• 検索結果がありません。

【イベント開催】5月19日(金)”北海道の自然エネルギー拡大に向けた電力システムの発展 −欧州の事例から-” 北海道再生可能エネルギー振興機構

N/A
N/A
Protected

Academic year: 2018

シェア "【イベント開催】5月19日(金)”北海道の自然エネルギー拡大に向けた電力システムの発展 −欧州の事例から-” 北海道再生可能エネルギー振興機構"

Copied!
30
0
0

読み込み中.... (全文を見る)

全文

(1)

+

再エネと送電網の費用便益分析

∼欧州ではなぜ系統整備が進むのか∼

公開シンポジウム

北海道の自然エネルギー

拡大に向けた

電力システムの発展

―欧州の事例から―

2017年5月19日(金)

安 田 陽

京都大学大学院 経済学研究科

再生可能エネルギー経済学講座

特任教授

(2)

+ 日本と世界のギャップ

n なぜ日本では再エネ導入が進まないのか?

n 再エネは高コスト、国民負担の増大(?)

n 系統連系問題:もう一杯でつなげない(?)

n 送電線:電力需要が伸びないので投資は手控え(?)

n なぜ世界では再エネ導入が進むのか?

n 再エネは国民に便益をもたらす

n 系統連系:技術的課題ではなく法制度の問題

n 送電線:再エネのおかげで投資が活況

2

(3)

+

0%

10%

20%

30%

40%

50%

60%



1

)



(

/





/



/

-

1





'

1







.



+







.



&

/







1





.



-

1













-

.



/





1

%

/



(

-

1



,



-

1







$

-

1











/







$



1

-

1









.

"

1



.

*









0

#







-

/







0

&



!

/









-

1



[ % o f T W h ]

風力+太陽光の発電電力量導入率

国際比較 (2015年)

3

(data source) IEA Electricity Information 2016

日本は 4.1%

で 22 位

デンマークが

1位で50%超

20%超が3カ国

(4)

+ 変動電源導入率のフェーズ

(IEAの最新の報告書より)

4

IE DK

DE ES

UK

IT GR PT

CL BR

IN NL

NZ

CA

AT

SE

BE

AU

ID

ZA MX

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

Share of VRE generation

Phase 4

Phase 3

Phase 2

Phase 1

Source: Adapted from IEA (2016d), Medium-Term Renewable Energy Market Report 2016

(出典)IEA: Getting wind and sun onto the grid – A manual for Policy Makers (2017)

この辺り 日本は

世界の中の日本の位置付けは?

日本特殊論は世界に通用するか?

(5)

+ 北海道とアイルランド島の比較 5

面積・人口・電力

ほぼ同じ

風力発電 1:10

(6)

+ 北海道とアイルランド島の比較

(2015年度) 北海道 アイルランド島 (2015年)

8.3 面積 [万km 2 ] 8.4

547 人口 [万人] 641

5.0 ピーク電力 [GW] 6.5

30.4 発電電力量 [TWh] 36

0.6 連系線容量 [GW] 1.0

0.3 風力 容量 [GW] 3.0

0.65 *1 電力量 [TWh] 8.2

0.97 太陽光 容量[MW] 0

0.85 *2 電力量 [TWh] 0

5% *1*2 変動電源シェア [%] 22.8%

6

*1: 設備利用率25%と仮定した場合の推定値, *2: 設備利用率10%とした場合の推定値

(7)

+ なぜ世界中で再生可能エネルギーが

促進されるのか?

n 費用便益比が大きいから。

n かけたコスト(費用)よりも市民にもたらされる

リターン(便益)が大きい。

n コストはそれなりにかかる。コストが高いからといって

投資を控えると、便益が得られない。

n 外部コストが一番低い電源だから

n 外部コストはゼロではない (騒音・景観影響 etc.)

n 外部コストがゼロではないからと言って排除すると、更に

外部コストの高い電源を選択しなければならなくなる。

日本では定量的議論

が非常に少ない

7

(8)

+ 便益 benefit

n コスト、コストと言われることは多いが・・・。

「便益」に関する議論は抜け落ちがち。

n 「便益とは」?

n 人々が受ける恩恵の貨幣表現。コストの反意語。

n 利益 profit と異なり、一部の人のみが得をするので

はなく、ステークホルダー全員が共有できるもの。

n かけた費用(コスト)に対してそれに見合う便益が得ら

れるか?が重要(費用便益比)

n エネルギー問題のコスト・便益は社会化されるべき。

8

(9)

+ 再生可能エネルギーの便益

n 化石燃料の削減

n 健康被害の抑制

n 輸入依存度低減

n 自然保護

n CO 2 削減

n 異常気象の抑制

n 生態系への影響

n その他

n 雇用創出

9

定量分析の 欧米では

報告書も 多い

࿑㧙㧝 ᭎⇛ᬌ⸛ࡈࡠ࡯

㧝㧚⾌↪෸߮ଢ⋉▚಴ߩ೨ឭ㧔1-(4)㧕

 ␠ળ⊛ഀᒁ₸  㧦4%

 ၮḰᐕᰴ    㧦⹏ଔᤨὐ

 ᬌ⸛ᐕᢙ    㧦50

㧞㧚ଢ⋉ߩ▚ቯ 㧟㧚⾌↪ߩ▚ቯ

 ࡮㆏〝ᢛ஻ߦ

ⷐߔࠆ੐ᬺ⾌㧔3-(2)㧕

 ࡮㆏〝⛽ᜬ▤ℂߦ

ⷐߔࠆ⾌↪㧔3-(3)㧕

✚ ଢ ✚ ⾌

⃻࿷ଔ୯ߩ▚಴

੤ㅢᵹߩផ⸘㧔2-(1)㧕 ٤੤ㅢ㊂

٤⿛ⴕㅦᐲ ٤〝✢᧦ઙ

ଢ⋉ߩ▚ቯ

࡮⿛ⴕᤨ㑆⍴❗ଢ⋉㧔2-(2)㧕

࡮⿛ⴕ⚻⾌ᷫዋଢ⋉㧔2-(3)㧕

࡮੤ㅢ੐᡿ᷫዋଢ⋉㧔2-(4)㧕

ଢ⋉ߩ⃻࿷ଔ୯㧔2-(5)㧕 ⾌↪ߩ⃻࿷ଔ୯㧔3-(4)㧕

㧠㧚⾌↪ଢ⋉ಽᨆߩታᣉ㧔4㧕

国土交通省道路局:「費用便益分析マニュアル」, 2008

土木 分野

での例

(10)

+ エネルギーの選択

n 費用便益分析 (CBA) の必要性

n 費用 (コスト) > 便益 (ベネフィット)

n 推進すべきではない。

n コスト削減を努力する。

n 費用 (コスト) < 便益 (ベネフィット)

n コストが高くても推進すべき。

n コストを支払う世代と便益を受け取る世代が

異なる場合、どう合意形成を図るか…?

