• 検索結果がありません。

最近の更新履歴 nkutsukake

N/A
N/A
Protected

Academic year: 2018

シェア "最近の更新履歴 nkutsukake"

Copied!
17
0
0

読み込み中.... (全文を見る)

全文

(1)

Electronic Appendix. 1. Skew indices used in this study.

1

(1) B index (Nonacs 2000, 2003)

2

B index was calculated by following equation:

3

4 5

N = the total number of males

6

pi= the proportion of copulations gained by the i th male

7

ni = time that i th male spends in a group

8

K = the total number of copulation

9

10

11

, where nmax is the maximum time that a male could be present.

12

(2)

As is shown in the above equation, the B index incorporates the residency of each male in a group. This characteristic is

13

suitable for calculating mating skew for some samples in the primate literature, given that individual male residence times often vary.

14

Finally, the B index is accurate when the total amount of ‘group productivity’ (i.e., total number of copulations in this study) is low

15

(Nonacs 2003). Studies in which two or more males failed to copulate were excluded when calculating B index.

16

In analyses of phylogenetic signal that used the test for serial independence (TFSI; Abouheif 1999), the B index was not

17

significantly associated with phylogeny (P = 0.28). Abouheif (1999) recommended using 10% as an alpha level when the power of the

18

TFSI seems low. However, the P value of the B index is still larger than the 10%, suggesting that the lack of correlation of B index with

19

phylogeny is not a result of low power.

20

21

(2) Lambda index (‘Iterative skew index’: Kokko and Lindstrom 1997)

22

The lambda index was calculated as follow:

23

24

r = rank of male (note that rank does not mean the dominance rank; instead, it reflects rank based on copulation frequency)

25

N = number of males

26

(3)

E[pr] = expected proportion of mating by r males

27

28

The lambda index does not depend on the total level of ‘group productivity’ (i.e., the number of copulation). By using the lambda index,

29

we were able to quantify the mating skew of some studies that report only the relative frequency of mating by each male.

30

We used Skew Calculator software (http://www.obee.ucla.edu/Faculty/Nonacs/) to calculate the B and lambda indices. Values

31

were calculated on a per-group basis, and these were averaged when more than one estimate was available for a species. In some cases,

32

these estimates were for the same group over time (Bercovitch 1986; Curie-Cohen et al. 1983; Nishida 1983, 1997; Possamai et al.

33

2005; Strier 1992, 1994, 1997; Strier et al. 1993).

34

35

(4)

Electronic Appendix. 2. The expected probability of female receptive overlapping.

35

The expected probability was calculated from the length of breeding season, duration of estrus, and the number of females in a

36

group (k), following Dunbar (1988, 1999) and Nunn (1999a).

37

38

P(Y) = k! / {Y!*(k-Y)!} * pY * (1-p) k-Y

39

40

In this equation, P(Y) is the probability that Y females are mating simultaneously, k is the number of females in the group (rounded to

41

nearest integer), and p is the probability of mating during the breeding season. P was calculated as 2 * (duration of estrus) / (the length

42

of breeding season), thus assuming two cycles to conception. These parameters were used to calculate the probability of zero or one

43

female mating per day, which was subtracted from 1 to give the probability that two or more females mate on a given day (because

44

probabilities must sum to 1).

45

46

47

(5)

Electronic Appendix. 3. Studies used to calculate the mating skew

47

48

ID Species #

male

# female

B index

P value of B index

lambda the maximum proportion mating

Rank of the most successful male

#

Copulation observed

Male dispersal pattern

Breeding season duration (days = birth season)

Duration of estrus (days)

