• 検索結果がありません。

甲1940 要旨・審査要旨 Abstract, Screening Result

N/A
N/A
Protected

Academic year: 2018

シェア "甲1940 要旨・審査要旨 Abstract, Screening Result"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

氏 隆 志

学 専 攻 分 博 士 理 学

学 記 番 総 研 大 第

学 授 与 の 日 付 成 9 日

学 授 与 の 要 件 生 命 科 学 研 究 科 基 礎 生 物 学 専 攻 学 規 則 第 6 条 第 該 当

学 論文題目

論文審査委員 主 査 教 授 東 島 一 教 授 昌 晴 准 教 授 渡 英

准 教 授 木 新 屋 大 学

(2)

(Separate Form 2)

論 文 の 要 旨

Summary (Abstract) of doctoral thesis contents

Body-fluid conditions are continuously monitored in the brain to regulate thirst and salt-appetite sensations. The central monitoring of body -fluid conditions is considered to be mediated by sensory circumventricular organs (sCVOs), brain regions that lack a blood-brain barrier, but harbor neuronal cell bodies . sCVOs consist of the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), and area postrema.

Na+-levels in body fluids are sensed by Nax channels expressed in specific glial cells in the SFO. The activation of Nax stimulates the glial cells to release lactate, which functions as a gliotransmitter that activates GABAergic inhibitory neurons in the SFO. It has been postulated that the activation of the GABAergic neurons suppress salt appetite. On the other hand, angiotensin II (Ang II) drives both thirst and salt appetite; however, the neural mechanisms underlying selective water - and salt-intake behaviors remain unknown.

To investigate water- and salt-intake behaviors, I established water- and/or Na-depleted conditions in mice by dehydration (water-depleted), furosemide treatment (water- and Na-depleted), or combining furosemide treatment with water satiation (Na-depleted), respectively. Blood Ang II levels increased to similar levels in all of the three conditions. Under the water-depleted and Na-depleted conditions, the expression of Fos, a marker for neuronal activity, was specifically increased in Ang II receptor type 1a (AT1a)-positive neurons in the SFO and OVLT.

To examine the contribution of the SFO and OVLT to water- and salt-intake behaviors, AT1a gene was site-specifically deleted in the SFO and/or OVLT. The local deletion of AT1a in the SFO resulted in significant reductions in water intake under the water- and Na-depleted condition and in salt intake under the Na -depleted condition. In contrast, the local deletion of AT1a in the OVLT resulted in marked reductions in water intake under the water- and Na-depleted condition, but not salt intake under the Na-depleted condition. These results suggested that AT1a signals in the SFO are involved in both water and salt intake, whereas those in the OVLT are involved only in water intake.

My anatomical analyses revealed that AT1a-positive neurons in the SFO were largely glutamatergic, and they had projections to the OVLT, ventral part of the bed nucleus of the stria terminalis (vBNST), and so on. Notably, Fos-positive neurons under the water-depleted condition overlapped well with the SFO neurons projecting to the OVLT [SFO(→OVLT) neurons]. In contrast, the SFO neurons projecting to the vBNST [SFO(→vBNST) neurons] expressed Fos under the Na-depleted condition. Furthermore, I tested whether optical manipulations of the specific neural pathways

(3)

(Separate Form 2)

by using channelrhodopsin 2 and archearhodopsin 3 can control the specific intake behaviors. As was expected, water- and salt-intake behaviors were selectively controlled by optogenetic manipulations of neuronal activities of the respective neuronal groups. From these results, I concluded that the SFO(→OVLT) neurons and SFO(→vBNST) neurons control thirst and salt appetite, respectively.

To examine the relationship between Nax signals and AT1a-dependent control of salt appetite, I examined whether the activity of the SFO(→vBNST) neurons is regulated by Nax signals through GABAergic neurons. As previously reported, Nax-knockout (KO) mice did not show salt aversion under the water-depleted condition. Increased Fos expression was observed in the SFO(→vBNST) neurons of the Nax-KO mice compared with wild-type mice. In addition, electrophysiological experiments demonstrated that the Ang II-induced firing activity of the SFO(→vBNST) neurons was suppressed dependent on the activity of GABAergic neurons by a hypertonic Na solution. The Na-dependent responses were absent in brain slices prepared from Nax-KO mice. Thus, Nax signals suppressed the activity of the SFO(→vBNST) neurons through activation of GABAergic neurons in the SFO.

In addition, I explored inhibitory signals that suppress the activity of the SFO(→OVLT) neurons. I tested cholecystokinin (CCK) because it reportedly inhibits water intake. I found that the Ang II-induced firing activity of the SFO(→OVLT) neurons was suppressed by application of CCK through activation of GABAergic neurons in the SFO. In line with this finding, CCK levels in the SFO were increased under the Na-depleted condition. Of note, CCK did not affect the activity of the GABAergic neurons which made synapse onto the SFO(→vBNST) neurons. These results indicated that CCK levels in the SFO modulate the activity of the SFO(→OVLT) neurons through activation of another population of GABAergic neurons.

In summary, I demonstrated that the AT1a-positive SFO neurons projecting to the OVLT and vBNST encode thirst and salt appetites, respectively. I named these two population of driving neurons “water neuron” and “salt neuron”, respectively. The thirst and salt-appetite behaviors were separately controlled dependent on body-fluid conditions. This would provide substantial explanations for the neural mechanisms in the SFO that generate appropriate water- and salt-intake behaviors based on body-fluid conditions.