(例: 公害問題、地球温暖化)

n 費用便益の定量化が必要

n 費用には隠れたコスト(外部コスト)も含めるべき。

10

(11)

+ 費用負担に関する発想の転換

n 日本 (従来)

n 原因者負担の原則 polluters-pay principle

n 再エネの変動対策・系統増強は再エネ事業者が負担

n 一見公平に見えるが、

新規参入者に対する参入障壁に?

n 欧州・北米

n 受益者負担の原則 beneficiary-pay principle

n 再エネの変動対策や系統増強は送電会社の責務

n コストの社会化・最適化

n 特定のセクターの利益ではなく、社会全体の便益

n 系統技術のイノベーション・投資が進む

11

ルールにも登場 広域機関

旧ESCJルール

に明記

(12)

+ 発送電分離後の世界

n 「電力会社」はもはや存在しなくなる

n 発電会社、送電会社、小売会社に分離

n 発電会社

n 市場メカニズムのもと、競争原理。

n メリットオーダーによる競争下では、再エネが優位。

n 火力はエネルギーでなく調整力を売るビジネスに。

n 送電会社

n 電力系統の「監視」役。市場と二人三脚。

n ネットワークコストの収入で経営。

n 再エネを積極的に受け入れるようになる。

12

(13)

+ 発送電分離後の

欧州の電力業界の再編

n ENTSO-E:欧州 電力系統事業者ネットワーク

n 送電系統運用者 (TSO) の協議会

n 34ヶ国41事業者の巨大な団体

n 2年ごとに「電力系統10ヶ年計画」(TYDNP)の

公表が義務づけられている

n ENTSO-Eに関する日本語情報は非常に少ない

n Eurelectric

n 発電事業者および小売&DSOの連盟

n 日本から電気事業連合会がオブザーバ参加。

n Eurelectricの発信情報は比較的日本語になりやすい

13

(14)

+

0

20

40

60

80

100

0

100

200

300

400

500

2002 2004 2006 2008 2010 2012 2014 2016

E n e rg y E xc h an g e f ro m /t o G B [ T W h ]

Year

Consumption

VRE Generation

Interconnector Usage

連系線の活用は増加傾向

(英国の例)

(初出) Y. Yasuda: Does variable renewable energy promote grid expansion? ,

Wind Integration Workshop (2016, 11, to be issued)

電力消費は漸減傾向

にあるが・・・

REと電力融通は

増加傾向!

西暦 []

国際連系線取引電力量

太陽+風力発電電力量

総消費電力量

電 力 量 [TW h] 電 力 量 [TW h]

14

(15)

+

0 20 40 60 80 100

TBCF [%]

0 20 40 60 80 100

DKW > NO

DKW > SE

DKW > DE

DKE > SE

DKE > DE

FR > DE

FR > GB

FR > IT

FR > ES

NO > NL

NL > GB

TBCF [%]

日本の連系線は使われていない。

(年間最大運用容量に対する比率, 2013年)

(出典) 安田: 第37回風力利用シンポジウム, pp.447-450 (2015)

日本は既存の

連系線を有効に

使っていない。

使う仕組みが

できていない。

市場ベースで 欧州は

利用が盛ん

15

(16)

+ ENTSO-Eの系統開発10ヶ年計画 16

http://tyndp.entsoe.eu

(17)

+

n 欧州電力系統事業者ネットワーク (ENTSO-E)が

2年に1回発行を義務づけられた報告書

n 既設線のボトルネック分析

n 再エネ大量導入を想定した系統計画

n 2050年までのロードマップの中で

今後10年間の短中期的計画を提案

n 系統新設・増強計画の費用便益分析

(CBA: Cost-Benefit Analysis)

n 系統拡張の正当性 (justification) を

定量評価

10-Year Network Development Plan 2012

European Network of Transmission System Operators for Electricity

ENTSO-Eの系統開発10ヶ年計画

(TYNDP)

17

(18)

30.1%

47.1%

4.8%

17.9%

7.4%

22.8% 16.8%

17.1% 6.2%

7.0%

30.3%

49.4%

7.8%

16.0%

6.5%

20.3% 15.4%

14.3% 5.3%

14.6%

25.1%

59.2%

13.4%

4.0% 7.6%

15.7%

17.5% 23.6%

8.9%

9.2%

26.1%

58.6%

15.4%

3.5% 7.4%

14.8%

16.5% 25.0%

8.4%

9.1%

ィ ョ :欧州グ ー オ

ィ ョ :発展抑制 オ

ィ ョ :各国グ ー オ

ィ ョ :発展遅延 オ

エネ ギーロー マップ 2050 から遅延

エネ ギーロー マップ 2050 に向け進展

欧 州 の 弱 い 結 束 欧 州 の 強 い 枠 組

2030年

における シナリオ

(データソース) ENTSO-

E: “Ten Year Network

Development Plan

2016” (2016)

( グラフ出典)安田:

世界の再生可能エネル

ギーと電力システム

風力発電編, インプレス

R&D (2016)

(19)

+ EUの共通利益プロジェクト (PCI)

n 欧州の政府に相当

する欧州委員会が

主導

n EU Decision

「汎欧州エネル

ギーネットワーク

のガイドライン」

(2006)

n 欧州の送電線・ガ

スパイプラインの

優先順位を決定

n 費用便益分析

19

(出典) European Commission: Projects of Common Interest – Interactive Map

http://ec.europa.eu/energy/infrastructure/transparency_platform/map-viewer/

(20)

+ ENTSO-E TYNDP2016

n TYNDP2016

n 2016年12月に

公表

n 2030年までに

欧州全域で

約200件の

送電線計画

n その多くが北海・

バルト海のオフ

ショアグリッド

20

Investing in the project portfolio represents generally a payback for society after 20 years in a rather conservative scenario. The TYNDP 2016 thus confirms the main findings of the previous releases of the TYNDP. It also completes them in new respects by exploring and presenting additional elements.

