• 検索結果がありません。

Final2 09 最近の更新履歴 yyasuda's website

N/A
N/A
Protected

Academic year: 2017

シェア "Final2 09 最近の更新履歴 yyasuda's website"

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

1 Date: July 30, 2009 

Subject: Advanced Microeconomics II  Lecturer: Yosuke Yasuda 

 

Final Exam   

 

1. True or False (10 points) 

Answer  whether  each of  the  following  statement  is  true  (T)  or  false  (F).  You  do  NOT  need to explain the reason. 

a) In the Stackelberg model (with symmetric firms’ cost), the leader can ALWAYS earn  a higher profit than the follower. 

b) If strategy spaces are infinite, Nash equilibrium (possibly in mixed‐strategies) may  NOT exist. 

 

2. Bertrand Model (15 points) 

Consider a duopoly game in which two firms simultaneously and independently select  prices,  p1  and  p2.  The  firms’  products  are  differentiated.  After  the  prices  are  set,  consumers  demand  10  –  pi  +  pj  units  of  the  good  that  firm  i  produces.  Assume  that  each  firm  produces  at  zero  cost,  and  the  payoff  for  each  firm  is  equal  to  the  firm’s  profit. 

a) Write the payoff functions of the firms (as a function of their strategies p1 and p2).  b) Is this a game of “strategic complements” or “strategic substitutes”? 

Hint: A game is called “strategic complements (/substitutes)” if each player’s best  reply curve is upward (/downward) sloping. 

c) Solve the (pure‐strategy) Nash equilibrium.   

3. Dynamic Game (15 points)  See the following game tree.   

           

1 2 1

A

B D F

C E

(6, 2)

(5, 5)

(0, 3) (1, 0)

(2)

2

a) Translate this game into normal‐form by drawing the payoff bi‐matrix.  b) Find all pure‐strategy Nash equilibria. How many are there? 

c) Solve this game by backward induction.   

4. Repeated Game (20 points)  Consider the following static game.   

1 / 2  C  D 

C  4, 3  0, 5 

D  5, 0  1, 2 

 

a) Find all the (pure‐strategy) Nash equilibrium. Are there any dominant strategies in  this game? 

b) Now consider a dynamic game in which the above static game will be played twice.  Then, how many subgames (including the entire game) does this game have?  c) Solve the subgame perfect Nash equilibrium of the dynamic game in (b). 

d) Now suppose that the above static game will be played for infinitely many times,  and  each  player  maximizes  the  average  payoff  with  a  discount  factor  δ.  Find  the  range of δ that can achieve (C, C) by the trigger strategy. 

Hint: Under the trigger strategies, players choose (C, C) as long as no one deviates  from (C, C); if someone deviates, they will play the NE (solved in (a)) forever after.   

5. Focal Point (5 points, bonus!) 

This is a bonus question. Choose one country and write down its name. If your answer  coincides with the most popular one, you would get 5 points bonus! 

Hint: This question is similar to what we had in class. The important thing is that you  have to guess which country other students would likely choose. 

 

参照

関連したドキュメント

If we are sloppy in the distinction of Chomp and Chomp o , it will be clear which is meant: if the poset has a smallest element and the game is supposed to last longer than one

Row stochastic matrix, Doubly stochastic matrix, Matrix majorization, Weak matrix majorization, Left(right) multivariate majorization, Linear preserver.. AMS

Then by applying specialization maps of admissible fundamental groups and Nakajima’s result concerning ordinariness of cyclic ´ etale coverings of generic curves, we may prove that

Instead an elementary random occurrence will be denoted by the variable (though unpredictable) element x of the (now Cartesian) sample space, and a general random variable will

[18] , On nontrivial solutions of some homogeneous boundary value problems for the multidi- mensional hyperbolic Euler-Poisson-Darboux equation in an unbounded domain,

Since the boundary integral equation is Fredholm, the solvability theorem follows from the uniqueness theorem, which is ensured for the Neumann problem in the case of the

If in the infinite dimensional case we have a family of holomorphic mappings which satisfies in some sense an approximate semigroup property (see Definition 1), and converges to

The variational constant formula plays an important role in the study of the stability, existence of bounded solutions and the asymptotic behavior of non linear ordinary