(4)

(Separate Form 3)

博 士 論 文 審 査 結 果 の 要 旨

Summary of the results of the doctoral thesis screening

脳 常 体 液 の 状 態 を 監 視 の 情 報 基 い 水 分 や 塩 分 の 欲 求 を 制 御

い の タ ン の 場 脳 室 面 血 液 ─ 脳 関 門 を い 脳 弓 器 官

(SFO) 脈 管 器 官(OVLT)等 の 感 覚 性 脳 室 周 囲 器 官 あ 推 定 さ い こ の 領

域 ン テ ン ン II (AngII)の 容 体 多 く 発 現 い ま 脳 室 内 AngII

を 投 水 分 塩 分 の 両 方 の 欲 求 誘 導 さ こ 知 い

動 物 水 分 乏 時 水 を 塩 乏 時 塩 分 を 選 択 的 摂 こ AngII

水 分 塩 分 欲 求 の 誘 導 作 用 体 液 状 態 応 調 節 さ い 推 定 さ の 脳

内 明 あ

田 氏 を 用 い ま 水 分 / 塩 分 両 乏 塩 乏 及 び 水 分 乏 の 3 の 状

態 を 作 成 血 中 の AngII 濃 度 様 約 3 倍 昇 こ を 確 認

の 状 態 け 水 食 塩 水 の 摂 量 を WT Ang II 容 体 ッ ト (AT1a-KO)

の 間 比 較 の 結 果 塩 分 欲 求 完 全 AT1a 依 存 的 あ 水 分 欲 求 約 半 分

AT1a 依 存 的 SFO OVLT特 異 的 AT1a

ト を 作 成 解 析 結 果 SFOAT1a 水 分 塩 分 の 両 方 の 欲 求 を

制 御 OVLTAT1a 水 分 欲 求 を 部 分 的 制 御 い こ 明

SFO AT1a ュ ー ン 酸 作 動 性 の 興 奮 性 ュ ー ン あ の 投 射 OVLT 腹 側 分 界 条 床 核(vBNST) 室 傍 核(PVN) 視 交 差 核(SON) 多 く の 神 経 核

わ い 水 分 乏 時 SFO OVLT 投 射 ュ ー ン(SFO(→OVLT) ュ ー

)Fosの 発 現 昇 こ SFO(OVLT) ュ ー ン 水 分 欲 求 を 制 御

い 予 想 一 方 塩 乏 時 SFO vBNST 投 射 ュ ー ン(SFO(vBNST)

ュ ー ン) Fos 発 現 こ SFO(→vBNST) ュ ー ン 塩 分 欲 求 を 制 御 い

予 想 こ の 仮 説 を 検 証 高 頻 度 逆 行 性 ン チ を 用 い 感 性

タ ン パ 質 を 発 現 さ こ の 神 経 活 動 を 選 択 的 操 作 実 験 プ ト テ

を 実 施 の 結 果 SFO(→OVLT) ュ ー ン の 活 動 水 分 欲 求 を 制 御 SFO(→

vBNST) ュ ー ン の 活 動 塩 分 欲 求 を 制 御 い こ を 実 証 こ 成 SFO

の の AT1a陽 性 ュ ー ン を 水 ュ ー ン 塩 ュ ー ン 命

田 氏 の 所 属 研 究 室 SFOの 細 胞 発 現 い Naxチ 脱 水

時 の 体 液 中 の Na+濃 度 昇 を 感 知 抑 制 性 ュ ー ン あ GABA ュ ー ン を 活 性 化

塩 分 欲 求 を 抑 制 こ を 明 い 田 氏 こ の GABA ュ ー ン 抑 制

相 手 塩 ュ ー ン い 考 え 脳 を 用 い 電 気 生 理 学 的 手 法

確 認 実 験 を 行 の 結 果 予 想 通 塩 ュ ー ン Nax GABA

ー ン を 介 抑 制 的 制 御 を け い こ 明 一 方 水 ュ ー ン 別 の

ー プ の GABA ュ ー ン 抑 制 的 制 御 さ こ の GABA ュ ー ン ホ

ン の 一 コ ト キ ン(CCK) 活 性 化 こ を 明 さ 塩 乏 時

SFO CCK を 見 出 こ の こ 乏 時 CCK

(5)

(Separate Form 3)

ュ ー ン の 活 動 を 抑 え い 推 定 さ

以 の 研 究 結 果 水 分 欲 求 塩 分 欲 求 を 担 う 神 経 路 を 世 界 駆 け 定

脱 水 時 水 分 欲 求 を 脱 塩 時 塩 分 欲 求 を 選 択 的 亢 進 脳 内 を

見 事 説 明 の あ 学 位 授 値 断

参照

関連したドキュメント

The solubilities of inorganic salts at high temperature and pressure in water vapor are important in the field such as SCWO (supercritical water oxidation) technology.. SCWO is an

  If, as argued above, monetary transfers between the water utility and potential customers disconnected are not allowed, then the water utility will be required to satisfy

4 because evolutionary algorithms work with a population of solutions, various optimal solutions can be obtained, or many solutions can be obtained with values close to the

These authors successfully used the llnearlzed theory for calculation of wave loading on a vertical circular cylinder extending from a horizontal ocean floor to above the free

EXCEPT AS EXPRESSLY STATED HEREIN, LOVELAND PRODUCTS, INC., THE MANUFACTURER OR SELLER MAKES NO WARRANTY OF RESULTS TO BE OBTAINED BY USE OF THE PRODUCT. BUYER'S OR USER'S

第 5

Princep 4L or Princep Caliber 90 plus Roundup brands: Use as tank mixture for preemergence and postemer- gence control of certain broadleaf and grass weeds where corn will be

Expert can also be used before crop emergence for control of many annual grass and broadleaf weeds in grain or forage sorghum, provided the sorghum seed has been properly treated