Figure 4 - Reduction in the yearly average of hourly marginal cost spreads in Vision 3, illustrating the benefit of TYNDP investments for European market integration. The total bar height represents the average price spread at each border in Vision 3 without the TYNDP investments; the green bars represent the remaining spread with the market capacity delivered by TYNDP investments.

Footnotes:

. These projects of pan-European significance must however be completed at regional or national level to achieve an overall consistent development of the whole energy system. Σ

1

2

27% RES in Europe’s energy supply by 2030 means more grid

13

■ 送電線の建設・増強がない場合に

発生する市場価格差

■ 統合市場による便益

(出典) ENTSO-E: “Ten Year Network Development Plan 2016” (2016)

(21)

+ 再エネ大量導入とスポット価格下落 21

Figure 4 Renewables and spot electricity prices

Source: EPEX, EEX, own calculations

(source) J. Cludius et al: The Merit Order Effect of Wind and Photovoltaic Electricity Generation in

Germany 2008-2012, Centre for Energy and Environmental Market (2013)

–1.12 €/MWh/GW

RE

VRE導入と

スポット価格は

強い負の相関

(22)

+

0

20

40

60

80

100

120

140

Brent

EPEX

再エネ大量導入による

欧州電力市場の卸価格の推移

(データソース)U.S. Energy Information Administration (EIA): Petroleum & other liquid

および European Power Exchange (EPEX): KWK Price より筆者作成

2010年以降、

原油高止まりで

も電力スポット

価格は低減傾向

22

2015 2010

2005 2000

Br e n t Sp o t [U SD /Ba rr e l] , EPEX Sp o t [EU R /MW h ]

(23)

+ TYNDPの費用便益分析の手法 23

ᡛᩓᚘဒ ȗ ȭǸǧǯȈ

ᚸ̖

২ᘐႎᝡྂࡇ ȗȭǸǧǯȈdzǹȈ

Ტ%

࿢ؾࢨ᪪Ტ5 ƓǑƼᅈ˟ႎࢨ᪪Ტ5

ܤܭ̓ዅƷોծ Ტ$Უ

ᅈ˟ҽဃƓǑƼ ࠊئወӳᲢ$Წ

ਤዓࣱᲢ5WUVCKPCDKNKV[

ȷᡛᩓȍȃȈȯȸǯೞ֥Ʒ̬ܣໜ౨଺ǛᎋॾƠƨʙ૏ƴݣƢǔᡛᩓȍȃ ȈȯȸǯƷݣࣖᏡщ

ȷཎܭƷͪႆႎʙᝋƷႆဃ଺Ʒܭࠝཞ७ؕแǁƷݣϼᏡщ ȷᩓןߐْؕแǁƷݣϼᏡщ

ƋǔཎܭǨȪǢ൑ƴƓƍƯŴͪႆႎƳኒወʙ૏ƷेܭƷɦưŴ

ؕแཞ७Ტܭࠝཞ७ᲣưᩓщƷܤܭ̓ዅǛ੩̓ƢǔᩓщǷǹȆ ȠƷᏡщŵ

ȷǢȇǫǷǣᲴኒወƕܭࠝཞ७ưƋǔƱƖᲢ0ཞ७ᲣᩔዅȐ ȩȳǹǛᄩ̬ưƖǔᩓщኒወƷᏡщ

ȷǻǭȥȪȆǣᲴͪႆႎेܭʙ૏Ტҥɟᡛᩓዴ૏ᨦŴ0Უƴ ƓƍƯNjᩔዅȐȩȳǹǛᄩ̬ưƖǔᩓщኒወƷᏡщ

ȷೞ֥dzǹȈᲢૅਤཋȷDZȸȖȫȷ٭ן֥ȷ̬ᜱᚨͳƳƲᲣŴ̬ܣdzǹȈƓǑƼȪȗȬȸǹ dzǹȈሁǛᡛᩓᚨͳƷݤԡᲢኖ࠰ᲣǛᎋॾƠƯŴ651ǍȗȭǸǧǯȈȷȗȭȢȸǿȸƕ

