TD = 1n

TF = 0.05n PW = 0.075n PER = 0.25n V1 = 2.225

TR = 0.05n V2 = 2.425

0 0

VCS 0.96Vdc

0 0

VEE

4 GHz Operational Frequency

VCC 3.3Vdc

3.3 V LVPECL Supply Mode Operation

INTD

+

+ +

+

Figure 22. OBUF14 With Termination And Reciever Package Load

5

Q INTD

D

INTD

INTD

(28)

NETLIST for OBUF14

V_INTD INTD 0 +PULSE 2.225 2.425 1n 0.05n 0.05n 0.075n 0.25n V_INTDb INTDB 0 +PULSE 2.425 2.225 1n 0.05n 0.05n 0.075n 0.25n V_VCC $G_VCC 0 3.3Vdc

V_VCS $G_VCS 0 0.96Vdc

.SUBCKT OBUF14 VCC VCS INTD INTDb Q Qb Q_Q1 1 INTD 3 TNB

Q_Q2 1 INTD 3 TNB Q_Q3 1 INTD 3 TNB Q_Q4 2 INTDB 4 TNB Q_Q5 2 INTDB 4 TNB Q_Q6 2 INTDB 4 TNB Q_Q7 3 $G_VCS 5 TNB Q_Q9 3 $G_VCS 5 TNB Q_Q10 3 $G_VCS 5 TNB Q_Q11 4 $G_VCS 6 TNB Q_Q12 4 $G_VCS 6 TNB Q_Q13 4 $G_VCS 6 TNB R_R1 1 $G_VCC 50 R_R2 2 $G_VCC 50 R_R3 4 3 12.4 R_R4 0 5 12 R_R5 0 6 12 R_R12 1 7 0.4 R_R13 2 8 0.4 D_D1 1 $G_VCC ESDS D_D2 0 1 ESDM D_D3 2 $G_VCC ESDS D_D4 0 2 ESDS C_C4 0 Q .300p C_C5 0 QB .300p L_L1 7 Q 0.9nH L_L2 8 QB 0.9nH .END OBUF14

.SUBCKT RECEIVER VCC VCS D Db

T_T1 Q 0 D 0 Z0=50 TD=1000ps T_T2 QB 0 DB 0 Z0=50 TD=1000ps C_C101 0 D .300p

C_C102 0 DB .300p C_C103 0 11 .6p C_C104 0 12 .6p L_L101 9 D 0.9nH L_L102 10 DB 0.9nH R_R101 11 9 0.4 R_R102 12 10 0.4 R_R1010 DB $G_VCC 50 R_R1011 D $G_VCC 50 .END RECEIVER

(29)

Time

7.400ns 7.500ns 7.600ns 7.700ns

7.333ns

V(R1010:1) V(R1011:1) V(R1011:1) 2.900V

3.000V 3.100V 3.200V 3.277V

Figure 23. OBUF14 Typical Output Waveform at 4 GHz Operation; Amplitude 345 mVPP; VOL 2.91, VOH 3.26 tr/tf 60 ps

(30)

VDD VDD

Q6

R5162

D7ESDM

Q103 TNA .154R2

DRIVER ESD

22

12

Q7

DRIVER Trace

T102

D3ESDM

20 D2ESDS

T101

VCC

16 VCSD

VDD Q3

17

R104125 R5262

C103.6p

Q102TNA

VCC D5ESDS

18 D6ESDS

D106ESDS

VDD

D108ESDM R107.154

Q106TNA R19.5

15.05mA INTD

.364pC3

.364pC102 Q5

VDD L102 2.17nH

1 2

R109 92

VDD 6

R53270

VDD VDD

T2

Q105 TNA

7 T1

TERMINATION

C104.6p D1ESDS

2

3

2.17nHL2

1 2

Q4 8 800 ps Delay

VDD

Q101 TNA VDD

D101 19 ESDS 1

D105ESDS

2.17nHL1

1 2

RECEIVER Input Trace

15 4

5 VCC

VDD

DRIVER SOIC 16 PKG

RECEIVER Die Pad

Cap D102

ESDS RECEIVER 8 SOIC PKG

Q

V

D104ESDM

23 TNCQ1

.364pC4

11

Q8

21

10 ps Delay

2.17nHL101

1 2

R102125 VDD

VCC

14

RECEIVER INPUT Buffer

VDD

V

VDD R108.154

R50270

VCC

D8ESDM

RECEIVER ESD

C101

.364p VCSR

R101125 VDD

D103ESDM TNCQ2

10 ps Delay

VDD 800 ps Delay

VDD

R103125

R110 92

Q104 D4ESDM

VCC

VDD .154R3 DRIVER − Open Collector (OC)