Observed estrous overlap

Expected estrous overlap

synchrony index

1 mantled howler monkey

Alouatta palliata

3 15 0.02 0.18 0.33 0.47 1 34 D 365 3 7.50 2.50 0.41

2 2 10 -0.31 0.72 0.39 0.62 1 8 1.10

3 red howler monkey

Alouatta seniculus

2 - - - 1 1 1 - D 365 3 2.50 - 0.13

4 2 - - - 1 1 1 -

5 muriqui Brachyteles arachnoides

5 18 0.01 0.01 0.16 0.26 - 227 P 153 2 14.90 7.90 0.53

6 7 8 0.06 0.001 0.34 0.39 - 39 1.70

7 8 8 0.16 0 0.50 0.50 - 18 1.70

8 19 25 0.01 0 0.09 0.10 - 215 13.80

9* brown capuchin

Cebus apella 5 6 - - 0.34 0.38 1 - D 92 5 9.50 13.20 0.44

10 white-faced capuchin

Cebus capucinus

4 6 -0.63 0.91 0.50 0.50 3 4 D 212 - 15.80 2.90 -

11 red-tailed monkey

Cercopithecus ascanius

9 10 - - 0.59 0.59 - 18 D 182 3 4.10 4.10 -

12 blue monkey Cercopithecus mitis

9 12 - - 0.24 0.29 1 - D 120 2 1.50 5.90 -0.61

13 19 18 - - 0.19 0.18 4 150 12.00

14 vervet Chlorocebus 2 3 0.48 0 1 1 1 26 D 92 33 92.90 80.60 -

(6)

monkey aethiops

15 3 4 0.60 0 1 1 1 10 92.90

16 redfronted lemur

Eulemur fulvus

4 2 - - - 0.77 1 - D - - - - -

17 6 3 - - - 0.41 1 -

18 2 3 0.38 0.12 1 1 1 4

19 2 3 0.25 0.49 1 1 1 2

20 patas monkey Erythrocebus patas

5 4 - - 0.41 0.36 1 31 D 62 2 47.70 2.30 0.56

21 mountain gorilla

Gorilla gorilla 2 7 0.21 0 0.8 0.83 1 48 D 365 2 0 0.20 -0.39

22 3 11 0.15 0.001 0.63 0.66 1 35 0.60

23 ringtailed lemur

Lemur catta 3 5 0.08 0.21 0.63 0.50 1 7 D 38 1 0 2.5 -0.61

24 3 5 -0.08 1 0.22 0.57 1 7 2.5

25 2 4 -0.08 1 0 0.43 1 and 2 6 1.5

26 gray-cheeked mangabey

Lophocebus albigena

5 7 0.18 0 0.55 0.53 1 53 D 212 4 1.90 2.60 -

27 stump-tailed macaque

Macaca arctoides

7 16 - - - 0.69 1 113 D - - - - -

28 long-tailed macaque

Macaca fascicularis

10 12 - - - 0.26 1 940 D 123 15 66.60 83.00 0.48

29* Japanese macaque

Macaca fuscata

5 6 - - 1 1 1 - D 46 11 56.50 86.90 0.27

30 8 - 0.03 0 0.21 0.25 1 204 -

31 9 - 0.01 0.002 0.11 0.19 1 276 -

32 7 - 0.08 0 0.34 0.34 3 204 -

33 11 18 - - - 0.30 1 - 96.80

34 rhesus macaque

Macaca mulatta

11 12 0.05 0 0.23 0.18 3 184 D 82 9 39.80 77.60 0.23

35 5 9 0.53 0 0.86 0.86 1 28 62.00

36 6 16 - - - 0.76 1 99 89.60

(7)