೅แႎƴМဇƢǔถ̖ΝҲ৖ඥƴǑǓᚸ̖

ȷ࿢ؾࢨ᪪Ǜ᠉ถƢǔƨNJƴᙲƠƨᚨͳdzǹȈƸŴȗȭǸǧǯȈdzǹȈƴᚘɥŵ

ȷɼƴᡛᩓኒወƷᡛᩓ੷ڂƷ᠉ถǛᚸ̖ŵኒ ወϋƷǨȍȫǮȸјྙƴ᧙ǘǔਦ೅ƱƠƯNj Мဇ

ȷᩓщࠊئƕኺฎႎƴјྙႎƳ૾ඥưᩓщӕࡽǛᘍƏ ƨNJƴŴᡛᩓฆᩃǛᚐෞȷЪถƠŴҗЎƳᡛᩓӧᏡ

ܾ᣽ᲢITKFVTCPUHGTECRCDKNKV[Ჴ)6%ᲣǛ੩̓Ƣ ǔᩓщǷǹȆȠƷᏡщ

ȷ࿢ؾࢨ᪪ᲴဃཋٶಮࣱǍ୎ᚇŴ׎ᇌπטƳƲƷםעМဇƷᙹСƳƲ ȷᅈ˟ႎࢨ᪪Ჴʴӝ݅ᨼע؏Ǎ၏ᨈȷܖఄƳƲƷǁƷᙹСƳƲ

ϐဃӧᏡǨȍȫǮȸ

ႆᩓƷ੗ዓᲢ$Ჭ ᡛᩓ੷ڂᲢ$Უ

%1



੎Ј᣽Ტ$

ȷ.1.'Ტ.QUU QH .QCF'ZRGEVCPE[ Უ ȷ'05Ტ'ZRGEVGF

'PGTI[ 0QV5WRRN[Უ

ȷႆᩓdzǹȈЪถЎLJƨ Ƹᅈ˟ҽဃƷفьЎ ȷႆᩓЈщᣐЎdzǹȈ

ȷϐǨȍᩓเƷ੗ዓ᣽ ȷϐǨȍᩓเƷЈщ৮

Сׅᢤ᣽

ȷϐဃӧᏡǨȍȫǮȸᩓเƷЈщ৮СƷஇݱ

҄ǍᩓщǷǹȆȠƷϐǨȍᩓเƷᡲኒᏡщ

২ᘐႎȬǸȪǢȳǹ

Ტ4GUKNKGPEGᲣᲢ$

ȷီƳǔݩஹǷȊȪǪƴݣƠƯNjŴ˂Ʒفࢍᚘဒƕܱ଀ƞǕƳƔƬƨئ ӳưNjҗЎƴݣࣖưƖǔᏡщǍ࠼؏ႎƳᩔዅᛦૢǵȸȓǹƕܱ଀ưƖ ǔҗЎƴݣࣖưƖǔᏡщ

௩᠂ࣱᲢ(NGZKDKNKV[Უ Ტ$Ჱ

%1

6CZdzǹȈƸ$ưᎋॾŵ

ὀ㸸ᅗ୰࡛ࠊྛホ౯㡯┠ࡣࠊࠕCࠖࡣࣉࣟࢪ࢙ࢡࢺ㈝⏝࡟㛵ࡍࡿ࢝ࢸࢦ࣮ࣜࠊࠕBࠖࡣ࣋ࢿࣇ࢕ࢵࢺ࡟㛵ࡍࡿ࢝ࢸࢦࣜ

࣮ࠊ ࠖࡣ♫఍ࡸ⎔ቃ࡬ࡢᙳ㡪࡟㛵ࡍࡿ࢝ࢸࢦ࣮ࣜ࡟኱ูࡉࢀ࡚࠸ࡿࠋ

ฟ඾㸸ཧ⪃ᩥ⊩ ࢆࡶ࡜࡟సᡂ

ᅗ (1762( ࡢ &%$ ᡭἲ࡛⏝࠸ࡽࢀࡿホ౯㡯┠ࡢᴫせ

ࡢ㐩ᡂࠊ㏦㟁⣔⤫ࡢ㡹ᙉᛶ㸦ᢏ⾡ⓗ࡞ࣞࢪࣜ࢔ࣥ

ࢫ㸦 㸧㸧ࡢ☜ಖ࡜࠸ࡗࡓ┠ⓗ࡟ᑐࡋࠊ㏦

㟁⣔⤫ࣉࣟࢪ࢙ࢡࢺࡀ࡝ࡢᵝ࡟㈉⊩ࡍࡿࡇ࡜ࡀฟ ᮶ࡿ࠿ࠊࡲࡓࠊࡑࡢ㏦㟁ࣉࣟࢪ࢙ࢡࢺࡢᐇ᪋࡟ࡼ ࡗ࡚࡝ࡢ⛬ᗘࡢ࣋ࢿࣇ࢕ࢵࢺࡀぢ㎸ࡵࡿ࠿ࡀホ౯

ࡉࢀࡿ㸦ᅗ ཧ↷㸧ࠋ ࡣࠊ㏦㟁ࢿࢵࢺ

࣮࣡ࢡ㛤Ⓨ㈝⏝࡜ ᡭἲ࡟ᇶ࡙ࡁ⟬ᐃࡉࢀࡓ

㸵✀㢮ࡢ࣋ࢿࣇ࢕ࢵࢺࡢホ౯⤖ᯝࢆࠊ⾲ ࡢࡼ

࠺࡟㸱✀㢮࡟༊ศࡋࠊ⾲ ࡟♧ࡍࡼ࠺࡞せ⣙⾲

ࢆᥦ♧ࡋ࡚࠸ࡿࠋࡓࡔࡋࠊ ᡭἲ࡛⏝࠸ࡽࢀ

࡚࠸ࡿホ౯㡯┠ࠕᢏ⾡ⓗࣞࢪࣜ࢔ࣥࢫ㸦 㸧ࠖࡸ

ࠕᰂ㌾ᛶ㸦 㸧ࠖࡣࠊ㈌ᖯ౯್࡟᥮⟬ࡋ㞴࠸ࡓࡵࠊ

㏦ 㟁 ࢿ ࢵ ࢺ ࣡ ࣮ ࢡ 㛤 Ⓨ ࡀ ࡶ ࡓ ࡽ ࡍ ⥲ ࣋ ࢿ ࣇ ࢕ ࢵ ࢺ ࢆ ⟬ ᐃ ࡋ ࠊ 㛤 Ⓨ ㈝ ⏝ ࡜ ┤ ᥋ ⓗ ࡟ ẚ ㍑ ࡍ ࡿ ࡇ ࡜