OUTPUT Buffer

D107ESDM 13

0 VDD

0 0

VCSD VCC

3.3Vdc

VCSR

VCSD 1.01Vdc VCSR

1.05Vdc

0 OPERATIONAL SUPPLIES

INTD TD = 1n

TF = .25n PW = 4.75n PER = 10n V1 = 2.1

TR = .25n V2 = 2.3

INTD

TD = 1n TF = .25n PW = 4.75n PER = 10n V1 = 2.3

TR = .25n V2 = 2.1

INTERNAL STIMULUS SOURCES at 100 MHz

0 0

Figure 24. An OBUF15 Open Collector Output Buffer Driving A Typical LVPECL Receiver

TND TNB

TND TND TND TNB

+ +

+

+

+

10 9

TNA INTD

Q

INTD

INTD

(31)

NETLIST for OBUF15

V_INTD INTD 0 PULSE 2.1 2.3 1n .25n .25n 4.75n 10n V_INTDb INTDB 0 PULSE 2.3 2.1 1n .25n .25n 4.75n 10n V_VCC $G_VCC 0 3.3Vdc

V_VCSD $G_VCSD 0 1.01Vdc V_VCSR $G_VCSR 0 1.05Vdc SUBCKT OBUF15

Q_Q1 3 INTDB 1 TNC Q_Q2 4 INTD 1 TNC Q_Q3 1 $G_VCSD 2 TND Q_Q4 1 $G_VCSD 2 TND Q_Q5 1 $G_VCSD 2 TND Q_Q6 1 $G_VCSD 2 TND Q_Q7 1 $G_VCSD 2 TNB Q_Q8 1 $G_VCSD 2 TNB R_R1 0 2 9.5

D_D1 3 $G_VCC ESDS D_D2 3 $G_VCC ESDS D_D3 0 3 ESDM D_D4 0 3 ESDM D_D5 4 $G_VCC ESDS D_D6 4 $G_VCC ESDS D_D7 0 4 ESDM D_D8 0 4 ESDM R_R2 4 8 .154 R_R3 3 7 .154 L_L1 7 9 2.17nH L_L2 8 10 2.17nH C_C3 0 9 .364p C_C4 0 10 .364p

T_T1 9 0 Q 0 Z0=50 TD=800ps T_T2 10 0 QB 0 Z0=50 TD=800ps R_R50 Q 0 270

R_R51 Q $G_VCC 62 R_R52 QB $G_VCC 62 R_R53 0 QB 270 .END

SUBCKT RECEIVER

C_C101 0 15 .364p C_C102 0 16 .364p C_C103 0 17 .6p C_C104 0 18 .6p D_D101 15 $G_VCC ESDS D_D102 15 $G_VCC ESDS D_D103 0 15 ESDM D_D104 0 15 ESDM D_D105 16 $G_VCC ESDS D_D106 16 $G_VCC ESDS D_D107 0 16 ESDM D_D108 0 16 ESDM L_L101 13 15 2.17nH L_L102 14 16 2.17nH Q_Q101 19 17 22 TNA Q_Q102 19 17 22 TNA Q_Q103 20 18 22 TNA Q_Q104 20 18 22 TND Q_Q105 22 $G_VCSR 23 TNA Q_Q106 22 $G_VCSR 23 TNA R_R101 21 $G_VCC 125 R_R102 19 21 125 R_R103 20 21 125

(32)

R_R104 0 23 125 R_R107 11 13 .154 R_R108 12 14 .154 R_R109 15 17 92 R_R110 16 18 92

T_T101 Q 0 11 0 Z0=50 TD=10ps T_T102 QB 0 12 0 Z0=50 TD=10ps .END RECEIVER

Time

18.0ns 20.0ns 22.0ns 24.0ns 26.0ns 28.0ns

16.5ns

V(QB) V(Q) 2.000V

2.400V

1.917V 2.718V

Figure 25. OBUF15 Output Driving LVPECL Receiver Typical Waveforms at 100 MHz; VOH 1.94 V; VOL 2.68 V; Vamp 736 mV; 199 ps tr/tf at 2.09 V and 2.53 V (20%/80%)

(33)