37 10 17 - - - 0.72 1 85 91.40

38 10 15 - - - 0.68 1 72 87.30

39 6 12 - - - 0.56 1 34 77.60

40 7 12 0.26 0 0.59 0.57 1 42 77.60

41 9 19 - - - 0.43 1 46 94.30

42 pig-tailed macaque

Macaca nemestrina

5 22 0.19 0 0.56 0.55 1 56 D 365 13 41.70 47.10 0.31

43 3 14 0.13 0 0.58 0.57 1 150 26.30

44 black macaque

Macaca nigra 6 30 0.08 0.002 0.41 0.42 2 26 D - - - - -

45 bonnet macaque

Macaca radiata

5 28 - - - 0.46 1 - D 92 5 - 82.40 -

46 6 29 - - - 0.31 1 83.90

47 Barbary macaque

Macaca sylvanus

5 28 0 0.21 0.16 0.27 1 97 D 76 14 35.90 100.00 0.08

48 9 32 0.11 0 0.36 0.38 1 325 100.00

49 7 9 0.05 0 0.28 0.24 4 179 90.00

50 mandrill Mandrillus sphinx

3 14 0.31 0 0.79 0.80 1 30 D - - - - -

51* bonobo Pan paniscus 8 15 - - 0.24 0.28 1 - P 365 15 - 35.30 -

52* 7 8 0.03 0.002 0.20 0.23 1 13.60

53 chimpanzee Pan troglodytes

4 19 - - 0.76 0.74 1 23 P 365 14 7.8 43.40 -0.49

54 4 19 0.33 0 0.76 0.77 1 29 43.40

55 4 19 0.12 0.04 0.50 0.48 1 13 43.40

56 4 19 - - 1.00 1 1 21 43.40

57 3 19 0.28 0.07 1.00 1 1 10 43.40

58 2 19 0.21 0.02 0.88 0.89 1 3 43.40

59 2 19 - - 1.00 1 1 5 43.40

60 3 19 - - 1.00 1 1 12 43.40

61 3 19 0.47 0 0.91 0.91 1 15 43.40

62 3 19 0.27 0 0.72 0.75 1 7 43.40

63 3 19 0.36 0 0.87 0.88 1 21 43.40

64 3 19 0.03 0.06 0.38 0.51 3? 42 43.40

(8)

65 3 19 0.42 0 0.89 0.90 1 34 43.40

66 3 19 0.28 0 0.70 0.71 1 37 43.40

67 5 17 0.01 0.24 0.19 0.28 4 42 37.90

68 9 29 - - 0.27 0.27 1 27 66.30

69 9 29 0.02 0.08 0.24 0.29 1 67 66.30

70 savanna baboon

Papio anubis 8 19 0.27 0 0.59 0.59 6 41 D 365 6 - 12.80 -

71 6 19 0.10 0 0.40 0.37 2 100 12.80

72 6 19 0.12 0 0.45 0.38 4 47 12.80

73 5 19 0.10 0 0.43 0.39 2 92 12.80

74 6 19 0.09 0 0.39 0.36 4 103 12.80

75 7 19 0.05 0 0.27 0.33 5 337 12.80

76 5 19 0.07 0 0.35 0.34 3 340 12.80

77 chacma baboon

Papio ursinus 3 31 0.04 0.04 0.41 0.51 2? 35 D 365 9 - 45.60 -

78 6 7 0.04 0.002 0.31 0.34 1 53 4.30

79 3 - 0.05 0 0.41 0.52 1 194 -

80* red colobus Pilicolobus badius

8 16 - - 0.29 0.31 - - P 244 5 75 13.80 -

81 olive colobus Procolobus verus

2 2 0.48 0 0.99 0.99 1 207 D 89 - 18.40 - -

82 Verreaux’s sifaka

Propithecus verreauxi

2 3 -0.08 1 0.33 0.60 1 5 D - - - - -

83 squirrel monkey

Saimiri oerstedii

3 16 0.18 0.002 0.67 0.70 - 27 P 59 2 11.90 29.60 -

84 common langur

Semnopithecus entellus

6 19 0.07 0 0.36 0.38 1 48 D 365 6 4.20 12.80 -0.49

*: calculated from the relative frequency

49

# male: the number of males; # females: the number of females

50

(9)

‘the rank of the most successful male’: the dominance rank of the male that copulated most frequently

51

‘Empirical overlapping of female receptivity’: data from Nunn (1999a)

52

‘Expected overlapping of female receptivity’: calculated from the reproductive data in Nunn (1999a) and the number of females in each

53

study

54

‘Synchrony index’: data from Nunn (1999a)

55

56

References -- 1, 2: Jones 1985; 3, 4: Pope 1990; 5: Strier 1997; 6: Strier 1994; Strier 1992; 7: Strier 1994; Strier et al. 1993; 8: Possamai

57

et al. 2005; 9: Janson 1984; 10: Perry 1997; 11: Cords 1984; 12: Tsingalia and Rowell 1984; 13: Cords et al. 1986; 14, 15: Struhsaker

58

1967; 16, 17: Ostner & Kappeler 1999; 18, 19: Gachot-Neveu et al 1999; 20: Ohsawa et al. 1993; 21, 22: Robbins 1999; 23: Taylor &

59

Sussman 1985; 24, 25: Sauther 1991, Sussman, 1992; 26: Wallis 1983; 27: Brereton 1994; 28: de Ruiter et al. 1994; 29: Matsubara

60

2003; 30-32: Takahata 1982; 33: Inoue et al. 1991; 34: Loy 1971; 35-41: Curie-Cohen et al. 1983; 42, 43: Oi 1996; 44: Reed et al. 1997;