ࡣ㞴ࡋ࠸ ࠋࡑࡇ࡛ࠊ ࡣࠊ⾲ ࡟♧ࡍ

㡯┠ ࠕᢏ⾡ⓗࣞࢪࣜ࢔ࣥࢫࠖࡣ㏦㟁ࢿࢵࢺ࣮࣡

ࢡࡢᏳᐃ㐠⏝ୖࡢᢏ⾡ⓗせ௳ࢆ⪃៖ࡋࡓ㐣Ώゎᯒࡸ₻ ὶゎᯒ࡞࡝ࡢ⤖ᯝࢆᇶ࡟⥲ྜⓗ࡞ุ᩿ࡀồࡵࡽࢀࡿࠋ

ࡑࡇ࡛ࠊ⣔⤫ゎᯒࡢᑓ㛛ᐙ࡟ࡼࡗ࡚ᅗ ࡟♧ࡍࠕ㏦㟁

ࢿࢵࢺ࣮࣡ࢡᶵჾࡢಖᏲⅬ᳨᫬ࢆ⪃៖ࡋࡓ஦ᨾ࡟ᑐࡍ

ࡿ㏦㟁ࢿࢵࢺ࣮࣡ࢡࡢᑐᛂ⬟ຊࠖࠕ≉ᐃࡢഅⓎⓗ஦㇟

ࡢⓎ⏕᫬ࡢᐃᖖ≧ែᇶ‽࡬ࡢᑐฎ⬟ຊࠖࠕ㟁ᅽᔂቯᇶ

‽࡬ࡢᑐฎ⬟ຊࠖࡀㄆࡵࡽࢀࡿሙྜ࡟ ࡀຍⅬࡉࢀ

ࡿࠋࡲࡓࠊ㡯┠ ࠕᰂ㌾ᛶࠖࡣࠊከᩘࡢᑗ᮶ࢩࢼࣜ࢜

࡟ᑐࡍࡿྛ㛤Ⓨィ⏬ࡢᑐᛂ⬟ຊࡀ」㞧࡟㛵ಀࡍࡿࠋ⣔

⤫ゎᯒࡢᑓ㛛ᐙ࡟ࡼࡾࠊᅗ ࡟♧ࡍࡼ࠺࡟␗࡞ࡿᑗ᮶

ࢩ ࢼ ࣜ ࢜ ࡟ ᑐ ࡋ ࡚ ࡶ ࠊࠕ ௚ ࡢ ቑ ᙉ ィ ⏬ ࡀ ᐇ ᪋ ࡉ ࢀ ࡞ ࠿

(出典)岡田, 丸山:

「欧州における発送電

分離後の送電系統増強

の仕組みとその課題」,

電力中央研究所報告

Y14019 (2015)

(24)

+ TYNDPの費用便益分析の手法 24

㸫 㸫

⾲ (1762( ࡢ &%$ ᡭἲ࡛⏝࠸ࡽࢀࡿྛᣦᶆࡢホ౯ᇶ‽ࡢᴫせ

ൔ᠋᪮Ⴘ ਦ೅ ҥˮ ݣᝋር׊

ᚸ̖ኽௐ

ғЎᲫ ғЎᲬ ғЎᲭ

C1

ȗȭǸǧǯȈdzǹȈ

ዮȗȭǸǧǯȈdzǹȈ Ȧȸȭ ȗȭǸǧǯȈ

10ΕȦȸȭˌɥ Light green

3ΕȦȸȭ᳸10ΕȦȸȭ Green

3ΕȦȸȭˌɦ Dark green

B1 ܤܭ̓ዅƷોծ

LOLE

଺᧓ LJƨƸ MWh

׎К

ܤܭ̓ዅƴૅᨦƕႆဃƠ Ƴƍئӳ

Light green

࠰᧓3TWhˌɥƷᩓщᩔ ᙲƷ࠰᧓ᩓщෞᝲ᣽Ʒ 0.001%ˌɥ

Green

࠰᧓3TWhˌɥƷᩓщ ᩔᙲƷ࠰᧓ᩓщෞᝲ᣽ Ʒ0.01%ˌɥ

Dark green

ENS MWh ׎К

B2

ᅈ˟ҽဃƓǑƼࠊئ ወӳ

ႆᩓdzǹȈЪถЎLJƨƸ ᅈ˟ҽဃƷفьЎ

Ȧȸȭ EUٻ ࠰᧓ư3ΕȦȸȭச฼ Light green

࠰᧓ư3ΕȦȸȭ᳸ 10ΕȦȸȭ

Green

࠰᧓ư10ΕȦȸȭˌɥ Dark green

؏ϋƷᣐЎdzǹȈ Ȧȸȭ ׎К

B3

ϐဃӧᏡǨȍȫǮȸ

ႆᩓƷ੗ዓ

ϐǨȍᩓเƷ੗ዓ᣽ MW EUٻ 100MWச฼ƷኒወƷႺ੗

੗ዓŴƋǔƍƸϐǨȍᩓ เЈщفьƷᚩܾ͌ƕ 50GWhச฼

White

100MW500MWƷኒወ ƷႺ੗੗ዓŴƋǔƍƸϐ ǨȍᩓเЈщفьƷᚩܾ

͌ƕ50GWh100GWh Light green

500MWˌɥƷኒወƷႺ

੗੗ዓŴƋǔƍƸϐǨ ȍᩓเЈщفьƕ 300GWhˌɥ

Dark green ϐǨȍᩓเƷЈщ৮Сׅ

ᢤ᣽ƳƲ

MW EUٻ

B4 ᡛᩓ੷ڂ

ᡛᩓ੷ڂ MWh EUٻ

ᡛᩓȍȃȈȯȸǯϋƷᡛ ᩓ੷ڂ᣽ƕفь

Red

ƋǔᡛᩓȍȃȈȯȸǯཞ ७ƷLjưᡛᩓ੷ڂƕถݲ

Whit

ᡛᩓȍȃȈȯȸǯϋƷ ᡛᩓ੷ڂƕถݲ

Light green B5

CO2੎Ј᣽ CO2੎Ј᣽ tons EUٻ

CO2੎Ј᣽ǁƷјௐƳƠ

Whit

࠰᧓CO2੎ЈЪถ᣽ƕ 500ǭȭȈȳச฼

Light green

࠰᧓CO2੎ЈЪถ᣽ƕ 500ǭȭȈȳˌɥ

Dark green B6

২ᘐႎ ȬǸȪǨȳǹ Resilience

KPIKey Performance

Index 0, +,++

KPIƕ0Ʒئӳ (Whit)

KPIƕ3+ˌɦƷئӳ Green)

KPIƕ3+ឬᢅƷئӳ Dark green) B7

௩᠂ࣱᲢFlexibility

KPIKey Performance

Index 0, +,++

KPIƕ0Ʒئӳ (Whit)

KPIƕ3+ˌɦƷئӳ Green)

KPIƕ3+ឬᢅƷئӳ Dark green)