VCC

IN

D4

RPD

75 k Pulldown Resistor

Figure 26. Input ESD D5 D6 D7 D8 D9

D1 D2 D3

VEE

PAD RB1 185 RB2 185

*RPU

* See device data sheet

.SUBCKT IN_ESD VCC VEE IN PAD D1 IN VCC ESDM D2 IN VCC ESDM D3 IN VCC ESDM D4 VEE IN ESDM D5 VEE IN ESDS D6 VEE IN ESDM D7 VEE IN ESDS D8 VEE IN ESDM D9 VEE IN ESDS RPD IN VEE 75K RPU IN VCC 36.5K RB1 IN PAD 185 RB2 IN PAD 185 .ENDS IN_ESD

Figure 27. Output ESD

PAD D1 D2 OUT

D3 D4 D5 D6 VCC

VEE

.SUBCKT OUT_ESD VCC VEE OUT D1 OUT VCC ESDM D2 OUT VCC ESDM D3 VEE OUT ESDM D4 VEE OUT ESDS D5 VEE OUT ESDM D6 VEE OUT ESDS .ENDS OUT_ESD

(34)

The following is an example of a typical run−deck file which might be used to simulate Figure 28 to produce output waveform shown in Figure 29.

TYPICAL TEST CIRCUIT VCC VCC 0 0V VEE VEE 0 −3.3V VCS VCS 0 −2.2V VTT VTT 0 −2.0V

VIN IN 0 PULSE(−1.7 −0.95 5NS 5NS 5NS 50NS 110NS) VINB INB 0 PULSE(−0.95 −1.7 5NS 5NS 5NS 50NS 110NS) .GROUND 0

.TRAN 0.2NS 120NS

VCS TNA

Q12B Q13B

− +

+ TNA TNA TNA

− +

−2.2 Vdc

−2 Vdc

Q1B Q2B

Q11B Q14B

Q15B Q16B Q17B

Q19B Q20B Q21B Q22B Q7B Q8B Q9B Q10B

R2120 R1120

−1.33 Vdc

Q1 Q2

TND TND TNB

TNA TNA

TNA TNA TNA

TNA

TNA TNA TNA TNA TNA TNA TNA TNA

OBUF01

V1 = 1.5 V V2 = −0.95 V TD = 1 n TR = 0.15 n TF = 0.15 n PW = 1 n PER = 6 n 0

0

0 TND

TNB TND

Q3 Q4 Q5 Q6

Q7 Q8

TND TNB

Q9

0

Q4B Q3B

TNA TNA

Q18B

R6B

TNA TNA

Q5B Q6B

R5B R4B

TYPICAL INPUT BUFFER

R5 50 R4 50

− + VCC

0 Vdc

R3B 125 R2B

125

125 TND

R328

Q11 TNC

Q10 TNC

+

Termination

IN INB

Q

QB

IN’

IN’B

(35)

−1.600 V

−1.200 V

−1.837 V

−0.865 V

Time (ns)

10.0 10.1 10.2 10.3 10.4 10.5 10.6 VOH = 932.6 mV 80%

tf = 131.8 ps tr = 174.7 ps

VOL = 1720 mV 20%

Vout

9.9

CROSS POINT

Figure 29. Typical Generic Output Waveform

Time (ns)

1.600 1.700 1.800 1.900 2.000 2.100 1.509

2.00 V 2.20 V

1.84 V 2.34 V

Figure 30. OBUF09 Reduced Swing Output Waveform (EP40/140)

5.000 5.200 5.400 5.600 5.800 6.000 4.854 6.188 1.0 V

1.2 V 1.4 V

Figure 31. LVDS Output Waveform (EP210’s) VOH = 2.281 V

80%

tf = 118 ps tr = 125.1 ps

VOL = 1.88 V 20%

Vout CROSS POINT

Time (ns)

VOH = 1.42 V 80%

tf = 140 ps tr = 179 ps

VOL = 0.946 V 20%

Vout

CROSS POINT

参照

関連したドキュメント

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

The evolution of chaotic behavior regions of the oscillators with hysteresis is presented in various control parameter spaces: in the damping coefficient—amplitude and

On the other hand, modeling nonlinear dynamics and chaos, with its origins in physics and applied mathematics, usually concerned with autonomous systems, very often

This paper presents an investigation into the mechanics of this specific problem and develops an analytical approach that accounts for the effects of geometrical and material data on

In the present paper the technique is much improved, and several new questions are considered, namely: the possibilityof passing to the limit b → +0 in the constructed

In the general form, the problem of description of flat pencils of met- rics (or, in other words, compatible nondegenerate local Poisson struc- tures of hydrodynamic type)

While conducting an experiment regarding fetal move- ments as a result of Pulsed Wave Doppler (PWD) ultrasound, [8] we encountered the severe artifacts in the acquired image2.

As already mentioned, the above selection has to be regarded as a way to reduce complexity, however, pursuing the objective of designing models suitable to provide a