• 検索結果がありません。

3 tan 2 π:なし sin sin , cos cos , tan tan 6 π = 6π = 2 6 π = 6π

N/A
N/A
Protected

Academic year: 2021

シェア "3 tan 2 π:なし sin sin , cos cos , tan tan 6 π = 6π = 2 6 π = 6π"

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

次の角のsin , cos , tanθ θ θ の値をそれぞれ求めよ。

77.三角関数の値

(1) 2 3 2 1 2

sin , cos , tan 3

3π = 2 3 π = − 2 3π = −

(2) 1 3 1

sin , cos , tan

6 2 6 2 6 3

π π π

− = − − = − = −

     

     

(3) sin 0=0, cos 0=1, tan 0=0 (4) sin 1, cos 0

2 2

π = π =

tan 2

π :なし

(5) sinπ =0, cosπ = −1, tanπ =0 (6) 3 3

sin 1, cos 0

2π = − 2π = 3

tan 2 π:なし

(7) 17 5 1 17 5 3 17 5

sin sin , cos cos , tan tan

6 π = 6π = 2 6 π = 6π = − 2 6 π = 6 π

(8) 3 1 3 1 3

sin , cos , tan 1

4 π 2 4 π 2 4 π

     

− = − − = − =

     

     

 

(2)

(1) 2 θ = 3 π

2 3 2 1 2

sin , cos , tan 3

3π = 2 3π = − 2 3π = −

(2)

6 θ = − π

1 3 1

sin , cos , tan

6 2 6 2 6 3

π π π

− = − − = − = −

     

     

(3) θ =0

sin 0=0, cos 0=1, tan 0=0

(4) 2 θ = π

sin 1, cos 0

2 2

π = π =

tan 2

π :なし

(5) θ π=

sinπ =0, cosπ = −1, tanπ =0

(6) 3 θ = 2 π

3 3

sin 1, cos 0

2π = − 2π = 3

tan 2 π:なし

(7) 17 θ = 6 π

17 5 1 17 5 3 17 5

sin sin , cos cos , tan tan

6 π = 6 π = 2 6 π = 6 π = − 2 6 π = 6π

(8) 3

θ = − 4 π

3 1 3 1 3

sin , cos , tan 1

4 π 2 4 π 2 4 π

     

− = − − = − =

     

     

参照

関連したドキュメント

Abstract. Sets like P × R can be the limits of the blow ups of subgraphs of solutions of capillary surface or other prescribed mean curvature problems, for example. Danzhu Shi

To lower bound the number of points that the excited random walk visits, we couple it with the SRW in the straightforward way, and count the number of “tan points” visited by the

When s = 1/2, Cabr´ e and Tan [6] established the existence of positive solutions for equations having nonlinearities with the subcritical growth, their regularity, the

To define the category of sets of which this type of sets is the type of objects requires choosing a second universe of types U 0 and an element u of U 0 such that U = El(u) where El

In this section we consider the submodular flow problem, the independent flow problem and the polymatroidal flow problem, which we call neoflow problems.. We discuss the equivalence

By using either Proposition 3.2 or Theorem 3.1, one can see easily that (g, %, r) is a Riemann-Poisson Lie algebra and hence (G, h , i, π) is a Riemann-Poisson Lie group where π is

Section 4 includes NG’s result in the case of a metacyclic group G with a faithful irreducible projective representation π over an algebraically closed field with

If we support L-space conjecture, then we can expect any non-trivial Dehn surgery on “most” knots yields a 3-manifold whose π 1 = LO.. A slope r is said to be left-orderable (LO) if π