ὀ㸸⾲୰࡛ࠊྛホ౯㡯┠ࡣࠊࠕCࠖࡣࣉࣟࢪ࢙ࢡࢺ㈝⏝࡟㛵ࡍ࢝ࢸࢦ࣮ࣜࠊࠕBࠖࡣ࣋ࢿࣇ࢕ࢵࢺ࡟㛵ࡍࡿ࢝ࢸࢦ࣮ࣜ

࡟኱ูࡉࢀ࡚࠸ࡿࠋࡉࡽ࡟ࠊྛホ౯㡯┠ࡢࢫࢥ࢔ࡣࠊ㸦 㸧ෆ࡟♧ࡍⰍ࡛༊ศࡉࢀࡿࠋ ฟ඾㸸ཧ⪃ᩥ⊩ ࢆࡶ࡜࡟సᡂ

⾲ &%$ ᡭἲ࡟ࡼࡿྛ㏦㟁ࢿࢵࢺ࣮࣡ࢡ㛤Ⓨィ

⏬ࣉࣟࢪ࢙ࢡࢺホ౯ࡢ࢖࣓࣮ࢪ

ὀ㸸⾲ ࡟♧ࡍ㏦㟁ࢿࢵࢺ࣮࣡ࢡ㛤Ⓨィ⏬ࣉࣟࢪ࢙ࢡ ࢺ ࡢ ♫ ఍ ⓗ ᙳ 㡪 㸦 㸧 ࡸ ⎔ ቃ ᙳ 㡪 㸦 㸧 ࡣ ࠊ ㏦ 㟁⥺タ⨨ሙᡤࡢไ⣙ࡸᬒほ࡬ࡢ㓄៖࡞࡝௚ࡢ࣋ࢿ ࣇ࢕ࢵࢺ㡯┠ࡢࡼ࠺࡟ᐃ㔞ⓗ࡟ࢫࢥ࢔ࢆồࡵࡿࡇ

࡜ࡀ㞴ࡋ࠸ࡓࡵࠊಶู࡟ホ౯ࡉࢀ࡚࠸ࡿࠋ ฟ඾㸸ཧ⪃ᩥ⊩ ࡼࡾᘬ⏝

ࡗࡓሙྜ࡛ࡶ༑ศ࡟ᑐᛂ࡛ࡁࡿ⬟ຊࠖࡸࠕᗈᇦⓗ࡞㟂

⤥ㄪᩚࢧ࣮ࣅࢫࡀᐇ᪋࡛ࡁࡿ༑ศ࡟ᑐᛂ࡛ࡁࡿ⬟ຊࠖ ࡀㄆࡵࡽࢀࡿሙྜ࡟ࠊ ࡀຍⅬࡉࢀࡿࠋ

ࡼ ࠺ ࡟ ࠊ ྛ ᣦ ᶆ ࡟ ᑐ ࡋ ホ ౯ ᇶ ‽ 㸦 ࢫ ࢥ ࢔ 㸧 ࢆ タ

ࡅࠊྛࢩࢼࣜ࢜࡟ᑐࡍࡿᰂ㌾ᛶࡸ㈉⊩ᗘࢆホ౯ࡋ

࡚࠸ࡿ ࠋࡘࡲࡾ⌧≧࡛ࡣࠊ ᡭἲ࡟ࡼࡾᚓ

ࡽࢀࡿಶู㛤Ⓨィ⏬᱌࡟ࡘ࠸࡚ࠊタᐃࡉࢀࡓホ౯

㡯┠ẖ࡟࡝ࡢ⛬ᗘᙳ㡪ࡀ࠶ࡿ࠿ࢆ♧ࡋ࡚࠸ࡿ࡟㐣

ࡂ࡞࠸ࠋ

 ㏦ 㟁 ࢿ ࢵ ࢺ ࣡ ࣮ ࢡ 㛤 Ⓨ ィ ⏬ ࣉ ࣟ ࢪ

࢙ࢡࢺホ౯࡟࠾ࡅࡿㄢ㢟

ࡇࢀࡲ࡛࡟ࠊᨻ⟇ホ౯ࡸࣉࣟࢪ࢙ࢡࢺホ౯ࡢศ

㔝࡟࠾࠸࡚ࠊ ࠕ㈝⏝౽┈ศᯒ 䛃

ࡸࠕ㈝⏝ຠᯝศᯒ ࠖ࡜

࠸ ࡗ ࡓ ศ ᯒ ᡭ ἲ ࡀ ᳨ ウ ࡉ ࢀ ࡚ ࠸ ࡿ ࠋ ࠕ ㈝ ⏝ ౽

࡛᝿ᐃࡉࢀࡓ ✀㢮ࡢࢩࢼࣜ࢜ࡢᴫせ

࡟ࡘ࠸࡚ࡣࠊ௜㘓 ࢆཧ↷ࡉࢀࡓ࠸ࠋ

(出典)岡田, 丸山:「欧州における発送電分離後の送電系統増強の仕組みとその課題」,

電力中央研究所報告 Y14019 (2015)

(25)

+

The assessment of losses variations induced by the projects improved in the TYNDP 2016 compared to the TYNDP 2014

TYNDPの費用便益分析例1 25

with a comprehensive all year round computations on a wide-area model capturing all relevant flows.

The results must however be considered with caution and not totally reliable due to their very high sensitivity to assumptions regarding the detailed location of generation which are not secured.

General CBA Indicators

Delta GTC contribution (2020) [MW] DE-NO: 1400 NO-DE: 1400 Delta GTC contribution (2030) [MW] DE-NO: 1400 NO-DE: 1400 Capex Costs 2015 (M€)

Source: Project Promoter 1850 Cost explanation

S1 50-100km

S2 Negligible or less than 15km

B6 +

B7 ++

Scenario specific CBA indicators EP2020 Vision 1 Vision 2 Vision 3 Vision 4

B1 SoS (MWh/yr) N/A N/A N/A N/A N/A

B2 SEW (MEuros/yr) 110 ±20 100 ±10 100 ±20 120 ±10 70 ±10

B3 RES integration (GWh/yr) 100 ±20 220 ±170 <10 890 ±180 350 ±70

B4 Losses (GWh/yr) 350 ±35 350 ±35 350 ±35 350 ±35 350 ±35

B4 Losses (Meuros/yr) 15 ±1 19 ±2 16 ±2 21 ±2 23 ±3

B5 CO2 Emissions (kT/year) -400 ±80 ±100 -500 ±500 -700 ±100 -100 ±800

The pan-European analysis only take into account one average hydrological year. Studies by the Norwegian TSO Statnett shows that an important driver for the benefit of Norwegian interconnectors is the increased potential for power export from Norway during periods of excessive inflow. The benefit arises both from reducing the risk for hydropower curtailment and from avoiding price collapse in Norway during wet summers. The benefit is non-linear, which means that simulating over one average year is not equal to taking the average over several hydrological years. Internal studies indicates that SEW-values might double if also taking into account wet and dry years. This means that the benefit indicators calculated in the pan-European analysis probably are underestimated.