61

45, 46: Samuel et al. 1984; 47, 48: Paul 1989; 49: Taub 1980; 50: Dixson et al. 1993; 51: Gerloff et al. 1999; 52: Kano 1996; 53-66:

62

Nishida 1983; 67: Boesch and Boesch-Achermann 2000; 68, 69: Nishida 1997; 70-76: Bercovitch 1986; 77: Saayman 1971; 78, 79: Hall

63

and de Vore 1965; 80: Struhsaker and Pope 1991; 81: Korstjens and Noe 2004; 82: Brockman & Whitten, 1996, Brockman et al 1998;

64

83: Boinski 1987; 84: Jay 1965

65

(10)

Notes -- 8: from Table 1, copulation with ejaculation; 10: when females were cycling; 11: copulation with ejaculation; 21, 22: from Fig.

66

1; copulation only during cycling; 27: From Fig. 2(a); 28: From Fig. 1; 34: R006 was excluded from the analysis because of

67

emigration; 67: Table 4.4; 72-76: cycle stage from cycle days ‘3’ to ‘0’; 77: copulation with ejaculation; 80: copulation with

68

ejaculation; 82: conception cycle (Brockman and Whitten 1996); Vavy Masiaka group was not included because of group

69

instability; 83: From Table 2, excluding copulation by juvenile males and females;.

70

71

72

(11)

Electronic Appendix. 4. Dataset of demography, male dispersal pattern, and three indices of mating skew (species averages).

72

Species Male

dispersal patterna

# males

# females

B index

Significantly skewed? b

<.05 .05 > .1 ~ .1

lambda the maximum

proportion mating

% cases that the alpha male or the resident male

copulated most frequently

dominance rank of the male that copulated most frequently other than the alpha male

mantled howler monkey

Alouatta palliata

D 2.50 12.50 -0.15 - - 2 0.36 54.50 100 (2/2)

red howler monkey

Alouatta seniculus

D 2.00 - - - - - 1.00 100 100 (2/2)

Muriqui Brachyteles arachnoides

P 9.75 14.80 0.06 4 - - 0.27 30.95 -

brown capuchin

Cebus apella D 5.00 6.00 - - - - 0.34 38.18 100 (1/1)

white-faced capuchin

Cebus capucinus

D 4.00 6.00 -0.63 - - 1 0.50 50.00 0 (0/1) 3rd

red-tailed monkey

Cercopithecus ascanius

D 9.00 10.00 - - - - 0.59 58.86 -

blue monkey Cercopithecus mitis

D 14.00 15.00 - - - - 0.22 23.13 50 (1/2)c 4th

vervet monkey Chlorocebus aethiops

D 2.50 3.50 0.54 2 - - 1.00 100 100 (2/2)

Redfronted lemur

Eulemur fulvus

D 3.50 2.80 0.31 - - 2 1 79.50 100 (4)

patas monkey Erythrocebus patas

D 5.00 4.00 - - - - 0.41 36.18 100 (1/1)c

(12)

Mountain gorilla

Gorilla beringei

D 2.50 9.00 0.18 2 - - 0.71 74.52 100 (2/2)

Ringtailed lemur

Lemur catta D 2.70 4.70 -0.03 - - 3 0.28 50.00 67 (2/3) c 2nd d

Gray-cheeked mangabey

Lophocebus albigena

D 5.00 7.00 0.18 1 - - 0.55 52.83 100 (1/1)

stump-tailed macaque

Macaca arctoides

D 7.00 16.00 - - - - - 69.03 100 (1/1)

long-tailed macaque

Macaca fascicularis

D 10.00 12.00 - - - - - 26.00 100 (1/1)

Japanese macaque

Macaca fuscata

D 8.00 12.00 0.04 3.00 - - 0.41 41.46 80 (4/5) 3rd

rhesus macaque

Macaca mulatta

D 8.00 14.00 0.28 3 - - 0.56 59.49 87.5 (7/8) 3rd

pig-tailed macaque

Macaca nemestrina

D 4.00 18.00 0.16 2 - - 0.57 56.35 100 (2/2)

black macaque Macaca nigra - 6.00 30.00 0.08 1 - - 0.41 42.31 0 (0/1) 2nd

bonnet macaque

Macaca radiata

D 5.50 28.50 - - - - - 38.50 100 (2/2)