Also the benefit of RES and CO2 (increased RES, decreased CO2) are expected to be under-estimated. Especially in wet years the RES-values will be much higher, this as the interconnectors helps exporting RES/hydro instead of having hydro- curtailment (water running directly to the sea). This also leads to decreased CO2-emissions if taking wet/dry years into account.

Summarized the CBA-indicators for projects going to Norway for SEW, RES and CO2 are supposed to be underestimated in the pan-European models.

Connections to the Nordics can bring potential balancing market benefits in the intraday market which has not been

considered in the CBA analysis, the benefits are increased for markets with a lot of wind or hydro as the output can vary a

NordLink: a new HVDC connection between Southern Norway and Northern Germany.Estimated subsea cable length:

514km. Capacity: 1400 MW.

Classification Mid-term Project

Boundary Germany - Norway

PCI label 1.8

Promoted by STATNETT;TENNET-DE

Investment

ID Description

Contribution Substation GTC

1 Substation 2 Present Status Commissioning

Date

Evolution

since

TYNDP

2014

Evolution Driver

142

Nord.Link; a new HVDC

connection between

Southern Norway and

Northern Germany.

Estimated subsea cable

length; 514km.

Capacity; 1400 MW.

100% Tonstad (NO) Wilster (DE) Construction Under 2020 Investment

on time

Agreement between the

two TSOs on

commissioning date.

406

Voltage uprating of

existing 300 kV line

Sauda/Saurdal - Lyse -

Tonstad - Feda - 1&2,

Feda - Kristiansand;

Sauda-Samnanger in

long term. Voltage

upgrading of existing

single circuit 400kV

OHL Tonstad-Solhom-

Arendal. Reactive

power devices in 400kV

substat

100%

(Southern

part of

Norway)

(NO)

(Southern

part of

Norway)(NO)

Under

Construction 2020 Delayed

Revised progress due to

less flexible system

operations in a running

system (voltage upgrade of

existing lines).

Commissioning date

expected 2019-2021.

Project Website;

http://www.statnett.no/en/Projects/NORDLINK/

(出典) ENTSO-E: TYNDP2016 combined project sheets (2015)

(26)

+ TYNDPの費用便益分析例2 26

Scenario specific CBA indicators EP2020 Vision 1 Vision 2 Vision 3 Vision 4

B1 SoS (MWh/yr) N/A N/A N/A N/A N/A

B2 SEW (MEuros/yr) 670 ±140 1220 ±90 1060 ±80 1350 ±70 1520 ±90 B3 RES integration (GWh/yr) 15550 ±3110 20640 ±10 20650 ±20 19200 ±150 20180 ±70 B4 Losses (GWh/yr) 550 ±55 925 ±92 1000 ±100 1300 ±130 1825 ±182

B4 Losses (Meuros/yr) 23 ±3 50 ±5 46 ±5 77 ±8 122 ±13

B5 CO2 Emissions (kT/year) -12200 ±1830 -11700 ±200 -15800 ±2000 -7300 ±1000 -8400 ±1300

(出典) ENTSO-E: TYNDP2016 combined project sheets (2015)

This project has been assessed by ENTSO-E in line with the Cost Benefit Analysis methodology, approved by the EC in February 2015.

This project is assessed with a double TOOT step compared to the project 191, which is commissioned later.The

indicators B6/B7 reflect particular technical system aspects of projects based on a summation of qualitative performance indicators, in line with the CBA methodology; these cannot be used as a proxy for the security of supply indicator.

The assessment of losses variations induced by the projects improved in the TYNDP 2016 compared to the TYNDP 2014 with a comprehensive all year round computations on a wide-area model capturing all relevant flows.

The results must however be considered with caution and not totally reliable due to their very high sensitivity to assumptions regarding the detailed location of generation which are not secured.

General CBA Indicators

Delta GTC contribution (2020) [MW]

Delta GTC contribution (2030) [MW] ter : 5750 ter : 5750 Capex Costs 2015 (M€)

Source: Project Promoter 7000 ±1000 Cost explanation

S1 More than 100km

S2 Negligible or less than 15km

B6 +

B7 +

ter : 5750 ter : 5750

Connection of offshore wind parks in the North Sea to Germany. Consisting of subsea AC and DC cables. The OWP will

help to reach the European goal of CO2 reduction and RES integration

Classification Mid-term Project

Boundary North-South

PCI label

Promoted by TENNET-DE

Investment

ID Description

Contribution Substation 1 Substation 2 Present Status Commissioning GTC Date Evolution TYNDP since

2014

Evolution Driver

160 New AC-cable

connection. 100%

Offshore-

Wind park

Nordergründe

(DE)

Inhausen

(DE) Construction Under 2016 Investment

on time on time relative to

TYNDP14

163

New HVDC

transmission system

consisting of offshore

platform, cable and

converters.

100% HelWin1 (DE) Büttel (DE) Commissioned Cluster 2014 Investment

on time in operation

164

New HVDC

transmission system

consisting of offshore

platform, cable and

converters.

100% SylWin1 (DE) Büttel (DE) Commissioned Cluster 2015 Investment

on time in operation

165

New HVDC

transmission system

consisting of offshore

platform, cable and

converters.

100% DolWin1 (DE) Cluster Dörpen/West

(DE) Commissioned 2015 Delayed due to the project

166 New AC-cable

connection 100% Wind park Offshore

Riffgat (DE)

Emden

/Borßum(DE) Commissioned 2014 Investment

on time in operation

167

New HVDC

transmission system

consisting of offshore

platform, cable and

converters.

100% BorWin2 (DE) Diele (DE) Commissioned Cluster 2015 Investment

on time in operation

654 transmission system New HVDC

consisting of offshore 100%

Cluster

DolWin2 (DE) Dörpen/West

(DE) Construction Under 2016 Delayed due to the project

(27)

+ TYNDPの費用便益分析例 27

Market based capacity analysis performed in the TYNDP 2016 shows the potential for increasing the capacity of the Nordics and Continental system. At the same time it is important to pay attention to the assumptions. Bringing CO2, oil, gas, coal prices down to the 201 level will influence the SEW-values in a negative direction. Having a look at SEW/GTC values in the different visions indicates that the energy- balance of the different visions both for the Nordics and Continental countries is the main driver for price differences in the visions hence they drive the SEW-value of connecting the Nordic and Continental systems. The Nordic surplus is very high in Vision 2, which results in a high price difference and subsequent high SEW/GTC-value.

In general, SEW values for projects towards the Nordics are underestimated because studies only take into account an average hydrological year.

Interconnection target for 2030 Nordics - Continental Europe West

56

Market based capacity analysis performed in the TYNDP 2016 shows the potential for increasing the capacity of the Nordics and Continental system. At the same time it is important to pay attention to the assumptions. Bringing CO2, oil, gas, coal prices down to the 201 level will influence the SEW-values in a negative direction. Having a look at SEW/GTC values in the different visions indicates that the energy- balance of the different visions both for the Nordics and Continental countries is the main driver for price differences in the visions hence they drive the SEW-value of connecting the Nordic and Continental systems. The Nordic surplus is very high in Vision 2, which results in a high price difference and subsequent high SEW/GTC-value.

In general, SEW values for projects towards the Nordics are underestimated because studies only take into account an average hydrological year.

Interconnection target for 2030 Nordics - Continental Europe West

56 Market based capacity analysis performed in the TYNDP 2016 shows the potential for increasing the

capacity of the Nordics and Continental system. At the same time it is important to pay attention to the assumptions. Bringing CO2, oil, gas, coal prices down to the 201 level will influence the SEW-values in a negative direction. Having a look at SEW/GTC values in the different visions indicates that the energy- balance of the different visions both for the Nordics and Continental countries is the main driver for price differences in the visions hence they drive the SEW-value of connecting the Nordic and Continental systems. The Nordic surplus is very high in Vision 2, which results in a high price difference and subsequent high SEW/GTC-value.

In general, SEW values for projects towards the Nordics are underestimated because studies only take into account an average hydrological year.

Interconnection target for 2030 Nordics - Continental Europe West

56

Nordics - Continental Europe West

Interconnecting the hydro-based Nordic system (NO/SE) with the thermal/nuclear/wind-based Continental system

The main drivers for investments in this region are to integrate the hydro-based Nordic system with the thermal/nuclear/wind-based Continental system. This will improve the security of supply both in Norway/Sweden in dry years as well as for the Continental system in periods with negative power balance (low wind, high demand etc.). In addition, the boundary is important both for European market integration, facilitating renewable energy and preparing the power system with lower CO2-emission.

TYNDP findings

The analyses show, that projects between the Nordics and the Continental system do have a reasonably good socio-economic cost/benefit ratio. However, the values are very dependent of the basic price- assumptions (CO2, coal, gas) as well as the energy-balances in each system hence the price-differences between the systems.

In general, projects between the systems leads to decreased CO2-emissions. However, visions with low CO2-prices, may lead to increased coal-fired production and subsequently increase CO2-emissions. Welfare and Capacity

Nordics - Continental Europe West

55

(出典) ENTSO-E: “Ten Year Network

Development Plan 2016” (2016)

(28)

+ まとめ

n なぜ世界中で再エネが促進されるのか?

n かけた費用に対して便益が大きいから

n 電力自由化/発送電分離後の送電系統

n 送電会社は中立なインフラ会社に

n 電力消費が減る中で電力流通は増加

n ENTSO-Eの系統開発10ヶ年計画 (TYNDP)

n 複数のシナリオ

n 費用便益分析

n 200もの送電線増強・新設プロジェクトの正当性

28

(29)

+ 本日の参考文献

n 安田陽:「世界の再生可能エネルギーと電力システ

ム: 風力発電編」, インプレスR&D (2017)

n 安田陽:「日本の知らない風力発電の実力」, オー

ム社 (2013)

n 植田和弘・山家公雄 編 :「再生可能エネルギー政策

の国際比較」, 京都大学学術出版会 (2017)

n 安田陽: 風力発電大量導入を実現する電力システム

とは, 太陽エネルギー, Vol.41, No.4, pp.25-32

(2015)

n T. アッカーマン 編著 , 日本風力エネルギー学会 :

「風力発電導入のための電力系統工学」, オーム社

(2013)

29

(30)

+

ご清聴有り難うございました。

yasuda@mem.iee.or.jp

再エネと送電網の費用便益分析

∼欧州ではなぜ系統整備が

進むのか∼

公開シンポジウム

自然エネルギー 北海道の

拡大に向けた

電力システムの発展

―欧州の事例から―

Figure 4 - Reduction in the yearly average of hourly marginal cost spreads in Vision 3, illustrating the benefit of TYNDP investments for European market integration
Figure 4  Renewables and spot electricity prices

参照

関連したドキュメント

To derive a weak formulation of (1.1)–(1.8), we first assume that the functions v, p, θ and c are a classical solution of our problem. 33]) and substitute the Neumann boundary

24日 札幌市立大学講義 上田会長 26日 打合せ会議 上田会長ほか 28日 総会・学会会場打合せ 事務局 5月9日

Amount of Remuneration, etc. The Company does not pay to Directors who concurrently serve as Executive Officer the remuneration paid to Directors. Therefore, “Number of Persons”

As a result of the Time Transient Response Analysis utilizing the Design Basis Ground Motion (Ss), the shear strain generated in the seismic wall that remained on and below the

る省令(平成 9

[r]

再生可能エネルギー発電設備からの

再エネ電力100%の普及・活用 に率先的に取り組むRE100宣言