Barbary macaque

Macaca sylvanus

D 7.00 23.00 0.06 2 - 1 0.27 29.37 66.7 (2/3) 4th

Mandrill Mandrillus sphinx

D 3.00 14.00 0.31 1 - - 0.79 80.00 100 (1/1)

Bonobo Pan paniscus P 7.50 11.50 0.025 1 - - 0.22 25.57 100 (2/2)

Chimpanzee Pan troglodytes

P 3.94 20.10 0.23 8 3 1 0.71 72.67 88.23 (15/17) 3rd?, 4th

(13)

savanna baboon

Papio anubis D 6.14 19.00 0.12 7 - - 0.41 39.50 0 (0/7) 2nd, 2nd, 3rd,

4th, 4th, 5th, 6th

chacma baboon

Papio ursinus D 4.00 19.00 0.05 2 - - 0.38 45.82 50 (1/2) 2nd?

red colobus Piliocolobus baduis

P 8.00 16.00 - - - - 0.29 30.81 -

olive colobus Procolobus verus

D 2.00 2.00 0.48 1 - - 0.99 99.03 100 (1/1)

Verreaux’s sifaka

Propithecus verreauxi

D 2.00 3.00 -0.08 - - 1 0.33 60.00 100 (1/1)

squirrel monkey

Saimiri oerstedii

P 3.00 16.00 0.18 1 - - 0.67 70.37 -

common langur

Semnopithecu s entellus

D 6.00 19.00 0.07 1 - - 0.36 37.50 100 (1/1)

total 43 3 11 76.1 (51/67)

a: D = dispersal; P = philopatric

73

b: the number of studies classified by the P value of the B-index

74

c: resident male

75

d: the mating frequencies of the alpha (central) male and beta male was same

76

(14)

References not cited in the text

77

Boinski S (1987) Mating patterns in squirrel monkeys (Saimiri oerstedi). Behav Ecol Sociobiol 21:13-21

78

Brockman DK & Whitten PL (1996) Reproduction in free-ranging Propithecus verreauxi: estrus and the relationship between multiple

79

partner matings and fertilization. Am J Phys Anthropol 100: 57-69

80

Brockman DK,Whitten PL, Richard AF, Schneider A (1998) Reproduction in free-ranging male Propithecus verreauxi: the hormonal

81

correlates of mating and aggression. Am J Phys Anthropol 105:137-151

82

Cords M, Mitchell BJ, Tsingalia HM, Rowell TE (1986) Promiscuous mating among blue monkeys in the Kakamega Forest, Kenya.

83

Ethology 72:214-226

84

Dixson AF, Bossi T, Wickings EJ (1993) Male dominance and genetically determined reproductive success in the mandrill (Mandrillus

85

sphinx). Primates 34:525-532

86

Gachot-Neveu H, Petit M, Roeder JJ (1999) Paternity determination in two groups of Eulemur fulvus mayottensis: implications for

87

understanding mating strategies. Int J Primatol 20: 107-119

88

Gerloff U, Hartung B, Fruth B, Hohmann G, Tautz D (1999) Intracommunity relationships, dispersal pattern and paternity success in a

89

wild living community of Bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proc R Soc Lond B

90

266:1189–1195

91

(15)

Hall KRL, DeVore I (1965) Baboon social behavior. In: DeVore I (ed) Primate Behavior. Field Studies of Monkeys and Apes. Holt,

92

Rinehart and Winston, New York. pp 53-110

93

Janson CH (1984) Female choice and mating system of the brown capuchin monkey Cebus apella (Primates: Cebidae). Z Tierpsychol

94

65:177-200

95

Jay P (1965) The common langur of north India. In: DeVore I (ed) Primate Behavior. Field Studies of Monkeys and Apes. Holt, Rinehart

96

and Winston, New York. pp 197-249

97

Jones CB (1985) Reproductive patterns in mantled howler monkeys: estrus, mate choice and copulation. Primates 26: 130-142

98

Kano T (1996) Male rank order and copulation rate in a unit-group of bonobos at Wamba, Zaire. In: McGrew WC, Marchant LF,

99

Nishida T (eds) Great Ape Societies. Cambridge University Press, Cambridge. pp 135-145

100

Korstjens AH, Noe¨ R (2004) Mating system of an exceptional primate, the olive colobus (Procolobus verus). Am J Primatol 62:261-273

101

Loy J (1971) Estrous behavior of free-ranging rhesus monkeys (Macaca mulatta). Primates 12:1-31

102

Oi T (1996) Sexual behaviour and mating system of the wild pig-tailed macaque in West Sumatra. In: Lindburg DG, Fa JE (eds)

103

Evolution and Ecology of Macaque Societies, Cambridge University Press, Cambridge. pp 342-368

104

Ostner J, Kappeler PM (1999) Central males instead of multiple pairs in redfronted lemurs, Eulemur fulvus rufus (Primates, Lemuridae)?

105

Anim Behav 58: 1069-1078

106

(16)

Paul A (1989) Determinants of male mating success in a large group of Barbary macaques (Macaca sylvanus) at Affenberg Salem.

107

Primates 30:461-476

108

Reed C, O'Brien TG, Kinnaird MF (1997) Male social behavior and dominance hierarchy in the Sulawesi crested black macaque

109

(Macaca nigra). Int J Primatol 18:247-260

110

Saayman GS (1971) Behaviour of the adult males in a troop of free-ranging chacma baboons (Papio ursinus). Folia Primatol 15:36-57

111

Sauther ML. 1991. Reproductive behavior of free-ranging Lemur catta at Beza Mahafaly Special Reserve, Madagascar. Am J Phys

112

Anthropol 84:463-477

113

Strier KB (1992) Causes and consequences of nonaggression in the woolly spider monkey, or muriqui (Brachyteles arachnoides). In:

114

Silverberg J, Gray JP (eds) Aggression and peacefulness in humans and other primates. Oxford University Press, New York. pp

115

100-116

116

Strier KB (1994) Brotherhoods among atelins: kinship, affiliation, and competition. Behaviour 130:151-167

117

Strier KB (1997) Mate preferences of wild muriqui monkeys (Brachyteles arachnoides): Reproductive and social correlates. Folia

118

Primatol 68:120-133

119

Strier KB, Mendes FDC, Rimoli J, Rimoli AO (1993) Demography and social structure of one group of muriquis (Brachyteles

120

arachnoides). Int J Primatol 14:513-526

121

(17)

Struhsaker TT (1967) Social structure among vervet monkeys (Cercopithecus aethiops). Behaviour 29:83-121

122

Sussman RW (1992) Male life histories and inter-group mobility among ringtailed lemurs (Lemur catta). Int. J. Primatol. 13: 395-413

123

Takahata Y (1982) The socio-sexual behavior of Japanese monkeys. Z Tierpsychol 59:89-108

124

Taub DM (1980) Female choice and mating strategies among wild Barbary macaques (Macaca sylvanus L.). In: Lindburg DG (ed) The

125

Macaques: Studies in Ecology, Behavior and Evolution. Van Nostrand Reinhold Co, New York. pp 287-344

126

Taylor L, Sussman RW (1985) A preliminary study of kinship and social organization in a semi-free-ranging group of Lemur catta. Int J

127

Primatol 6: 601-614

128

Tsingalia HM, Rowell TE (1984) The behaviour of adult male blue monkeys. Z Tierpsychol 64:253-268

129

Wallis SJ (1983) Sexual behavior and reproduction of Cercocebus albigena johnstonii in Kibale Forest, Western Uganda. Int J Primatol

130

4:153-166

131

132

133

参照

関連したドキュメント

Complex formation is used as a unified approach to derive represen- tations and approximations of the functional response in predator prey relations, mating, and sexual

В данной работе приводится алгоритм решения обратной динамической задачи сейсмики в частотной области для горизонтально-слоистой среды

Theorem 4.8 shows that the addition of the nonlocal term to local diffusion pro- duces similar early pattern results when compared to the pure local case considered in [33].. Lemma

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

In recent years, several methods have been developed to obtain traveling wave solutions for many NLEEs, such as the theta function method 1, the Jacobi elliptic function

It is also well-known that one can determine soliton solutions and algebro-geometric solutions for various other nonlinear evolution equations and corresponding hierarchies, e.g.,

Our method of proof can also be used to recover the rational homotopy of L K(2) S 0 as well as the chromatic splitting conjecture at primes p &gt; 3 [16]; we only need to use the

This paper presents an investigation into the mechanics of this specific problem and develops an analytical approach that accounts for the effects of geometrical and material data on